首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tilmicosin is a novel macrolide antibiotic developed for exclusive use in veterinary medicine. Tilmicosin has been approved as a feed premix to control porcine respiratory disease associated with Pasteurella multocida and Actinobacillus pleuropneumoniae. The development of antimicrobial susceptibility testing guidelines for tilmicosin was predicated on the relationship of clinical efficacy studies that demonstrated a favorable therapeutic outcome, on pharmacokinetic data, and on in vitro test data, as recommended by the National Committee for Clinical Laboratory Standards (NCCLS). The approved breakpoints for the minimum inhibitory concentration dilution testing for both species are resistant, > or = 32 microg/ml, and susceptible, < or = 16 microg/ml. The zone of inhibition interpretive criteria for disk diffusion testing with a 15-microg tilmicosin disk are resistant, < or = 10 mm, and susceptible, > or = 11 mm.  相似文献   

2.
The in vitro activity of tulathromycin was evaluated against common bovine and porcine respiratory pathogens collected from outbreaks of clinical disease across eight European countries from 1998 to 2001. Minimum inhibitory concentrations (MICs) for one isolate of each bacterial species from each outbreak were determined using a broth microdilution technique. The lowest concentrations inhibiting the growth of 90% of isolates (MIC90) for tulathromycin were 2 microg/ml for Mannheimia (Pasteurella) haemolytica, 1 microg/ml for Pasteurella multocida (bovine), and 2 microg/ml for Pasteurella multocida (porcine) and ranged from 0.5 to 4 microg/ml for Histophilus somni (Haemophilus somnus) and from 4 to 16 microg/ml for Actinobacillus pleuropneumoniae. Isolates were retested in the presence of serum. The activity of tulathromycin against fastidious organisms was affected by culture conditions, and MICs were reduced in the presence of serum.  相似文献   

3.
A total of 90 strains of Staphylococcus intermedius isolated from dogs were examined for antimicrobial susceptibility. There were no significant differences in the distribution patterns of MICs between strains from 1982 to 1985 and those from 1999, and between strains from healthy dogs and those from diseased dogs. All of the strains were susceptible to ABPC, DMPPC, CEX, TDM, ERFX, BFLX, and FF at concentrations of 0.05 to 6.25 microg/ml. The MICs of OTC, KM, EM, AIV-TS, and LCM were distributed in a broad range of 0.1 to >100 microg/ml, indicating the existence of resistant as well as susceptible populations of S. intermedius. Thirty-three strains (36.7%) were resistant to one or more anitmicrobial agents such as OTC (n=32), KM (n=9), EM (n=7), AIV-TS (n=7), and LCM (n=7).  相似文献   

4.
A number of 689 Streptococcus suis isolates collected nationwide from diseased and healthy pigs from 1987 to 1996 were surveyed for antibiotic susceptibilities to 11 drugs. No isolates resistant to amoxicillin, chloramphenicol, and sulfamethoxazole/trimethoprim were found. Isolates were highly susceptible to penicillins (penicillin G, ampicillin, and amoxicillin) except cloxacillin. They were not susceptible to tetracycline, streptomycin, and kanamaycin (MIC90 50 microg/ml, > or = 100 microg/ml, and > or = 100 microg/ml, respectively). Multiple-resistant isolates (> or = 3 antimicrobial agents) were found in 20.3% of all isolates tested.  相似文献   

5.
Minimum inhibitory concentrations (MICs) were determined in vitro for 7 antibiotics (aivlosin, enrofloxacine, tylosin, tiamulin, kitasamycin, chlortetracycline, and oxytetracycline) against eight recent local Argentinean isolates and two standard strains of Mycoplasma synoviae. Aivlosin (3-acetyl-4"-isovaleryl tylosin tartrate), tylosin, and tiamulin showed the lowest MICs with MIC90s of 0.006, 0.012, and 0.05 microg/ml, respectively. Except one strain that showed resistant values to chlortetracycline (> or = 12.5 microg/ml), all the analyzed strains were susceptible in different degrees to all the antibiotics tested. In this study, the improved activity of the tylosin-derived drug, aivlosin, was confirmed because it showed, in most strains, MIC values half those for tylosin.  相似文献   

6.
Antimicrobial susceptibility of florfenicol (FFC) against 243 bacterial agents isolated in Korea from cattle and pigs with respiratory disease were investigated by agar diffusion and microdilution broth methods following the recommendations provided by the National Committee for Clinical Laboratory Standards. All Actinobacillus pleuropnemoniae, Pasteurella multocida, Mannheimia haemolytica and 98.6% of the Bordetella bronchiseptica isolates were susceptible to FFC, which as significantly more effective than the other antibiotics used in this study. FFC also showed high in vitro antimicrobial activities (MIC(90) < or = 1 microg/ml) against all strains tested with a minimal inhibitory concentration (MIC) determination ranging from 0.12 to 4 microg/ml. No resistant strains of A. pleuropneumoniae, P. multocida and M. haemolytica to FFC have apparently developed since the first introduction of this antibiotics for veterinary use in Korea. The results suggest that FFC is therapeutically valuable in the treatment of primary or complicating bacterial pathogens causing of the bovine and swine respiratory tract.  相似文献   

7.
The correct assessment of mastitis pathogens for their susceptibility/resistance to cefoperazone is currently hampered by the lack of harmonized test conditions and interpretive criteria. The aim of this study was to provide a proposal for clinical breakpoints of cefoperazone which are applicable to Staphylococcus aureus, coagulase-negative staphylococci, Escherichia coli, Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis from cases of bovine mastitis and better reflect the situation in the bovine udder than breakpoints adopted from human medicine. For this, pharmacological data and clinical efficacy data of the documents submitted for approval of cefoperazone have been revisited. In addition, 1086 bacterial pathogens of the aforementioned six species/groups collected in Germany and in the USA during recent years were tested in parallel for their cefoperazone MICs and the zone diameters using a 75 μg disk. Subsequently, MICs were plotted against zone diameters. Based on the pharmacological data, the clinical efficacy and the microbiological data, a proposal was made for veterinary-specific breakpoints which classify members of the aforementioned species/groups as (a) susceptible to cefoperazone when their MIC is ≤ 2 μg/ml and their zone diameters are ≥ 27 mm (staphylococci or E. coli) or ≥ 21 mm (streptococci), (b) intermediate when their MIC is 4 μg/ml and their zone diameters are 22-26 mm (staphylococci or E. coli) or 16-20mm (streptococci), and (c) resistant when their MIC is ≥ 8 μg/ml and their zone diameters are ≤ 21 mm (staphylococci or E. coli) or ≤ 15 mm (streptococci).  相似文献   

8.
Minimum inhibitory concentrations (MICs) of 10 antimicrobial agents were determined for Pasteurella multocida from cattle and pigs (72 and 68 isolates, respectively). Higher MICs were observed with oxytetracycline, doxycycline, tilmicosin and thiamphenicol for porcine isolates than for bovine isolates. Enrofloxacin was the most active, with an MIC for 90% of the isolates (MIC90) of 0.05 microg/ml for both bovine and porcine isolates. Aspoxicillin exhibited the same excellent activity against penicillin-susceptible isolates as ceftiofur, with MICs ranging from < or = 0.025 to 0.1 microg/ml. Aminoglycosides were less active, with an MIC90 of > 100 microg/ml for both bovine and porcine isolates.  相似文献   

9.
The minimum inhibitory concentrations (MICs) of 18 antimicrobial agents were determined for 49 Arcanobacterium pyogenes isolates (42 bovine isolates and 7 porcine isolates). Benzylpenicillin and ampicillin were the most active antibiotics, with MIC ranges of < or = 0.0125-0.05 microgram/ml for both bovine and porcine isolates. All isolates were susceptible to penicillins and cephems. MICs for 90% of the isolates of dihydrostreptomycin, gentamicin and oxytetracycline for bovine isolates were > 100 micrograms/ml, 1.56 micrograms/ml and 25 micrograms/ml, respectively. More resistance to dihydrostreptomycin appeared among porcine isolates (85.7%) than among bovine isolates (52.4%). Resistance to gentamicin occurred in only 3 (7.1%) of the bovine isolates. Resistance to oxytetracycline also appeared more frequent among porcine isolates (85.7%) than among bovine isolates (57.1%). All bovine isolates were susceptible to erythromycin, tilmocosin and lincomycin, but two porcine isolates (28.6%) were simultaneously resistant to these antibiotics. Tiamulin was as active as tilmicosin, with an MIC for 50% of the isolates (MIC50) of 0.05 microgram/ml for both bovine and porcine isolates. The MIC50s of chloramphenicol and its derivatives florfenicol and thiamphenicol were all 1.56 micrograms/ml. The fluoroquinolones enrofloxacin and ofloxacin were not so active as penicillins and macrolides, with MIC50s of 0.78 microgram/ml and 1.56 micrograms/ml, respectively, for both bovine and porcine isolates.  相似文献   

10.
Minimum inhibitory concentrations (MICs) of 20 antimicrobial agents were determined against 51 isolates of Staphylococcus aureus from bovine intramammary infections. Fourteen (27.4%) isolates were resistant to benzylpenicillin, but none of the isolates was resistant to cloxacillin, nafcillin, or cephems. Among aminoglycosides, gentamicin was the most active, with an MIC50 of 0.2 microg/ml, followed by kanamycin, with an MIC50 of 0.78 microg/ml. Five isolates (9.8%) were resistant to dihydrostreptomycin, three isolates (5.9%) to kanamycin and two isolates (3.9%) to gentamicin. Resistance to erythromycin was observed in two isolates (3.9%). Tylosin was less active than erythromycin, with MIC50s of 1.56 microg/ml versus 0.39 microg/ml, but none of the isolates was resistant to this antibiotic. Oxytetracycline MICs were situated in the range of 0.39-1.56 microg/ml for 48 susceptible isolates. Although 19 (37.3%) isolates were resistant to one or more antimicrobial agents, a single resistance pattern was most frequent: benzylpenicillin (12 isolates), dihydrostreptomycin (two isolates) and kanamycin (one isolate). There were no isolates resistant to antimicrobial agents such as methicillin, lincomycin, clindamycin, chloramphenicol, florfenicol and virginiamycin, which have not been approved for use in cattle husbandry in Japan.  相似文献   

11.
The minimal inhibitory concentrations (MIC) of five tetracyclines and ten other antimicrobial agents were determined for four porcine bacterial respiratory tract pathogens by the agar dilution method. For the following oxytetracycline-susceptible strains, the MIC50 ranges of the tetracyclines were: P. multocida (n = 17) 0.25-0.5 micrograms/ml; B. bronchiseptica (n = 20) 0.25-1.0 micrograms/ml; H. pleuropneumoniae (n = 20) 0.25-0.5 micrograms/ml; S. suis Type 2 (n = 20) 0.06-0.25 micrograms/ml. For 19 oxytetracycline-resistant P. multocida strains the MIC50 of the tetracyclines varied from 64 micrograms/ml for oxytetracycline to 0.5 micrograms/ml for minocycline. Strikingly, minocycline showed no cross-resistance with oxytetracycline, tetracycline, chlortetracycline and doxycycline in P. multocida and in H. pleuropneumoniae. Moreover, in susceptible strains minocycline showed the highest in vitro activity followed by doxycycline. Low MIC50 values were observed for chloramphenicol, ampicillin, flumequine, ofloxacin and ciprofloxacin against P. multocida and H. pleuropneumoniae. B. bronchiseptica was moderately susceptible or resistant to these compounds. As expected tiamulin, lincomycin, tylosin and spiramycin were not active against H. pleuropneumoniae. Except for flumequine, the MIC50 values of nine antimicrobial agents were low for S. suis Type 2. Six strains of this species showed resistance to the macrolides and lincomycin.  相似文献   

12.
The objective of this study was to determine the in vitro minimum inhibitory concentration (MIC) of antimicrobials against 10 isolates of Lawsonia intracellularis, the etiological agent of proliferative enteropathy (PE). Antimicrobials tested included carbadox, chlortetracycline, lincomycin, tiamulin, tylosin and valnemulin. The MIC of each antimicrobial against L. intracellularis was determined using a tissue culture system and was identified as the lowest concentration that inhibited 99% of L. intracellularis growth, as compared to the antimicrobial-free control. Each antimicrobial concentration was evaluated for both intracellular and extracellular activity against L. intracellularis, an obligately intracellular bacterium. When tested for intracellular activity, carbadox, tiamulin, and valnemulin were the most active antimicrobials with MICs of < or =0.5microg/ml. Tylosin (MICs ranging from 0.25 to 32microg/ml) and chlortetracycline (MICs ranging from 0.125 to 64microg/ml) showed intermediate activities and lincomycin (MICs ranging from 8 to >128mIcog/ml) showed the least activity. When tested for extracellular activity, valnemulin (MICs ranging from 0.125 to 4microg/ml) was the most active against most L. intracellularis isolates. Chlortetracycline (MICs ranging from 16 to 64microg/ml), tylosin (MICs ranging from 1 to >128microg/ml), and tiamulin (MICs ranging from 1 to 32microg/ml) showed intermediate activities. Lincomycin (MICs ranging from 32 to >128microg/ml) showed the least activity. Our in vitro results showed that each L. intracellularis isolate had a different antimicrobial sensitivity pattern and these data can be utilized as an in vitro guideline for the further antimicrobial evaluation of field L. intracellularis isolates.  相似文献   

13.
There are few studies on antimicrobial susceptibility of Brachyspira pilosicoli, therefore this study was performed to investigate the situation among isolates from pigs. The tiamulin and tylosin susceptibility was determined by broth dilution for 93 and 86 porcine B. pilosicoli isolates, respectively. The isolates came from clinical samples taken in Swedish pig herds during the years 2002 and 2003. The tylosin minimal inhibitory concentration (MIC) was >16 microg/ml for 50% (n=43) of the isolates tested. A tiamulin MIC >2 microg/ml was obtained for 14% (n=13) of the isolates and these were also tested against doxycycline, salinomycin, valnemulin, lincomycin and aivlosin. For these isolates the susceptibility to salinomycin and doxycycline was high but the MICs for aivlosin varied. The relationship between the 13 tiamulin resistant isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Among the 13 isolates 10 different PFGE patterns were identified.  相似文献   

14.
Sixteen antimicrobial agents were tested for their activity against 68 isolates of Actinobacillus pleuropneumoniae by determining the minimum inhibitory concentrations (MICs). Ceftiofur and the fluoroquinolones danofloxacin and enrofloxacin were the most active compounds, with a MIC for 90% of the isolates (MIC90) of 0.05 µg/ml. The MIC90 values of benzylpenicillin, amoxicillin and aspoxicillin were 0.78 units/ml, 0.39 µg/ml and 0.05 µg/ml, respectively. Three isolates (4.4%) were resistant to penicillins, but aspoxicillin was as active as ceftiofur against the susceptible isolates, with MICs of 0.05 µg/ml for all isolates. Resistance to oxytetracycline, chloramphenicol and thiamphenicol occurred in 22 (32.4%), 14 (20.6%) and 15 (22.1%) of the isolates, respectively. Doxycycline was more active than oxytetracycline, with a MIC90 of 1.56 µg/ml as against 25 µg/ml. Florfenicol was not only as active as thiamphenicol, with a MIC for 50% of the isolates (MIC50) of 0.39 µg/ml, but also active against thiamphenicol-resistant isolates. All the isolates were susceptible to florfenicol. All the isolates were also susceptible to gentamicin, spectinomycin, tilmicosin, colistin and tiamulin. Of these, spectinomycin was the least active, with a MIC50 of 25 µg/ml, followed by tiamulin, with a MIC50 of 6.25 µg/ml. Of the 68 isolates tested, 49 (72.0%) were of serotype 2; 14 (20.5%) were of serotype 1; 2 each (3.0$) were of serotypes 5 and 6; and one was of serotype 7. Of the isolates, 23 (33.8%) were resistant to one or more of the major antibiotics. Antibiotic resistance was found only infrequently among serotype 2, with 5 (10.2%) of 49 isolates being resistant to chloramphenicol and/or oxytetracycline, while it occurred in 18 (94.7%) of the 19 isolates of other serotypes.  相似文献   

15.
Therapeutic options for multi-drug resistant (MDR) Escherichia coli in dogs or cats are limited. The objective of this study was to establish in vitro susceptibility of canine and feline E. coli to fosfomycin. Two sources of isolates were categorized based on susceptibility as to no resistance (NDR), single drug resistance (SDR), multidrug resistance (MDR) or extreme drug resistance (XDR). Clinical isolates were collected from throughout the US from dogs (n=157) or cats (n=43) with naturally occurring infection between March 2008 and January 2010. Experimental isolates were collected from fecal samples of dogs treated with no drug (NDR), amoxicillin (expressing SDR) or enrofloxacin (expressing MDR or XDR). Fosfomycin minimum inhibitory concentrations (MIC) were determined using E-Test(?). For clinical isolates, most (165/200) originated from the urinary tract, with the number of isolates per resistant category being: NDR (N=44, 22%), SDR (N=65, 32.5%), MDR (N=74, 37%), and XDR (N=17, 8.5%). Of these isolates, 99% (197/200) were susceptible to fosfomycin with the MIC(90) and MIC(50) being 2 and 1 μg/ml, respectively (range: 0.25-196 μg/ml). The number of experimental isolates in each category was NDR (3), SDR (23), MDR (38), and XDR (11) (29.3, 44, and 14.7%, respectively). Of these, 100% were susceptible to fosfomycin with MIC(90) and MIC(50) being 1.5 and 1 μg/ml (range: 0.38-4 μg/ml), respectively. The susceptibility of canine and feline MDR and XDR E. coli to fosfomycin at concentrations well below the susceptible breakpoint supports further investigation for its use when treating E. coli resistant to alternative antimicrobials.  相似文献   

16.
Minimum inhibitory concentrations (MICs) of 20 antimicrobial agents for 41 isolates of Burkholderia mallei from natural outbreaks of equine glanders were determined by agar dilution. All isolates were intrinsically resistant to ampicillin (MIC90 ≥128). Resistance to other antimicrobials was as follows: 95.1% to amoxicillin and cephradine, 85.4% to cefuroxime and norfloxacin, 68.3% to ceftizoxime and ceftriaxone, 61.1% to ceftiofur, 58.5% to oxytetracycline, 41.5% to ciprofloxacin, 58.5% to roxithromycin, 17.1% cefotaxime, and 12.2% clarithromycin. Overall resistance patterns revealed that 17% of isolates were simultaneously resistant to amoxicillin, cephradine, cefuroxime, ceftizoxime, ceftriaxone and norfloxacin. None of the isolates were resistant to amoxicillin-clavulanic acid, doxycycline, chloramphenicol, gentamicin or trimethoprim-sulphadiazine. Mode MICs for these antimicrobials were 2, 1, 8, 4 and 1 μg/ml, respectively. A majority of the isolates (∼ 94%) were susceptible to both enrofloxacin and ofloxacin. These data provide an updated perspective on susceptibility profiles of current strains of B. mallei in an endemic area.  相似文献   

17.
Staphylococcus aureus is an important opportunist that can cause superficial to life-threatening illnesses in a variety of animal species. In poultry, this organism has been implicated in osteomyelitis, synovitis, and cellulitis. Whereas most infections can be treated with antibiotics, because of the organism's propensity to acquire antimicrobial resistance, it is important to continually monitor antibiotic susceptibilities of clinical isolates. We surveyed 77 clinical poultry S. aureus isolates, collected from 1998 to 2000, for susceptibilities to a panel of 18 antimicrobial agents. Thirty-six percent of isolates were susceptible to all antibiotics. Forty-three and 16% of avian S. aureus were resistant to one and two antibiotics respectively. Staphylococcus aureus isolates were commonly resistant to tetracycline (40%; minimal inhibitory concentration [MIC]90 > 32 microg/ml), lincomycin (19%; MIC90 > 32 microg/ml), erythromycin (12%; MIC90 > 8 microg/ml), and kanamycin (8%; MIC90 < 128 microg/ml). All S. aureus isolates were susceptible to chloramphenicol, gentamicin, streptomycin, nitrofurantion, linezolid, quinupristin/dalfopristin, vancomycin, and the production antimicrobials virginiamycin, salinomycin, and flavomycin. A periodic assessment of antimicrobial susceptibilities of important avian pathogens like S. aureus will be important in helping the clinician's choice of antibiotic to control infection.  相似文献   

18.
A total of 52 Haemophilus parasuis and 80 Histophilus somni isolates were tested for antimicrobial susceptibility by MIC-determinations. None of the isolates were resistant to ampicillin, ceftiofur, ciprofloxacin, erythromycin, florphenicol, penicillin, spectinomycin, tetracycline, tiamulin, or tilmicosin. Two H. parasuis isolates were resistant to trimethoprim + sulfamethoxazole. Six H. parasuis isolates had reduced susceptibility (0.06-0.5 microg/ml) to ciprofloxacin and 10 reduced susceptibility to TMP + sulfamethoxazole (1-2 microg/ml). This study showed that Danish isolates of H. parasuis and H. somni in general are fully susceptible to antimicrobial agents currently used for treatment of infections with these pathogens.  相似文献   

19.
A commercial doxycycline formulation was administered in drinking water to 12 pigs at the recommended dose of 10 mg/kg daily for 5 days. The mean plasma concentration at steady-state was 1.37 +/- 1.21 microg/mL, which was reached at 68 +/- 27.2 h postadministration. Absorption and elimination half-life values were 7.20 +/- 2.42 and 7.01 +/- 2.10 h, respectively. Most plasma concentrations during dosing were higher than the minimum inhibitory concentrations (MICs) described for the main porcine bacterial pathogens of the respiratory tract (Pasteurella multocida, Actinobacillus pleuropneumoniae, Bordetella bronchiseptica and Mycoplasma hyopneumoniae). It is concluded that when pigs were treated with doxycycline in drinking water at the recommended rate, therapeutically effective concentrations were achieved throughout the treatment period, supporting the clinical use of this tetracycline in the control of respiratory infections. However, inter-animal differences were marked.  相似文献   

20.
OBJECTIVE: To determine the antimicrobial susceptibility of common respiratory tract pathogens from sheep and goats. DESIGN: Cross-sectional study. SAMPLE POPULATION: 41 respiratory tract isolates from sheep and 36 isolates from goats. PROCEDURES: Disk diffusion assay was used to determine antimicrobial susceptibility of isolates to amoxicillin-clavulanic acid, ceftiofur, ciprofloxacin, florfenicol, and tetracycline. Minimum inhibitory concentrations of florfenicol for these isolates were determined by use of the microbroth dilution technique. RESULTS: The most common isolates were Pasteurella multocida (n = 28) and Mannheimia haemolytica (39). All isolates were susceptible to amoxicillin-clavulanic acid, ceftiofur, ciprofloxacin, and florfenicol. Five percent (4/77) of isolates were resistant to tetracycline. CONCLUSIONS AND CLINICAL RELEVANCE: Susceptibility of respiratory tract pathogens isolated from sheep and goats to commonly used antimicrobial drugs in this study was high. Treatment of these species for bacterial respiratory tract disease is likely not complicated by antimicrobial resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号