首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In southern Mali, cultivated area and herd size increase together with population growth. Consequently, periods of natural fallow shorten and traditional farming and animal husbandry techniques lead to a decrease of soil organic matter (SOM) content. Between 20 and 45% of the land is cultivated while less than 60% is arable area. To increase efficiency of natural fallow, a reduction in livestock herds is often proposed. By means of a linear programming model, the feasibility of maintaining actual SOM content in two villages in different agro-ecological zones was investigated. By adjusting animal numbers and cropping pattern, the model maximized: (1) SOM content under the condition of positive farm labour income; or (2) farm labour income under the condition of a positive SOM content. The model results suggested that maintaining SOM content requires the use of cereal crop residues for animal feed and for manure through bedding in kraals, but also higher animal densities. The last was feasible only through: (1) herding cattle of several farms together to overcome labour constraints; and (2) introducing P-fertilized leys, for grazing in the dry season. Grazing of the leys together with crop residues allowed animal densities up to 44 tropical livestock units (TLUs) km−2, while less than 16% of the produced rangeland fodder was grazed. In such conditions, a positive SOM balance and higher income was obtained with a minimum of 16.7% of ley in the crop rotation. Limiting the area cropped with cotton stabilized income and contributed to a positive SOM balance. Zero-grazing during the warm season allowed SOM surpluses to be achieved with 12.5% of ley. However, as income decreased, seasonal zero-grazing could only be adopted for high-producing animals and small herds.  相似文献   

2.
A whole-farm mathematical programming model has been built for dryland crop-livestock farms in Western Australia. The multidisciplinary approach used for model building is presented and the resulting model structure is described. It is a mixed integer programming model which represents, in some detail, the biological, technological and financial relationships of the farming system and stresses the interdependencies of enterprises. The model is used to investigate the extent to which positive interactions between different enterprises influence the optimal farm plan. The management issue considered is the division of land between crop and pasture production. It is concluded that, for the farming system considered, interactions do have an influence on profit and the optimal farm plan.  相似文献   

3.
《Agricultural Systems》2005,83(3):251-276
Agricultural production in the semi-arid agro-ecosystems of the Sahel centres on cereal staple crops and pastoralism with increasing crop–livestock integration. Animals mobilize soil fertility through manure production, graze crop by-products, and transfer nutrients from distant pastures to cropped areas. Yet in these systems various interacting factors, i.e. climate variability, poor soil fertility, poverty, and institutional constraints limit the capacity of agriculture to keep pace with the growing needs of an increasing human population.The major trends associated with population growth are (1) increasing area cropped at the expense of rangelands; (2) reduced availability of and access to good quality grazing resources, and (3) seasonal migration of labourers and transhumance of herds. These trends lead to co-evolution of farming systems towards increased privatisation of resource use.This study examines the implications of the development processes where farming systems co-evolve with their surroundings. It explores the impact of integrated management of livestock and crops in rural communities on both the livelihoods of differently endowed farms, and on the agro-ecosystem. Different scenarios explored the co-evolution of three sites situated in Western Niger with their environment. The sites differ in relative area cropped. The scenarios simulate the different future outcomes for varying socio-economic and biophysical criteria with either current or more intensive management.Explorative bio-economic models are used to compare a range of farm, livelihood and ecological indicators, and to reveal social and ecological trade-offs.If current agro-ecosystems and their environments co-evolve towards increased privatisation of grazing resources, then soil fertility is likely to deteriorate on the lands managed by the agro-pastoral groups. Soil fertility may improve on lands managed by the livestock-scarce farmers settled in villages, at the cost of declining farm incomes. The agro-pastoral groups are likely to resort to more distant pastures for feed. The village-based, livestock-endowed farms will resort to feeding on on-farm crop residues. Intensification, though associated with relative decreases in real incomes, will enhance food security in these new systems, except for the poorer settled farmers.  相似文献   

4.
The factors influencing the decision of smallholder farmers to adopt new farming technologies were studied with reference to rubber–tea intercropping in Sri Lanka. Rubber–tea intercropping has been recommended previously to rubber farmers as a means to improve productivity and income during the early pre-tapping phase of rubber growth. Although crop trials have shown that the two crops are agronomically compatible and potentially produce a combined economic yield superior to the yield of a sole crop grown on the same area of land, there is little evidence of widespread adoption of this practice among smallholder farmers in Sri Lanka. The aim of the study was to determine the major factors that influence the decision to undertake rubber–tea intercropping and to construct a predictive model that describes the likelihood of adoption of intercropping by traditional smallholder rubber growers. A rapid rural appraisal (RRA) was undertaken based on semi-structured interviews of 90 smallholder farmers in the main rubber growing low wet zone of Sri Lanka. Among a number of factors shown to significantly influence the decision to intercrop tea with rubber, three were shown to operate independently, namely level of income, source of income (i.e. solely from own farm or from farm plus additional off-farm enterprises), and availability of land considered suitable for tea cultivation. A statistical model developed through correlation and logistic analysis, which predicts the likelihood of a smallholder adopting intercropping based on these factors, is presented and discussed. The most likely combination of circumstances (82% probability) under which rubber–tea intercropping is practiced is shown to be where the farmer’s income is greater than Rs. 10,000 per month, where the farmer’s income is based solely on own farm enterprises, and where more than 80% of the farmer’s land area was judged to be suitable for tea cultivation. Conversely, 30% of smallholder farmers that chose not to intercrop did possess land suitable for tea cultivation. Qualitative responses to the RRA indicated that limitation of technical knowledge was the main problem subsequently faced by rubber farmers who had adopted rubber–tea intercropping. Results indicate that there is need for both income support through farm subsidies and further agricultural extension services, if rubber–tea intercropping is to be adopted more widely in Sri Lanka. The wider usefulness of the developed logistic model in determining the likelihood of adoption of intercropping by smallholder farmers is discussed.  相似文献   

5.
Rapid changes in the social and economic environment in which agriculture is developing, together with the deterioration of the natural resource base threatens sustainability of farm systems in many areas of the world. For vegetable farms in South Uruguay, survival in the long term depends upon the development of production systems able to reduce soil erosion, maintain or improve physical and biological soil fertility, and increase farmer’s income to socially acceptable levels. We propose a model-based explorative land use study to support the re-orientation of vegetable production systems in South Uruguay. In this paper we present a new method to quantitatively integrate agricultural, environmental and socio-economic aspects of agricultural land use based on explicit design objectives. We describe the method followed to design and evaluate a wide variety of land use activities for Canelón Grande (South Uruguay) and we illustrate the usefulness of this approach in an ex-ante evaluation of new farming systems using data from 25 farms in this region. Land use activities resulted from systematic combination of crops and inter-crop activities into crop rotations, different crop management techniques (i.e., mechanisation, irrigation and crop protection) and animal production. We identified and quantified all possible rotations and estimated inputs and outputs at crop rotation scale, explicitly considering interactions among crops. Relevant inputs and outputs (i.e., soil erosion, balance of soil organic matter and nutrients, environmental impact of pesticides, labour and machinery requirements, and economic performance) of each land use activity were quantified using different quantitative methods and following the target-oriented approach. By applying the methodology presented in this paper we were able to design and evaluate 336,128 land use activities suitable for the different soil types in Canelón Grande and for farms with different availability of resources, i.e., land, labour, soil quality, capital and water for irrigation. After theoretical evaluation, a large subset of these land use activities showed promise for reducing soil erosion, maintaining soil organic matter content of the soil and increasing farmer’s income, allowing improvement of current farming systems in the region and providing a widely diverse set of strategic options for farmers in the region to choose from. This method can be used as a stand-alone tool to explore options at the field and farm scale or to generate input for optimisation models to explore options at the farm or regional scale.  相似文献   

6.
The environmental and economic performance of five Charolais beef production systems (three specialized beef producer test cases in grassland areas and two mixed crop-livestock test cases with a more intensive production system) were assessed by coupling an economic optimization model (“Opt’INRA”) with a model assessing non-renewable energy (NRE) consumption and greenhouse gas emissions (“PLANETE”). The test cases studied covered a relatively diverse range of raised and sold animals: calf-to-weanling or calf-to-beef systems (animals sold: from 10-month-old weaners to 36-month-old beef steers). In 2006, NRE consumption ranged from 26,440 to 31,863 MJ/ton of live weight produced over 1 year. Fuels and lubricants were the main factors of NRE consumption, followed by fertilizers and farm equipment. Livestock was the main driver of global warming potential. GHG emissions, at 14.3-18.3 tCO2eq/t LW, were mainly determined by the proportion of cows in the total herd livestock units, according to the farming system deployed, i.e. calf-to-weanling vs. calf-to-beef. Against a background of rising energy costs, farms running mixed crop-livestock systems enjoy greater flexibility to adjust their farming systems than grassland-based farms, enabling them to minimize the drop in income over the timeframe to 2012 (−3%). In this same setting, specialist beef producers face a 15-25% drop in income. In all the scenarios run, system adjustments designed to minimize the drop in income have only a very limited impact on NRE consumption and GHG emissions.  相似文献   

7.
《Agricultural Systems》2005,83(2):179-202
French suckler farmers need advice on the implications of the Agenda 2000 CAP reform for their farms and, in particular, on the incentives it offers for a more extensive mode of production. To support the dialogue between advisers and farmers, and thus help farmers with their decision-making, we constructed a linear programming (LP) model that optimises the farming system of the northern Massif Central Charolais suckler cattle farms, which may be either mixed (crop-livestock) or specialised (livestock). This model, called Opt'INRA, incorporated all of the production activities presently encountered in this zone, together with the constraints of the CAP premium attributions. We used it to study how, on the basis of their 1999 data, two farms, representing two situations frequently encountered in the Charolais area (a mixed crop-livestock farm and a specialised livestock farm), could best adapt to Agenda 2000.According to the model, for both of the farms studied, the economic impact of Agenda 2000 is relatively low, albeit negative. The adaptation of the system when possible does not lead to a significant increase in the gross margin of this farms. Agenda 2000 did not encourage farmers to extensify their farming system. On the other hand, this CAP reform discourages them from intensifying.  相似文献   

8.
Simulation models are effective tools to examine interactions between livestock, cropping systems, households, and natural resources. Our study objective was to use an integrated livestock and crop model to assess the outcomes from selected suites of management decisions observed in smallholder sheep-cropping systems of Yucatán, Mexico. The scenarios contrasted specialized systems versus mixed farming, and evaluated the outcomes of increased crop-livestock integration. Mixed enterprise scenarios involving sheep provided more income than specialized enterprises, and capitalized on a lower price of on-farm maize grain, efficient utilization of surplus labor, and availability of common land. Labor and management income was greatest for the unintegrated and partially integrated crop and livestock scenarios. It was more profitable for producers to sell excess grain and maize stover, and use common land to feed the livestock, suggesting that increased integration does not always result in improved outcomes. The results are consistent with a system not yet pushed to the point where integration is inevitable. For all sets of scenarios, the model structure was able to accommodate subtle management differences to produce appropriate biophysical, labor, and economic outcomes. We conclude there is potential to use similar model development methods to describe other crop-livestock systems, thus providing tools for learning, scenario analysis, and impact assessment.  相似文献   

9.
《Agricultural Systems》2005,86(1):29-51
The methodology presented in this paper aims at analysing whether there is room for improvement of vegetable farmers’ income in Canelón Grande (Uruguay), while reducing soil erosion and improving physical and biological soil fertility, and to gain insight in the influence of farmers’ resource availability on the opportunities for sustainable development. The (generic) approach we developed to support re-design of farming systems in this region is unique in dealing with complex temporal interactions in crop rotations and spatial heterogeneity on farms in one integrated method, while revealing trade-off between economic and environmental objectives. Rather than an arbitrary sub-set, all feasible crop rotations were generated, using a tool named ROTAT. The crop rotations were combined with a range of production techniques according to pre-defined design criteria to create a wide variety of alternative production activities at the field scale. We used process-based simulation models supplemented with empirical data and expert knowledge to quantify inputs and outputs of production activities. We developed a mixed integer linear programming model (MILP), named Farm Images, to allocate production activities to a farm with land units differing in soil quality, while maximising or minimising socio-economic and environmental objectives, subject to constraints at the farm level. Production activities comprised current practices as well as activities new to the area. We used Farm Images to design farm systems for seven existing farms in Canelón Grande with different resource availability. The farm systems designed by the model had higher family income than current systems for six of the seven farms studied. The estimated average soil erosion per ha decreased by a factor of 2–4 in the farm systems proposed compared to the current systems, while the rate of change of soil organic matter increased from negative in the current systems to +130 to +280 kg ha−1 yr−1 in the proposed farm systems. The degree to which the objectives could be achieved was strongly affected by farm resource endowment, i.e., particularly by the fraction of the area irrigated, soil quality and labour availability per ha. The study suggests that decreasing the area of vegetable crops by introducing long crop rotations with pastures and green manure during the inter-crop periods and integrating beef cattle production into the farm systems would often be a better strategy than the actual farmers’ practice.  相似文献   

10.
The disciplinary nature of most existing farm models as well as the issue specific orientation of most of the studies in agricultural systems research are main reasons for the limited use and re-use of bio-economic modelling for the ex-ante integrated assessment of policy decisions. The objective of this article is to present a bio-economic farm model that is generic and re-usable for different bio-physical and socio-economic contexts, facilitating the linking of micro and macro analysis or to provide detailed analysis of farming systems in a specific region. Model use is illustrated in this paper with an analysis of the impacts of the CAP reform of 2003 for arable and livestock farms in a context of market liberalization. Results from the application of the model to representative farms in Flevoland (the Netherlands) and Midi-Pyrenees (France) shows that CAP reform 2003 under market liberalization will cause substantial substitution of root crops and durum wheat by vegetables and oilseed crops. Much of the set-aside area will be put into production intensifying the existing farming systems. Abolishment of the milk quota system will cause an increase of the average herd size. The average total gross margin of farm types in Flevoland decreases while the average total gross margin of farms in Midi-Pyrenees increases. The results show that the model can simulate arable and livestock farm types of two regions different from a bio-physical and socio-economic point of view and it can deal with a variety of policy instruments. The examples show that the model can be (re-)used as a basis for future research and as a comprehensive tool for future policy analysis.  相似文献   

11.
Technological interventions to address the problem of poor productivity of smallholder agricultural systems must be designed to target socially diverse and spatially heterogeneous farms and farming systems. This paper proposes a categorisation of household diversity based on a functional typology of livelihood strategies, and analyses the influence of such diversity on current soil fertility status and spatial variability on a sample of 250 randomly selected farms from six districts of Kenya and Uganda. In spite of the agro-ecological and socio-economic diversity observed across the region (e.g. 4 months year−1 of food self-sufficiency in Vihiga, Kenya vs. 10 in Tororo, Uganda) consistent patterns of variability were also observed. For example, all the households with less than 3 months year−1 of food self-sufficiency had a land:labour ratio (LLR) < 1, and all those with LLR > 1 produced enough food to cover their diet for at least 5 months. Households with LLR < 1 were also those who generated more than 50% of their total income outside the farm. Dependence on off/non-farm income was one of the main factors associated with household diversity. Based on indicators of resource endowment and income strategies and using principal component analysis, farmers’ rankings and cluster analysis the 250 households surveyed were grouped into five farm types: (1) Farms that rely mainly on permanent off-farm employment (from 10 to 28% of the farmers interviewed, according to site); (2) larger, wealthier farms growing cash crops (8-20%); (3) medium resource endowment, food self-sufficient farms (20-38%); (4) medium to low resource endowment relying partly on non-farm activities (18-30%); and (5) poor households with family members employed locally as agricultural labourers by wealthier farmers (13-25%). Due to differential soil management over long periods of time, and to ample diversity in resource endowments (land, livestock, labour) and access to cash, the five farm types exhibited different soil carbon and nutrient stocks (e.g. Type 2 farms had average C, N, P and K stocks that were 2-3 times larger than for Types 4 or 5). In general, soil spatial variability was larger in farms (and sites) with poorer soils and smaller in farms owning livestock. The five farm types identified may be seen as domains to target technological innovations and/or development efforts.  相似文献   

12.
《Agricultural Systems》2002,73(3):233-260
Recent work on decision processes on French farms and irrigated systems in Africa has shown that farmers plan their cyclical (recurrent) technical operations, and that one can model this planning process. Taking the case of cotton crop management in North Cameroon, we show that with certain adjustments, modelling of this kind can also be done for rainfed crop farming in Africa. The adjustments are needed to take account of the differences in social status between different fields on one farm and the implications of the fact that farm work is primarily manual. This produces decision models with a similar structure to that described for technical management of an annual crop break in a temperate climate using mechanised implements. Not only do these models give us a detailed understanding of the variability of farming practices, we can also classify them into categories according to weather scenarios yield level as a function of weather scenario. We show that one can attribute farms to these types of model using simple indicators concerning work organisation. By analysing North Cameroon farmers' decision processes for managing cotton crops we can thus produce an effective tool for organising technical supervision of farmers at the regional level: advisers can work with these decision model types by measuring some simple indicators at farm level to predict which types of model are applicable, without the onerous work of constructing individual decision models.  相似文献   

13.
Efficient water use in rice cultivation is a prerequisite for sustaining food security for the rice consuming population of India. Novel rice production practices, including water-saving techniques, modifications in transplanting, spacing, weeding and nutrient management, have been developed and shown to be effective on farm, but adoption of these techniques by farmers has remained restricted. Potential constraints include technical difficulties with new practices, and labour and gender issues which differ between farms. On the basis of a rapid survey of 100 rice-based farms, four farm types were identified based on their socio-economic and biophysical characteristics. Detailed farm surveys were conducted on three representative farms of each farm type to evaluate land use patterns, use of inputs such as water, labour, nutrient, capital and machinery, income from crop and animal production and off-farm activities. Opportunities exist for one or more new rice cultivation techniques to be adopted in all the four farm types. For all farm types, however, the opportunities for use of water-saving irrigation were the least promising. In general, adoption of water-saving irrigation will not improve farmers’ livelihoods despite its importance in reducing water scarcity problems at regional scale. At farm scale, the potential for adoption of water-saving irrigation depends on the season, location of fields and the irrigation source. Changes in government policies such as rules and regulations, pricing, institution building and infrastructure development, as well as training and education of farmers are needed to improve the adoption of modified methods for rice cultivation.  相似文献   

14.
Three smallholder dairy production systems in Zambia, Sri Lanka and Kenya are analysed and compared. The focus is on the relationships between the animal production system, the farm household system, and the institutional environment. Attention is given to the valuation of marketed and non-marketed products and the intangible benefits of livestock in insurance, financing and status display. The comprehensive and comparative analysis of the production systems shows the direct relationship between type and intensity of dairy production and the presence or absence of markets for milk and other products, services and employment. The generally unobserved income components resulting from products other than milk and from the intangible benefits prove to be a substantial proportion of the total income in all three systems. The comprehensive perspective on the dairy production system results in policy suggestions that include institutional linkages.  相似文献   

15.
African farming systems are highly heterogeneous: between agroecological and socioeconomic environments, in the wide variability in farmers’ resource endowments and in farm management. This means that single solutions (or ‘silver bullets’) for improving farm productivity do not exist. Yet to date few approaches to understand constraints and explore options for change have tackled the bewildering complexity of African farming systems. In this paper we describe the Nutrient Use in Animal and Cropping systems - Efficiencies and Scales (NUANCES) framework. NUANCES offers a structured approach to unravel and understand the complexity of African farming to identify what we term ‘best-fit’ technologies - technologies targeted to specific types of farmers and to specific niches within their farms. The NUANCES framework is not ‘just another computer model’! We combine the tools of systems analysis and experimentation, detailed field observations and surveys, incorporate expert knowledge (local knowledge and results of research), generate databases, and apply simulation models to analyse performance of farms, and the impacts of introducing new technologies. We have analysed and described complexity of farming systems, their external drivers and some of the mechanisms that result in (in)efficient use of scarce resources. Studying sites across sub-Saharan Africa has provided insights in the trajectories of change in farming systems in response to population growth, economic conditions and climate variability (cycles of drier and wetter years) and climate change. In regions where human population is dense and land scarce, farm typologies have proven useful to target technologies between farmers of different production objectives and resource endowment (notably in terms of land, labour and capacity for investment). In such regions we could categorise types of fields on the basis of their responsiveness to soil improving technologies along soil fertility gradients, relying on local indicators to differentiate those that may be managed through ‘maintenance fertilization’ from fields that are highly-responsive to fertilizers and fields that require rehabilitation before yields can improved. Where human population pressure on the land is less intense, farm and field types are harder to discern, without clear patterns. Nutrient cycling through livestock is in principle not efficient for increasing food production due to increased nutrient losses, but is attractive for farmers due to the multiple functions of livestock. We identified trade-offs between income generation, soil conservation and community agreements through optimising concurrent objectives at farm and village levels. These examples show that future analyses must focus at farm and farming system level and not at the level of individual fields to achieve appropriate targeting of technologies - both between locations and between farms at any given location. The approach for integrated assessment described here can be used ex ante to explore the potential of best-fit technologies and the ways they can be best combined at farm level. The dynamic and integrated nature of the framework allows the impact of changes in external drivers such as climate change or development policy to be analysed. Fundamental questions for integrated analysis relate to the site-specific knowledge and the simplification of processes required to integrate and move from one level to the next.  相似文献   

16.
Mixed farming systems constitute a large proportion of agricultural production in the tropics, and provide multiple benefits for the world’s poor. However, our understanding of the functioning of these systems is limited. Modeling offers the best approach to quantify outcomes from many interacting causal variables in these systems. The objective of this study was to develop an integrated crop-livestock model to assess biophysical and economic consequences of farming practices exhibited in sheep systems of Yucatán state, Mexico. A Vensim™ dynamic stock-flow feedback model was developed to integrate scientific and practical knowledge of management, flock dynamics, sheep production, partitioning of nutrients, labor, and economic components. The model accesses sheep production and manure quantity and quality data generated using the Small Ruminant Nutrition System (SRNS), and interfaces on a daily basis with an Agricultural Production Systems Simulator (APSIM) model that simulates weather, crop, and soil dynamics. Model evaluation indicated that the integrated model adequately represents the complex interactions that occur between farmers, crops, and livestock.  相似文献   

17.
Several studies show that organic farming is more profitable than conventional farming. However, in reality not many farmers convert to organic farming. Policy makers and farmers do not have clear insight into factors which hamper or stimulate the conversion to organic farming. The objective of this paper is to develop a dynamic linear programming model to analyse the effects of different limiting factors on the conversion process of farms over time. The model is developed for a typical arable farm in The Netherlands central clay region, and is based on two static liner programming models (conventional and organic). The objective of the model is to maximise the net present value over a 10-year planning horizon. The results of the analysis of a basic scenario show that conversion to organic farming is more profitable than staying conventional. In order to arrive at the actual profitable phase of organic farming, the farmer has to pass through the economically difficult 2-year conversion period. Sensitivity analysis shows that if depreciation is 25% higher than conventional fixed costs due to machinery made superfluous by conversion, conversion is less profitable than staying conventional. Also the availability of hired labour, which can be constrained in peak periods, has a strong effect on the cropping plan and the amount of area converted. Further analysis shows that a slight drop (2%) in organic prices lowers the labour income of the farmer and makes conversion less profitable than conventional farming. For farmers, a minimum labour income can be required to ‘survive’. The analysis shows that constraint on minimum labour income makes stepwise conversion the best way for farmers to overcome economic difficulties during conversion.  相似文献   

18.
Promotion of integrated aquaculture with agriculture, including crops and livestock (IAA-farming), requires consideration of both bio-physical and socio-economic contexts. The major factors influencing the adoption of IAA-farming by households at three sites in the Mekong delta were identified. Special attention was given to the multiple roles ponds play in IAA-farming systems. Information was collected through semi-structured interviews and discussions with focus groups and key individuals. Data were analyzed using multivariate factor analysis, analysis of variance or participatory ranking methods. Three major IAA-systems were identified: (1) low-input fish farming integrated with intensive fruit production (system 1), (2) medium-input fish farming integrated with less intensive fruit production (system 2), and (3) high-input fish farming integrated with less intensive fruit production (system 3). System 1 was commonly practised in a rural fruit-dominated area with fertile soils, while systems 2 and 3 were more evident in peri-urban rice-dominated areas with less fertile soils. In the study area, only 6% of poor farmers adopted IAA-farming, while this was 42% for intermediate and 60% for rich households. Richer farmers tended to intensify fish farming and seek a more commercial orientation. The major factors why farmers did not start aquaculture were the inappropriateness of technology, insufficient land holding or poor access to extension services, limited farm management, and through a fear of conflicts associated with pesticide use on crops. The main motivations for practising IAA-farming included increased income and food for home consumption from the available farm resources while reducing environmental impacts. Further improvements to IAA-systems can be realized by strengthening nutrient recycling between different IAA-system components while enhancing farming output and safeguarding the environment.  相似文献   

19.
On the tropical island of La Réunion, population growth, increasing demand in food products, agricultural densification, and the resulting pressure on the environment are representative of what is expected to happen in the majority of the world’s regions in the next decades. Crop-livestock integration is a possible solution for the sustainable intensification of farming systems.GAMEDE, a whole-farm model, was designed and used with six representative dairy farmers on the island to ex-ante assess differences in farm sustainability of various degrees of crop-livestock integration and to support discussions with farmers about these options. The model details the dynamics of the main biophysical and decisional processes affecting labour, gross margin, and energy and nutrient flows within the farm.We propose a method based on typology, modelling and participatory techniques to support policy making. All its methodological stages integrate both quantitative and qualitative data. The large majority of farm model implementation cases reported in the literature refers to constructed synthetic farms. However, in our case, actual farm simulation was particularly useful for capturing farmers’ expert knowledge and providing insights into how agro-ecosystems are really managed. This approach enabled taking farm diversity into account in defining relevant interventions. The reliability of extrapolations and recommendations for policy formulation based on farm-level simulation were verified by a rigorous evaluation of the representativeness of the farm sample, crossing expert data with data stemming from a multi-variate analysis. Our research indicates that actual farms can also be typical.  相似文献   

20.
This paper presents a macro–micro analysis of the impact of policy reforms in China on agricultural production, input use and soil quality change for a major rice-producing area, namely Jiangxi province. This is done in three steps. First, a quantitative assessment is made of the impact of market liberalization policies on the economic environment of farm households in Jiangxi province. Econometric analyses based on provincial, national and world market data are used to explain changes in rice and fertilizer prices in Jiangxi province over time. Next, the impact of China’s recent income support policy and latest price trends on farm household choices with respect to activity choice (particularly rice and livestock) and input use (fertilizers, pesticides, manure) is assessed for two villages with different degrees of market access in north-east Jiangxi province. Two village-level general equilibrium models are used to analyse household decision-making and interactions between households within these villages. The parameters are estimated and calibrated from an extensive survey held in these villages in the year 2000. Finally, the impact of land tenure policy on farm management decisions (labour, manure and chemical input use), soil quality (available P and K and total N and C) and rice yields is analysed through an econometric analysis of plot-level data for three villages. Two-stage least squares (2SLS) is used to control for interactions with yields and for feedbacks towards input use. The paper ends with a number of suggestions for policy adjustments that would reduce the problem of natural soil compaction in the research area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号