首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
中国湖南省主要水稻土类型的氨固定   总被引:8,自引:3,他引:8  
The contents, affecting factors, seasonal changes and availability of fixed ammonium in major types ofpaddy soils derived from different parent materials in Hunan Province, China, were studied using the Silva-Bremner method by laboratory and pot experiments. Results showed that the content of fixed ammoniumin the plough horizons ranged from 88.3 mg kg-1 to 388.1 mg kg-1, with 273.2 ± 77.7 mg kg-1 on average,accounting for 11.2% of total soil N on average. Content of fixed ammonium decreased in the order of newlylacustrine clayey paddy soil > alluvial sandy paddy soil > purple clayey paddy soil > newly alluvial sandypaddy soil > yellow clayey paddy soil > reddish-yellow clayey paddy soil > granitic sandy paddy soil. Therewere four distribution patterns of fixed ammonium in the profiles to 1-m depth, i.e., increase with the depth,decrease with increasing depth, no distinct change with the depth, and abrupt increase or decrease in somehorizon. Percentage of fixed ammonium in total N increased with the depth in most of the soils. Fixationof NH4+ by soil was higher at 30 ℃ than at 20 ℃ and 40 ℃, and continuous submergence benefited thefixation of NH4+ in newly alluvial sandy paddy soil, purple clayey paddy soil and alluvial sandy paddy soil,while alternating wetting and drying contributed to the fixation of NH4+ in yellow clayey paddy soil mostly.Fixed ammonium content in the test paddy soils was significantly correlated with < 0.01 mm clay content(P < 0.05), but not with < 0.001 mm clay content, total N, organic N and organic matter. Fixed ammoniumcontent varied with rice growth stages. Application of N fertilizer promoted fixation of NH4+ by soil, and Nuptake by rice plant promoted release of fixed ammonium from the soil. Recently fixed ammonium in paddysoil after N fertilizer application was nearly 100% available to rice plant, while native fixed ammonium wasonly partly available, varying with the soil type and rice type.  相似文献   

2.
The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils.Variations in the natural ^15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH.The δ ^15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ ^15N of total N in the soils.A variation tendence was also found in the δ ^15N of amino-acid N in the hydrolysates of soils.The natural ^15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons,indicating that the increase of δ ^15N in the soil borizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ ^15N value of fixed ammonium in the soil.  相似文献   

3.
The phosphate adsorption and surface charge characteristics of the tropical and subtropical soils derived from different parent materials in China were determined, and their relations to soil mineralogy were analysed. The results showed that all soil phosphate adsorption curves were well fitted by Freundlich equation and Langmuir equation. The maximum buffering capacity of P ranged from 66 to 9 880 mg kg-1, with an increasing order of purple soil, skeletal soil, red soil, lateritic red soil, yellow soil and latosol; and the highest value was 149 times the lowest value, which indicated great differences among these soils in phosphate adsorption and supplying characteristics. The pH0 (zero point of charge) values obtained by salt titration-potential titration varied from 3.03 to 5.49, and the highest value was found in the latosol derived from basalt whereas the lowest value was found in the purple soil. The correlation analysis indicated that the main minerals responsible for phosphate adsorption in the soils were gibbsite, amorphous iron oxide and kaolinite; and the pH0 was mainly controlled by kaolinite, gibbsite and oxides.  相似文献   

4.
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC) and N (SMBN) in 16 loessial soils sampled from Ansai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg C g-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.  相似文献   

5.
固定态铵的含量及中国某些耕地土壤NH4+的固定能力   总被引:3,自引:0,他引:3  
Fixed ammonium contents and NH4^ fixation capacities of some representative cultivated solis collected from 16 provinces of China were studied.Results showed that the contents of fixed ammonium in soils ranged from 35 to 573 mg N kg^-1,with an average of 198mg Nkg^-1.The content of fixed ammonium correlated very significantly with mica content for tropical and subtropical soils,whereas this was not the case for soils in the temperate zone.At the end of K-exhausting experiment the fixed ammonium content increased in most soils studied.However,it decreased in smom temperate soils.Generally,fixation of added NH4^ could not be found either before or after K-exhausting experiment for highly weathered soils,including tropical soils and soils derived from granite-gneiss or Quaternary red clays in the subtropic zone,while for most soils in the Yangtze River dalta the NH4^ fixation capacity was rather high and increased significantly in the K-exhausted soils.  相似文献   

6.
Vector analysis technique and ecological sequential comparison methods were adopted to study tree growth response to the micronutrients,B,Mo,Cu,Zn,Fe,and Mn,in soils derived from various parent materials in the forest area of Tailhu Lake region in southeast China,The results showed that the dry weight of individual current-year needle of Chinese fir(Cunninghamia lanceolata) grown on the soil derived from granite parent rock was increased by 8% and 13% in comparison with that grown on the soils derived from sandstone and ash-tuff parent rock,respectively.And such dry weight of loblolly pine (Pinus taeda) grown on the soil derived from sandstone parent rock was increased by 21% in comparison with that on the soil derived from ash-tuff parent rock.One of the reasons for those results was that micronutrients content in the soil derived from ash-tuff parent rock were not sufficient to meet the requirement of the growth of Chinese fir and loblolly pine ,i.e.,micronutrients in soil were deficient and/or induced defiient.The amounts of Cu,Zn,Fe,and Mn uptake by Chinses fir and loblolly pine were in agreement with the contents of available micronutrients in soil respectively,except for B and Mo.Meanwhile,there might exist and “antagonism“ between the uptake of B versus Mo by trees,although more studies are needed to confirm it .Regression analysis indicated that amount of a soil available micronutrient was correlated to the type of parent material and its total amount in the forest floor, except for B.The F test identified that the correlation of each equation reached the significant level to different extents,respectively,The t test confirmed that amount of available forms was mainly depended on the type of parent material for Mo,Cu,Zn and Mn but on the forest floor for ,Fe,There was a feedback effect of forest stand on the amount of soil available micronutrients.The ability of accumulating available micronutrients in soil was better by the sawtooth oak(Quercus acutissima) stand than by the Chinese fir stand (except for B).The ability of accumulating available Zn,Fe,Mn and Mo in soil was better by the Chinese fir stand than by the loblolly pine stand ,while as for available B and Cu,by the latter was better than by the former,When discussing the efect of forest stand on the amount of soil available micronutrients,not only the amount of micronutrient in the forest floor and the parent materials but also the amount of micronutrient taken up by current-year needles have to be considered.  相似文献   

7.
Two soils with relatively high(Soil 1)and low(Soil 2) ammonium fixation capacities were used in this study to examiune the effect of ammonium fixation on the determination of N mineralized from soil microbial biomass.Organism suspension was quantitatively introduced to Soil 1 at various rates.Both fumigation-incubation (FI) and fumigation-extraction (FE) methods were used to treat the soil.The amount of fixed NH4^ increased with increasing rate of organism-N addition.A close correlation was found between the amount of fixed ammonium and th rate of organism-m addition.The net increases of fixed NH4^ -N were equivalent to 38% and 12% of the added organism-N for FI and FE treatments,rspectively,in this specific soil.To provide isotopic evidence,^15N-labelled organism-N was added to Soils 1 and 2 at 121.4 mg N kg^-1.In FI treatment,22 and 3mg N kg^-1 of labelled N were found in the fraction of fixed NH4^ -N in Soile 1 and 2 respectively;while in FE treatment,9 mg N kg^-1 of labelled N was found in the fraction of fixed NH4^ -N in Soil 1 only.There was no labelled N in the fraction of fixed NH4^ -N in Soil 2.In all of the unfumigated (check) soils,there was little or no labelled N in the fixed fractions,probably because the organism-N added was easily mineralized and nitrified.A mean of 0.64 for KN value,the fraction of N mineralized in the killed microbial biomass,as obtained with inclusion of the net increase of fixed NH4^ -N,The corresponding value calculated with exclusion of the net increase of ficed NH4^ -N was 0.46 ,It was concluded that ammonium fixation was a problem in deterination of KN,particularly for soils with a high ammonium fixation capacity, Results also showed that microbial biomass N measurement by FFE method was less affected by ammonium process than that by FI method.  相似文献   

8.
基于GIS的亚热带典型地区土壤有机碳空间分布预测   总被引:19,自引:4,他引:19  
Spatial distribution of organic carbon in soils is difficult to estimate because of inherent spatial variability and insufficient data. A soil-landscape model for a region, based on 151 samples for parent material and topographic factors, was established using a GIS spatial analysis technique and a digital elevation model (DEM) to reveal spatial distribution characteristics of soil organic carbon (SOC). Correlations between organic carbon and topographic factors were analyzed and a regression model was established to predict SOC content. Results for surface soils (0-20 cm) showed that the average SOC content was 12.8 g kg-1, with the SOC content between 6 and 12 g kg-1 occupying the largest area and SOC over 24 g kg-1 the smallest. Also, soils derived from phyllite were the highest in the SOC content and area, while soils developed on purple shale the lowest. Although parent material, elevation, and slope exposure were all significant topographic variables (P < 0.01), slope exposure had the highest correlation to SOC content (r = 0.66). Using a multiple regression model (R2 = 0.611) and DEM (with a 30 m × 30 m grid), spatial distribution of SOC could be forecasted.  相似文献   

9.
我国东南部地区土壤养分的退化   总被引:1,自引:0,他引:1  
A total of 2 190 soil nutrient data in the Second National Soil Survey of China were collected to assess the degradation of soil nutrients in the hilly region of Southeast China. The definition of soil nutrient degradation is suggested firstly, then the evaluation criteria are set up and the current status of degradation of red soil and latosol is assessed. The percentages of areas in four grades of soil nutrient degradation, i.e., slightly deficient, medium deficient, severely deficient and extremely deficient, were 21.3%, 43.3%, 16.2% and 3.0% for soil total N; 0.7%, 6.4%, 16.7% and 76.2% for soil available P; and 25.4%, 26.3%, 8.6% and 5.0% for soil available K, respectively. The severity of soil nutrient degradation was in the order of P > N > K. The major factors leading to the degradation of soil nutrients in quantity include soil erosion, leaching and the consumption by crops. And the principal factor affecting the degradation of soil nutrients in availability is the fixation of N, P and K, especially the fixation of phosphorus. The average amount of P fixed by soils is 408 mg kg-1, and upland soils can fix more P than paddy soils.  相似文献   

10.
氨的固定对土壤微生物氮的测定的影响   总被引:2,自引:0,他引:2  
The effect of ammonium fixation on the estimation of soil microbial biomass N was studied by the standard fumigation-incubation(FI) and fumigation-extraction (FE) methods,NO3-N content of fumigated soil changed little during incubation,while the fixed NH4^ in soils capable of fixing NH4^ increased with the increase of K2SO4-extractable NH4-N.one day fumigation increased both extractable NH4^ and fixed NH4^ ,However,prolonged fumigation gave no further increase.One day fumigation caused significant loss of NO3-N,while prolonged fumigation caused no further loss.For soils tested,the net increases of fixed NH4^ in fumigated soil equaled to 0-94% of NH4-N flush measured by the FI metod,and 1-74% of extractable N measured by the FE method.depending on different soils.It is concluded that the ammonium fixation was one of the processes taking place in soils during fumigation as well as incubation ofter fumigation and should not be neglected in the estimation of microbial biomass nitrogen by either FI or FE method.  相似文献   

11.
Errata     
The content of fixed ammonium was analyzed for 12 samples of upland soils, including Saline soils, Sols lessives, Meadow soils, Black-colored soils, and Dark-brown forest soils, collected from Jilin and Liaoning provinces, Northeast China. The content of fixed NH4 + -N ranged from 0.11 to 0.27 g kg-1 and no appreciable differences among the soil types were observed. Fixed NH4 +-N accounted for 9 to 23% of total N in the Ap horizons.  相似文献   

12.
Abstract

We have shown that the traditional Kjeldahl method applied to clay soils of the Duero Basin (Spain) is not effective; so, it is necessary to add HC1 + HF to free trapped ammonium. This fixed ammonium has been measured by two methods which give significantly different results. The level of fixed ammonium in cultivated clay soils is relatively high (it ranges from 180 to 490 ppm). Fixed ammonium is significantly correlated to clay content and total inorganic nitrogen of the soil. A proposed method of analysis for total N is given.  相似文献   

13.
张崇玉  李生秀 《土壤学报》2007,44(4):695-701
采集了全国不同类型的土壤40个,分析了土壤全氮、有机质、固定态铵、剩余有机质(KOBr处理后的土壤有机质)、残渣有机质(KOBr-HF处理后的土壤有机质)含量.结果表明,以2∶1型粘粒矿物为主土壤的残渣有机质含量与固定态铵含量之间呈极显著正相关(r=0.831^**),晶格之间存在的有机质(即残渣有机质与剩余有机质之差值)含量则与固定态铵含量之间也呈极显著正相关(r=0.832^**),而以1∶1型粘粒矿物为主土壤的残渣有机质含量和晶格有机质含量与固定态铵含量不相关;土壤剩余有机质、残渣有机质的含量分别为2.59 g kg^-1、3.70 g kg^-1,分别占土壤有机质的10%和16%.土壤残渣C/N比(平均值为16.69)明显高于原土壤(平均值为5.37).  相似文献   

14.
黄土高原典型土壤矿物固定态铵变化的南北差异   总被引:3,自引:0,他引:3  
采集从北向南依次分布的干润砂质新成土(神木)、黄土正常新成土(延安)和土垫旱耕人为土(杨陵)等典型土壤剖面0200.cm土层土样,通过测定土样全氮和矿物固定态铵,以阐明黄土高原典型区域土壤全氮和矿物固定态铵及二者比率随地理位置和土层的变异规律,为全面了解黄土高原土壤相对稳定氮库累积提供科学数据。结果表明,不同地理位置、不同土层全氮和矿物固定态铵含量存在显著差异。从南到北全氮和矿物固定态铵呈下降趋势,但各土壤全氮和矿物固定态铵的分布显著不同,全氮含量在060.cm随土层深度增加下降很明显,60120.cm有一定下降,120.cm以下低而稳定。矿物固定态铵在全剖面上的分布比较均匀,随土层深度的变化差异不显著,不同土层间的差异基本在误差范围内,土垫旱耕人为土、黄土正常新成土和干润砂质新成土表层(010.cm)矿物固定态铵平均含量分别为215.807.45、165.808.73和146.501.83.mg/kg,表层以下(10200.cm)平均含量分别为193.409.67、157.145.75和142.025.47.mg/kg。从地理位置分析,干润砂质新成土、黄土正常新成土和土垫旱耕人为土表层(010.cm)矿物固定态铵占全氮的百分比分别为(39.570.78)%、(32.916.82)%和(29.747.01)%;在表层以下所占比例更高,干润砂质新成土10200.cm土壤矿物固定态铵含量占全氮比例为(89.5213.42)%,黄土正常新成土为(59.5213.86)%,土垫旱耕人为土为(47.269.01)%。供试土壤中矿物固定态铵与0.01.mm物理性粘粒含量存在极显著正相关关系,说明物理性粘粒是矿物固定态铵的主要载体;矿物固定态铵与全氮含量也有极显著正向相关性。以上结果揭示,在黄土高原黄土母质上形成的土壤,全剖面矿物固定态铵相对均匀,而有机氮相差较大,两种氮库的这种地理位置和剖面分布特征,是黄土母质形成的必然结果,也进一步支持了黄土高原黄土母质的风成学说;同时也反映了需要对有机氮占全氮比例及矿物固定态铵在全氮中地位的传统观念予以重新评价。  相似文献   

15.
This study aimed at quantifying nitrogen (N) and potassium (K) released from winery solid waste (WSW) composts during laboratory incubation to address deficiency in two texturally distinct soils. Composts had 4, 10, 20, 30, 40% (w/w) of filter materials (FMs) mixed with grape marc and pruning canes. The composts were mixed with the soils at equivalent rate of 200 kg N ha?1 and incubated for 42 days. Quantitatively higher (p < 0.05) ammonium N content was recorded in sandy than sandy loam soil during the incubation duration while exchangeable K was increased in K-deficient sandy soil. Cumulative total mineralized N (TMN) measured during the incubation duration ranged from 59 mg kg?1 to 672 mg kg?1 depending on compost type and soil texture while a 10-fold increase in compost FMs content resulted in 144% and 139% increases in cumulative mineralized K in sandy and sandy loam textured soil, respectively. Percent N mineralized from the composts relative to the amount applied during the incubation duration was less than 54% reflecting the composts and soils inherent characteristics. The high ammonium N and K mineralized suggests that farmers must be cautious in utilizing these composts for field crops production due to the potential environmental risks.  相似文献   

16.
This paper reports a procedure for determining the content of strongly fixed NH4+ in soil. The procedure consists of a Kjeldahl digestion followed by an acid attack of the residue with a 5 m HF:1 m HCl solution. Distillations after each of the two treatments recover different forms of NH4+. The procedure was tested on fine earth (< 2 mm) and skeleton (> 2 mm) fractions of two forest soils developed on sandstone parent material. In both soil fractions we evaluated three different forms of NH4+-N: (i) Kjeldahl, (ii) non-exchangeable and (iii) micaceous. The last is located in the interlayer of mica flakes larger than 50 μm that resist the Kjeldahl digestion and is considered strongly fixed. The total NH4+-N content of a soil is obtained by the summation of the Kjeldahl and the micaceous NH4+-N. In the soils under consideration, the micaceous form prevails in the skeleton because this fraction is richer in micas of sand size (> 50 μm). Following the proposed procedure, we found that micas (muscovite and biotite) contain about 3000 mg kg–1 of NH4+-N in the interlayer. The presence of micaceous NH4+-N in soil is generally ignored because the skeleton is usually excluded from analyses, and the micas larger than 50 μm cannot be dissolved by the Kjeldahl treatments. The micaceous NH4+ is the least extractable form of NH4+-N, and we infer that it is the least available to plants.  相似文献   

17.
Nitrogen is the most deficient element and the most limiting factor for crop production in Bangladesh. The total N content in Bangladesh soils ranges between 0.02 and 0.12% (Ahsan and Karim 1988). The low N content indicates the presence of a small organic N pool and suggests that inorganic N plays an important role as a N source for crops. Contribution of “fixed” or “nonexchangeable” NH4 + to the N economy of soil has been reported for many tropical soils (Rodrigues 1954; Moore and Ayeke 1965; Dalal 1977; Sahrawat 1995). However, there are few reports on fixed NH4 + status in Bangladesh. In the present study, therefore, attempts were made to collect data on fixed NH4 + of some major soil series from the important physiographic units of Bangladesh.  相似文献   

18.
Abstract

Six profiles, derived from Precambrian Basement Complex rocks (mainly gneiss), Cretaceous sediments (mainly shale and sandstone), and Quaternary alluvium, and which are typical of the major agricultural soils in the Lower Benue Valley (Nigeria) were studied with the objective to determine their overall potassium (K) reserves and any relationship between these and other soil properties including their parent materials. Total K in the soils varies from 0.13–27.1 g kg‐1 with average 6.64 g kg‐1. This correlates positively with the clay, and negatively with the sand contents of the soils and is also influenced by their parent materials. The order of abundance according to parent material is: alluvium‐ > Basement Complex (gneiss)‐ ≈ shale‐ > sandstone‐derived soils. The concentrations of readily available K (RAK) in the soils are quite low, accounting for only between 0.30 and 7.8% of the total K in the soils and less than 4.0% of their exchange capacities. Based on critical limits established for many Nigerian soils, the soils derived from sandstone are clearly deficient in RAK, while soils developed from gneiss, shale and alluvium parent materials have moderate to sufficient levels for a wide range of crops. Non‐exchangeable or moderately available K (MAK) in the soils is also relatively low (0.020–8.59 mmolc kg‐1); while the sandstone‐derived soils have the least MAK, the alluvial soils have the most levels. However, the potassium supplying power (KSP) of the soils may be considered to be generally high. Although this bears no particular relationship to soil parent materials, the sandstone‐derived soils have the lowest KSP. The bulk of the total K reserves in the soils (55–88%) exists as difficultly available or structural K (DAK). The alluvial soils first, then the gneiss‐ and shale‐derived soils next have the highest contents of DAK, while the highly weathered sandstone soils have the lowest. Simple correlation analysis shows that, irrespective of parent material and K form, clay content and CEC are the most important soil properties influencing the overall K supplying status of these soils. It is concluded that in major agricultural soils of the Lower Benue Valley of Nigeria K exists mostly in the lattice structures of K‐bearing minerals, with accumulations in the subsurface horizons. Its plant‐available or supplying status is low on sandstone‐derived soils and moderate to sufficient on soils derived from Basement Complex rocks, shales and alluvium.  相似文献   

19.
Boron (B) is an essential microelement, which is necessary for reproductive organs including pollen tube formation in wheat (Triticum aestivum L.), and flowering and boll formation in cotton (Gossypium hirsutum L.) The study was associated with wheat-cotton rotation in 80 farm fields, belonging to different soil series, in four districts of cotton belt of Punjab, Pakistan to assess concentrations of extractable B in soils [0.05 M hydrochloric acid (HCl) extractable B], and added fertilizer B and their relationship to some soil physico-chemical properties [pH, organic matter (OM), calcium carbonate (CaCO3) and clay content], yields and total B concentrations in wheat and cotton plants. All soils had alkaline pH (7.45 to 8.55), high CaCO3 content (2.14 to 8.65%), less than 1.0% OM (0.33 to 0.99%), low plant available-P (Olsen P less than 8 mg kg?1 soil) and medium ammonium acetate extractable potassium (K) (< 200 mg K kg?1 soil). Of the 80 soil samples, 65 samples (81%) were low in available B (<0.45 mg B kg?1, ranging from 0.11 to 0.43 mg B kg?1) Of the corresponding 80 plant samples, leaves B concentrations were below critical levels (<10 mg B kg?1 for wheat; <30 mg B kg?1 for cotton) for all the tested samples for wheat and cotton. The regression analysis between plant total B concentrations and soil extractable B concentrations showed strong linear positive relationships for both wheat (R2 = 0.509***, significant at P <0.001) and cotton (R2 = 0.525***, significant at P <0.001). Further regression analysis between extractable soil B and wheat grain yield as well as between wheat leaves total B and wheat grain yield also depicted strong linear relationships (R2 = 0.76 and 0.42, respectively). Boron fertilizer demonstration plots laid out at farmers’ fields low in extractable B, in each district not only enhanced grain yields of wheat crop but also contributed a significant increase towards seed cotton yield of succeeding cotton crop through residual B effect. In conclusion, the findings suggest that many soils in the cotton belt of Punjab may be low in extractable B for wheat and cotton, especially when these crops are grown on low OM soils with high CaCO3 content.  相似文献   

20.
固定态铵是土壤氮素的一种重要形态,对植物生长具有十分重要的作用;然而,风沙土中固定态铵的含量及其影响因素目前并不清楚,限制着对沙地土壤肥力来源及其维持机制的认识。该研究测定了毛乌素沙地裸沙地、沙柳(Salix psammophila)和油蒿(Artemisia ordosica)林地风沙土固定态铵的含量,并分析了土壤粒径及矿物组成对其的影响。结果显示:1)研究区土壤固定态铵平均含量为18.63 mg/kg,占土壤氮库的8.77%,不同植被下土壤中固定态铵含量存在明显差别,油蒿林地土壤固定态铵含量(23.03±1.88 mg/kg)显著高于裸沙地(16.63±0.61 mg/kg)和沙柳林地(16.82± 1.25 mg/kg);2)风沙土粒径组成与固定态铵含量显著相关,粒径越细,固定态铵含量越高,粒径越粗,含量越低;3)风沙土矿物组成与固定态铵含量间无显著关系。研究表明,毛乌素沙地风沙土中固定态铵含量取决于土壤物理构成而非矿物化学组成,植被主要通过影响粒径组成而影响其含量。固定态铵是荒漠土壤肥力的重要组成部分,通过植被建设增加土壤细粒物质,有利于提高固定态铵含量,对土地荒漠化治理和生物生产力的提高具有十分重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号