首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
ABSTRACT Root and stem rot of cut-flower roses (Rosa spp.) was observed in commercial glasshouse-grown roses in 10 prefectures of Japan from 1998 through 2001. Binucleate-like Rhizoctonia spp. were isolated mainly from the disease plants. In all, 670 isolates were divided into two types based on cultural appearance; 168 isolates of light brown to brown type and 502 isolates of whitish type. A hyphal anastomosis reaction using representative isolates from each type revealed that the light brown to brown type belonged to anastomosis group G (AG-G), whereas the whitish type (AG-CUT) failed to anastomose with tester strains of binucleate Rhizoctonia AG-A through AG-S. Neither isolates of AG-G nor AG-CUT anastomosed with tester strains of a previously reported unknown AG (AG-MIN) of binucleate Rhizoctonia spp. collected from miniature roses. In pathogenicity tests, randomly selected isolates of the three groups caused root and stem rot on cut-flower and miniature roses. To differentiate AG-CUT and AG-MIN from known AGs of binucleate Rhizoctonia spp., restriction fragment length polymorphism (RFLP) and sequence analyses of a ribosomal (r)DNA internal transcribed spacer (ITS) region were conducted. Among the eight restriction enzymes used, HaeIII produced DNA banding patterns for AG-CUT that differed from those of tester strains and AG-MIN. Additionally, restriction profiles of AG-MIN differed from those of all tester strains. AG-G isolates from cut-flower roses had the same RFLP pattern as the tester strains of AG-G. Based on the results of hyphal anastomosis and RFLP and sequence analysis of an rDNA-ITS region, we propose that AG-CUT be designated AG-T and AG-MIN be designated AG-U, two new AGs of binucleate Rhizoctonia spp. The phylogenetic tree based on the sequence data of the rDNA-ITS region showed that isolates of AG-MIN were in a distinct clade from other AGs, whereas isolates of AG-CUT were in the same clade as those of AG-A. More detailed phylogenetic analysis besides rDNA-ITS region might be necessary for AG classification of binucleate Rhizoctonia spp.  相似文献   

2.
Aetiology of Rhizoctonia in sheath blight of maize in Sichuan   总被引:1,自引:0,他引:1  
Rhizoctonia isolates obtained from maize grown in commercial fields in 33 representative counties (or cities) in Sichuan province in China were characterized according to colony morphology, hyphal anastomosis and pathogenicity. Of 141 isolates, 116 were identified as R. solani , 23 as R. zeae and two as binucleate Rhizoctonia . The isolates of R. solani were assigned to four anastomosis groups (AG): AG-1-IA (101 isolates, accounting for 71.6% of the total), AG-1-IB (2, 1.4%), AG-4 (9, 6.4%) and AG-5 (4, 2.8%). The two isolates of binucleate Rhizoctonia belonged to AG-K. On maize, isolates of AG-1-IA caused typical sheath blight symptoms. Lesions produced by isolates of AG-4, AG-5, AG-1-IB and AG-K were darker than those of AG-1-IA. Rhizoctonia zeae usually caused discontinuous lesions with a dark brown margin and a brown centre on the leaf sheaths, as well as ear rot. Isolates of AG-1-IA were the most virulent to maize, with an average lesion length of approximately 15 cm. Isolates of R. zeae produced lesions approximately 12 cm long, while those of AG-4, AG-5, AG-1-IB and AG-K were progressively shorter. On potato dextrose agar (PDA; pH 6.4), the minimum temperature for mycelial growth of R. zeae isolates was 14–18°C, the maximum 38–40°C and optimum 30°C. Isolates of R. zeae did not grow on PDA (28°C) at pH 2.0, the optimum for growth being pH 6.4.  相似文献   

3.
A total of 119 isolates of Rhizoctonia were collected from stem canker lesions, stolon and root lesions, hymenia on stems, or from black scurf on tubers of potato plants ( Solanum tuberosum ) in Finland (latitudes 60–67°N). All isolates except three belonged to anastomosis group 3 (AG-3) of R. solani , as determined by phylogenetic analysis of the internal transcribed spacer sequences (ITS1 and ITS2) of ribosomal RNA (rRNA) genes. Sensitivity of the 119 isolates to the fungicide flutolanil was tested in vitro (EC50 values 0·14–0·75  µ g active ingredient mL−1). The isolates also varied considerably in growth rate (5·1–14·8 mm day−1). The severity of disease caused by 99 isolates was determined based on the proportion of potato sprouts affected by lesions, discoloration or death, which was c . 1–60%. Only two isolates that were able to cause severe symptoms showed particularly low sensitivity to the fungicide and rapid growth rate. One isolate each of anastomosis groups AG-2-1 and AG-5 and an unknown, binucleate Rhizoctonia sp. were detected. The AG-5 isolate and the binucleate isolate caused mild symptoms on potato sprouts, whereas the AG-2-1 isolate was not pathogenic. Taken together, AG-3 of R. solani was the predominant causal agent of the stem canker and black scurf diseases of potato in Finland and showed considerable variability in disease severity, fungicide sensitivity and growth rate in vitro .  相似文献   

4.
Finnish and Norwegian uninucleate Rhizoctonia sp, isolates. originating from roots of nursery grown conifer seedlings suffering from root dieback, and having Ceratobasidium perfect state, were tested for pathogenicity and genetic related ness. All tested isolates of this pathogen considerably reduced the root system development of Scots pine and Norway spruce seedlings resulting in death or stunted growth. The uninucleate isolates anastomosed readily with each other producing a killing reaction. In a RAPD-PCR analysis, the uninucleate isolates had different banding patterns from our reference isolates, two Finnish binucleate isolates (AG-I and R. sp.) and standard tester isolates of genus Ceratobasidium representing anastomosis groups AG-A, AG-C, AG-E, AG-G and AG-I. UPGMA analysis clustered the uninucleate isolates together at a greater similarity than 75% while the binucleate isolates formed distinct clusters and were 10-25% similar to the uninucleate Rhizoctonia sp. Hyphal anastomosis and DNA data suggest that the uninucleate Rhizocionia sp. is an homogeneous group and distinct from the tested binucleate Rhizoctonia isolates.  相似文献   

5.
Mazzola M 《Phytopathology》1997,87(6):582-587
ABSTRACT Rhizoctonia spp. were isolated from the roots of apple trees and associated soil collected in orchards located near Moxee, Quincy, East Wenatchee, and Wenatchee, WA. The anastomosis groups (AGs) of Rhizoctonia spp. isolated from apple were determined by hyphal anastomosis with tester strains on 2% water agar and, where warranted, sequence analysis of the rDNA internal transcribed spacer region and restriction analysis of an amplified fragment from the 28S ribosomal RNA gene were used to corroborate these identifications. The dominant AG of R. solani isolated from the Moxee and East Wenatchee orchards were AG 5 and AG 6, respectively. Binucleate Rhizoctonia spp. were recovered from apple roots at three of four orchards surveyed and included isolates of AG-A, -G, -I, -J, and -Q. In artificial inoculations, isolates of R. solani AG 5 and AG 6 caused extensive root rot and death of 2- to 20-week-old apple transplants, providing evidence that isolates of R. solani AG 6 can be highly virulent and do not merely exist as saprophytes. The effect of binucleate Rhizoctonia spp. on growth of apple seedlings was isolate-dependent and ranged from growth enhancement to severe root rot. R. solani AG 5 and AG 6 were isolated from stunted trees, but not healthy trees, in an orchard near Moxee, WA, that exhibited severe symptoms of apple replant disease, suggesting that R. solani may have a role in this disease complex.  相似文献   

6.
我国部分地区玉米丝核菌组成及其致病类型分析   总被引:3,自引:1,他引:2  
IA为主要融合群;双核丝核菌为AG-A融合群;单核丝核菌种类尚不确定.对各融合群的致病类型进行初步比较发现,属于AG1-IA融合群的菌株,可在玉米叶鞘形成典型的云纹状病斑,其它菌株虽可引起玉米发病,但与AG1-IA的症状存在明显差异.  相似文献   

7.
In this paper we present the first report of the occurrence of a binucleate Rhizoctonia spp. causing hypocotyl and root rot in kale in Brazil. Rhizoctonia spp. were isolated from kale (Brassica oleracea var. acephala) with symptoms of hypocotyl and root rot. The isolates, characterized as binucleate Rhizoctonia spp., did not show an anastomosis reaction with any of the binucleate Rhizoctonia spp. testers used. The pathogenicity of the isolates was tested under greenhouse conditions; all isolates were pathogenic and showed different symptom severities on kale. The ITS-5.8S rDNA sequences of kale isolates and 50 testers (25 binucleate Rhizoctonia spp. and 25 Rhizoctonia solani) were compared in order to characterize the genetic identity of Rhizoctonia spp. infecting kale. The kale isolates showed genetic identities ranging from 99.3 to 99.8% and were phylogenetically closely related to CAG 7 (AF354084), with identities of 98.5 and 98.7%. It is suggested that the binucleate Rhizoctonia spp. causing hypocotyl and root rot on kale Brazil comprises a new AG not yet described.  相似文献   

8.
Two-hundred and forty-eight isolates of Rhizoctonia spp, were obtained from 13 locations in Gifu Prefecture in Japan using the plant debris particles isolation, colonization of bait tissue, and soil-clump plating methods. Of the isolates, 143 were binucleate Rhizoctonia spp., 60 were R. solani and 45 were R. zeae. Three isolates of R. solani and 54 of binucleate Rhizoctonia spp, were hypovirulent on radish, whilst all isolates of R. zeae were highly virulent, Hypovirulent strains were isolated most frequently by the plant debris particles isolation method, Hypovirulent isolates of R. solani belonged to anastomosis group 4, whilst the hypovirulent binucleate Rhizoctonia isolates belonged to AG A, AG Ba, AG G, and AG O.
Thirty-two isolates of Rhizoctotria spp, selected for hypovirulence on radish were tested on cucumber in vitro. Only five binucleate Rhizoctonia isolates and one R. solani isolate were hypovirulent on both species, and these isolates were also hypovirulent on seven other crop species. Cucumber showed wide variation in disease susceptibility to different isolates but hypovirulent isolates exhibited a consistent reaction on five different host cultivars, Pathogenicity tests using cucumber grown in soil also showed consistent reactions with isolates selected either for hypovirulence or virulence. The results support the use of cucumber in bioassays for identifying hypovirulent isolates of binucleate Rhizoctonia spp.  相似文献   

9.
Ninety-eight isolates of Rhizoctonia spp. were obtained from barley and wheat grown in Erzurum, Turkey. Of these, 78% were Rhizoctonia solani (AG-2 type 1, AG-3, AG-4, AG-5 and AG-11), 10% were binucleate Rhizoctonia (AG-I and AG-K) and the remainder were Waitea circinata var circinata ( Rhizoctonia sp.). Among the binucleate Rhizoctonia , AG-I was not recovered from barley. In pathogenicity tests on barley and wheat, the highest disease severity was caused by isolates of AG-4 and AG-11, whereas isolates of AG-2 type 1, AG-3, AG-5 and W. c . var  circinata were moderately virulent. Isolates of binucleate Rhizoctonia were all nonpathogenic. This is the first report of R. solani AG-11 and W. c . var  circinata from Turkey.  相似文献   

10.
 由丝核菌引起的十字花科蔬菜叶腐和茎基腐病在中国华北地区普遍发生,其中以河北、内蒙以及北京较为严重。2011~2018年,从华北地区不同省份具有典型叶腐和茎基腐症状的芸苔属蔬菜上分离获得95个丝核菌(Rhizoctonia spp.)分离物,大多数分离自发病植株的叶部,少数分离自茎基部。通过细胞核染色,87株菌属于多核丝核菌,另外8株属于双核丝核菌;经菌丝融合鉴定、rDNA-ITS区及TEF-1α(translation elongation factor 1-alpha, TEF-1α)序列分析,大多数多核丝核菌属于立枯丝核菌(Rhizoctonia solani)AG-2-1(74%),其他少数分别属于AG-1-IB(16%)、AG-4-HG II(2%)和双核丝核菌AG-A(8%)。温室条件下进行寄主范围致病力测定,各分离物对原寄主都表现出致病力,呈现典型叶腐或茎基腐症状;对其他作物的致病力差异较大。不同融合群(Anastomosis group,AG)的菌株对寄主致病力大小存在差异,AG-2-1致病力最强,只有AG-A对叶部没有致病力。AG-2-1对寄主叶部的致病力和对茎基部的致病力呈显著正相关,AG-1-IB对寄主叶部的致病力和对茎基部的致病力无显著相关性。  相似文献   

11.
 由丝核菌引起的十字花科蔬菜叶腐和茎基腐病在中国华北地区普遍发生,其中以河北、内蒙以及北京较为严重。2011~2018年,从华北地区不同省份具有典型叶腐和茎基腐症状的芸苔属蔬菜上分离获得95个丝核菌(Rhizoctonia spp.)分离物,大多数分离自发病植株的叶部,少数分离自茎基部。通过细胞核染色,87株菌属于多核丝核菌,另外8株属于双核丝核菌;经菌丝融合鉴定、rDNA-ITS区及TEF-1α(translation elongation factor 1-alpha, TEF-1α)序列分析,大多数多核丝核菌属于立枯丝核菌(Rhizoctonia solani)AG-2-1(74%),其他少数分别属于AG-1-IB(16%)、AG-4-HG II(2%)和双核丝核菌AG-A(8%)。温室条件下进行寄主范围致病力测定,各分离物对原寄主都表现出致病力,呈现典型叶腐或茎基腐症状;对其他作物的致病力差异较大。不同融合群(Anastomosis group,AG)的菌株对寄主致病力大小存在差异,AG-2-1致病力最强,只有AG-A对叶部没有致病力。AG-2-1对寄主叶部的致病力和对茎基部的致病力呈显著正相关,AG-1-IB对寄主叶部的致病力和对茎基部的致病力无显著相关性。  相似文献   

12.
Isolates of Rhizoctonia collected from the stems, roots, tuber sclerotia and soil of potato crops in Virginia and Lenswood, South Australia, were identified to anastomosis groups (AG). Of the 301 multinucleate isolates of Rhizoctonia solani tested, 90% were AG-3, 7% were AG-4 and 2% were AG-5; 12 isolates were binucleate Rhizoctonia spp. This is the first report of isolates of AG-4 and AG-5 causing disease in potato crops in South Australia. All AG-3, AG-4 and AG-5 isolates tested caused rhizoctonia disease symptoms on the potato cultivar Coliban in pathogenicity trials conducted under glasshotise conditions. Both AG-3 and AG-5 isolates caused black scurf and stem cankers, although symptoms of black scurf were less severe with AG-5. AG-4 isolates produced the most severe stem and stolon cankers of all isolates tested. The pathogenicity of tuber-borne inoculum was confirmed by growing plants from sclerotia-infested tubers. AG-8 isolates from diseased barley and wheat produced severe root cankers and caused loss of feeder roots on inoculated potato plants. Results suggest that rhizoctonia disease in potato fields in South Australia is caused by a combination of different anastomosis groups and this has important implications for crop rotations.  相似文献   

13.
Fungi isolated in Brazil, from lettuce, broccoli, spinach, melon and tomato, were identified as Rhizoctonia solani. All lettuce isolates anastomosed with both AG 1-IA and IB subgroups and all isolates from broccoli, spinach, melon and tomato anastomosed with AG 4 subgroup HG-I, as well as with subgroups HG-II and HG-III. DNA sequence analyses of ribosomal internal transcribed spacers showed that isolates from lettuce were AG 1-IB, isolates from tomato and melon were AG 4 HG-I, and isolates from broccoli and spinach were AG 4 HG-III. The tomato isolates caused stem rot symptoms, the spinach, broccoli and melon isolates caused hypocotyl and root rot symptoms on the respective host plants and the lettuce isolates caused bottom rot. This is the first report on the occurrence in Brazil of R. solani AG 4 HG-I in tomato and melon, of AG 4 HG-III in broccoli and spinach and of AG 1-IB in lettuce.  相似文献   

14.
Martin FN 《Phytopathology》2000,90(4):345-353
ABSTRACT Rhizoctonia spp. were commonly recovered from the roots of strawberry plants growing in nonfumigated soil in the central coastal region of California. With the exception of one multinucleate isolate of R. solani (frequency of recovery of 0.8%), all other isolates were binucleate and were in anastomosis groups (AG) A, G, or I. AGs-A and -I were recovered from all five collection sites, whereas AG-G was recovered from only two sites. AG-A was the most commonly isolated AG, followed by AGs-I and -G. Similar levels of virulence were observed among the different AGs, but differences in virulence were observed among isolates in the same AG. Evaluating anastomosis grouping by pairing isolates recovered from strawberry with known tester isolates did not always yield a positive anastomosis reaction, even though both isolates anastomosed with other members of the same AG. Subsequent investigations with multiple isolates in the same AG from the same collection location confirmed that there was a lack of anastomosis or weak anastomosis reactions for some combinations of pairings, highlighting the need for to use multiple tester isolates or molecular techniques for AG determination. Restriction fragment length polymorphism (RFLP) analysis of a polymerase chain reaction-amplified region of the rDNA was effective for differentiating AGs. Sixteen RFLP groups were observed after cluster analysis with data for the size of the amplified products and fragment sizes after digestion with four restriction enzymes. Although each AG had isolates in multiple RFLP groups, any one individual RFLP group contained isolates of only a single AG. There was no consistent correlation between RFLP group and location of isolate collection.  相似文献   

15.
A combined baiting, double monoclonal antibody immunoassay was developed that allows specific and sensitive detection of the economically important soil-borne plant pathogen Rhizoctonia solani in naturally infested soils. The assay is quick, taking only three days to complete from receipt of soil samples and the immunoassay format allows recovery of Rhizoctonia isolates from colonized baits for determination of anastomosis group (AG) affiliation and pathogenicity. The assay was tested on naturally infested soils from commercial glasshouses used to grow lettuce. Using the immunoassay, conventional anastomosis tests against known AG isolates, and pathogenicity tests, it was shown that R. solani isolates recovered from soil samples were pathogenic towards lettuce and belonged to AG4. Furthermore, those isolates that exhibited strong pathogenicity towards lettuce were recovered from sites that had experienced severe Rhizoctonia damage in previous lettuce crops. The possibility of developing a preplanting test to predict damage to specific crop plants due to the presence of particular AGs in the soil is discussed.  相似文献   

16.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

17.
草莓丝核菌根腐病的病原菌鉴定   总被引:3,自引:0,他引:3  
 由丝核菌引起的根腐病是草莓生产上的重要病害之一。本研究基于形态学、菌丝细胞核荧光染色、菌丝融合群测定、rDNA-ITS序列分析和柯赫氏法则验证,对北京地区引起草莓根腐病的丝核菌进行了鉴定。2014年从北京市昌平区温室草莓根腐病病样中分离纯化获得的3个代表菌株,经形态学和细胞核荧光染色,确定均为双核丝核菌(binucleate Rhizoctonia, BNR),且与双核丝核菌AG-A融合群菌株发生菌丝融合,菌株CP-Z的rDNA-ITS序列与GenBank中丝核菌属的有性型角担菌属(Ceratobasidium)AG-A融合群 4个菌株的相似性达100%。菌株CP-Z接种草莓根部,引起根系变黑、腐烂,植株死亡,从接种发病的根部可重新分离到双核丝核菌。双核丝核菌AG-A融合群引起草莓根腐病为国内首次报道。该病原菌菌丝生长适温为25℃~28℃。  相似文献   

18.
Rhizoctonia solani causes pre- and post-emergence damping-off, root and hypocotyl rot and foliar blight in soybean. Foliar blight has resulted in yield losses of 31–60% in north and northeast Brazil. The aim of this study was to characterize isolates of R. solani associated with soybean in Brazil. Among 73 Rhizoctonia isolates examined, six were binucleate and 67 were multinucleate. The multinucleate iso1ates were characterized according to hyphal anastomosis reaction, mycelial growth rate, thiamine requirement, sclerotia production, and RAPD molecular markers. Four isolates that caused hypocotyl rot belonged to AG-4 and using RAPD analysis they grouped together with the HGI subgroup. Another isolate that caused root and hypocotyl rots was thiamine auxotrophic, grew at 35°C, and belonged to AG-2-2 IIIB. All 62 isolates that caused foliar blight belonged to AG-1 IA. RAPD analysis of R. solani AG-1 IA soybean isolates showed high genetic similarity to a tester strain of AG-1 IA, confirming their classification. The teleomorph of R. solani, Thanatephorus cucumeris was produced in vitro by one AG-1 IA isolate from soybean. The AG-4 and AG-2-2 IIIB isolates caused damping-off and root and hypocotyl rots of soybean seedlings cv. FT-Cristalina, under greenhouse conditions. The AG-2-2 IIIB isolate caused large lesions on the cortex tissue, that was distinct from the symptoms caused by AG-4 isolates. The AG-1 IA isolates caused foliar blight in adult soybean plants cv. Xingu under the greenhouse and also in a detached-leaf assay.  相似文献   

19.
From 2007 to 2013, a disease of Welsh onion, causing leaf sheath rot and concomitant death of outer leaves was found in 20 fields in Hokkaido, Japan. We obtained 20 Rhizoctonia isolates from diseased tissues and identified them based on the number of nuclei, hyphal fusion reactions, and molecular techniques using specific PCR primers and sequence of the rDNA-ITS region. The 20 isolates consisted of 16 multinucleate and four binucleate isolates. Of the multinucleate isolates, five were found to be so far unknown and designated here as Rhizoctonia solani AG-4 hybrid subgroup between HG-I and HG-II. Others were identified as AG-1 IB (three isolates), AG-2-2 IIIB (two isolates), AG-4 HG-I (two isolates), AG-1 IC (one isolate), AG-2-1 (one isolate), AG-4 HG-II (one isolate) and AG-5 (one isolate). All four binucleate isolates were binucleate Rhizoctonia AG-U. Original symptoms were reproduced on all plants inoculated with these isolates. Thus, we revealed that as many as nine taxa of Rhizoctonia spp. were associated with the disease. This is the first report of leaf sheath rot of Welsh onion caused by Rhizoctonia spp.  相似文献   

20.
Binucleate Rhizoctonia (BNR) spp. isolates were collected from taro (Colocasia esculenta (L.) Schott) and ginger (Zingiber officinale (Willd.) Roscoe) (Yunnanxiaojiang cv.) in Yunnan province. These Yunnan (YN) isolates did not anastomose with any of the tester isolates of the known AGs of binucleate Rhizoctonia spp. The growth of YN cultures on PDA was appressed, mealy and matlike after 4 days of incubation, then turned white brown, producing brown to dark brown, irregularly shaped sclerotia were embedded in the PDA medium after 14 days. All attempts to induce basidiospore production were unsuccessful, but the length and sequence of the internal transcribed spacer (ITS1 + 5.8S rDNA + ITS2) regions of 5.8S rDNA from the YN isolates were identical in length and sequence to isolates of all the other AGs of binucleate Rhizoctonia /Ceratobasidium spp. The sequences of 5.8S rDNA-ITS from the YN isolates were unique among AGs of BNR. The YN isolates had sequence similarities of 94% with isolates of AG Fb and P, 93% with AG E, 91% with AG R, 79–94% with AG S, and 74–87% with AG A, Ba, Bb, Bo, C, DI, DII, DIII, Fa, G, H, I, K, L, O, and Q. Four isolates of AG YN caused minor virulence (lesions ≦1mm2) to ginger or taro in growth chamber studies. It was concluded that the YN isolates belong to a new anastomosis group AG-V of the Ceratobasidium spp..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号