首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theory is presented in which much of the structure of spiral galaxies arises from a percolation phase transition that underlies the phenomenon of propagating star formation. According to this view, the appearance of spiral arms is a consequence of the differential rotation of the galaxy and the characteristic divergence of correlation lengths for continuous phase transitions. Other structural properties of spiral galaxies, such as the distribution of the gaseous components and the luminosity, arise directly from a feedback mechanism that pins the star formation rate close to the critical point of the phase transition. The approach taken in this article differs from traditional dynamical views. The argument is presented that, at least for some galaxies, morphological and other features are already fixed by general properties of phase transitions, irrespective of detailed dynamic or other considerations.  相似文献   

2.
Quilis V  Moore B  Bower R 《Science (New York, N.Y.)》2000,288(5471):1617-1620
We present three-dimensional, high-resolution hydrodynamical simulations of the interaction between the hot ionized intracluster medium and the cold interstellar medium of spiral galaxies. Ram pressure and turbulent/viscous stripping remove 100% of the atomic hydrogen content of luminous galaxies like the Milky Way within 100 million years. These mechanisms naturally account for the morphology of S0 galaxies and the rapid truncation of star formation implied by spectroscopic observations, as well as a host of observational data on the neutral hydrogen (HI) morphology of galaxies in clusters.  相似文献   

3.
Star formation, a crucial link in the chain of events that led from the early expansion of the universe to the formation of the solar system, continues to play a major role in the evolution of many galaxies. Observational and theoretical studies of regions of ongoing star formation provide insight into the physical conditions and events that must have attended the formation of the solar system. Such investigations also elucidate the role played by star formation in the evolutionary cycle which appears to dominate the chemical processing of interstellar material by successive generations of stars in spiral galaxies like our own. New astronomical facilities planned for development during the 1980's could lead to significant advances in our understanding of the star formation process. Efforts to identify and examine both the elusive protostellar collapse phase of star formation and planetary systems around nearby stars will be especially significant.  相似文献   

4.
We have measured the Faraday rotation toward a large sample of polarized radio sources behind the Large Magellanic Cloud (LMC) to determine the structure of this galaxy's magnetic field. The magnetic field of the LMC consists of a coherent axisymmetric spiral of field strength approximately 1 microgauss. Strong fluctuations in the magnetic field are also seen on small (<0.5 parsec) and large (approximately 100 parsecs) scales. The large bursts of recent star formation and supernova activity in the LMC argue against standard dynamo theory, adding to the growing evidence for rapid field amplification in galaxies.  相似文献   

5.
The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150-kiloparsec) halos of ionized oxygen surrounding star-forming galaxies; we found much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. Our data indicate that it is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution.  相似文献   

6.
P Hut  J Makino 《Science (New York, N.Y.)》1999,283(5401):501-505
The GRAPE-4, the world's fastest computer in 1995-1997, has produced some major scientific results through a wide diversity of large-scale simulations in astrophysics. Applications have included planetary formation, the evolution of star clusters and galactic nuclei, and the formation of galaxies and clusters of galaxies.  相似文献   

7.
Type Ia supernovae are key tools for measuring distances on a cosmic scale. They are generally thought to be the thermonuclear explosion of an accreting white dwarf in a close binary system. The nature of the mass donor is still uncertain. In the single-degenerate model it is a main-sequence star or an evolved star, whereas in the double-degenerate model it is another white dwarf. We show that the velocity structure of absorbing material along the line of sight to 35 type Ia supernovae tends to be blueshifted. These structures are likely signatures of gas outflows from the supernova progenitor systems. Thus, many type Ia supernovae in nearby spiral galaxies may originate in single-degenerate systems.  相似文献   

8.
Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.  相似文献   

9.
Aided by advances in computer technology and observations from space, astronomers have begun to unravel the mysteries of galaxy formation and evolution. Galaxies evolve by interacting with their environment and especially with each other. During brief but often fierce galactic encounters, gravitational forces generate strong tides that survive as telltale signatures for billions of years. Because these so-called collisions dissipate orbital energy, galaxies on bound orbits may eventually merge. Collisions and mergers are responsible for a great variety of phenomena, including the triggering of widespread star formation in galaxies and the fueling of nuclear activity in quasars. Evidence is accumulating that not all galaxies formed shortly after the Big Bang. A sizable fraction of them may have formed later, and many are still experiencing significant dynamical evolution.  相似文献   

10.
Images of the molecular CO 2-1 line emission and the radio continuum emission from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star-forming disk surrounding the QSO nucleus with a radius of 2 kiloparsecs. The implied massive star formation rate is 900 solar masses per year. At this rate, a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 108 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.  相似文献   

11.
The origin of the substantial magnetic fields that are found in galaxies and on even larger scales, such as in clusters of galaxies, is yet unclear. If the second-order couplings between photons and electrons are considered, then cosmological density fluctuations, which explain the large-scale structure of the universe, can also produce magnetic fields on cosmological scales before the epoch of recombination. By evaluating the power spectrum of these cosmological magnetic fields on a range of scales, we show here that magnetic fields of 10(-18.1) gauss are generated at a 1-megaparsec scale and can be even stronger at smaller scales (10(-14.1) gauss at 10 kiloparsecs). These fields are large enough to seed magnetic fields in galaxies and may therefore have affected primordial star formation in the early universe.  相似文献   

12.
Many galaxies have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology deviates significantly (and systematically) from that of nearby galaxies at redshifts (z) as low as 0.3. This corresponds to a time approximately 3.5 x 10(9) years in the past, which is only approximately 25% of the present age of the Universe. Beyond z = 0.5 (5 x 10(9) years in the past), spiral arms are less well developed and more chaotic, and barred spiral galaxies may become rarer. At z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble's traditional "tuning fork" system is meaningless. On the other hand, some characteristics of galaxies have not changed much over time. The space density of luminous disk galaxies has not changed significantly since z = 1, indicating that although the general appearance of these galaxies has continuously changed over time, their overall numbers have been conserved.  相似文献   

13.
Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.  相似文献   

14.
Doppler-shifted hydrogen Lyman-alpha (Lyα) emission from galaxies is currently measured and used in cosmology as an indicator of star formation. Until now, the Milky Way emission has not been detected, owing to far brighter local sources, including the H (hydrogen) glow, i.e., solar Lyα radiation backscattered by interstellar atoms that flow within the solar system. Because observations from the Voyager spacecraft, now leaving the heliosphere, are decreasingly affected by the H glow, the ultraviolet spectrographs are detecting Lyα diffuse emission from our Galaxy. The surface brightness toward nearby star-forming regions is about 3 to 4 rayleighs. The escape fraction of the radiation from the brightest H II regions is on the order of 3% and is highly spatially variable. These results will help in constraining models of Lyα radiation transfer in distant galaxies.  相似文献   

15.
Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies.  相似文献   

16.
Major advances in observational astronomy over the past 20 years have revolutionized our view of cosmic history, transforming our understanding of how the hot, smooth, early universe evolved into the complex and beautiful universe of stars and galaxies in which we now live. I describe how astronomers have used a range of complementary techniques to map out the rise and fall of star formation over 95% of cosmic time, back to the current observational frontier only ~500 million years after the Big Bang.  相似文献   

17.
Recycled dwarf galaxies can form in the collisional debris of massive galaxies. Theoretical models predict that, contrary to classical galaxies, these recycled galaxies should be free of nonbaryonic dark matter. By analyzing the observed gas kinematics of such recycled galaxies with the help of a numerical model, we demonstrate that they do contain a massive dark component amounting to about twice the visible matter. Staying within the standard cosmological framework, this result most likely indicates the presence of large amounts of unseen, presumably cold, molecular gas. This additional mass should be present in the disks of their progenitor spiral galaxies, accounting for a substantial part of the so-called missing baryons.  相似文献   

18.
A variety of recent optical, radio, and x-ray observation have confirmed the hypothesis that the peculiar star SS 433 is ejecting two narrow, opposed, highly collimated jets of matter at one-quarter the speed of light. This unique behavior is probably driven by mass exchange between a relatively normal star and a compact companion, either a neutron star or a black hole. However, numerous details regarding the energetics, radiation, acceleration, and collimation of the jets remain to be understood. This phenomenon may well be a miniature example of similar collimated ejection of gas by active extragalactic objects such as quasars and radio galaxies.  相似文献   

19.
Widespread variability has been discovered in a large population of radio sources close to the nucleus of an active galaxy. The galaxy, Messier 82 (M82), and others similar to it show evidence for enhanced nuclear activity and unusually strong far-infrared emission. The observational data, obtained with the National Radio Astronomy Observatory's Very Large Array in New Mexico over the past 3 years, provide the first direct "look" at a starburst-the phenomenon of sudden, rapid star formation which occurs near the nucleus of a small fraction of galaxies. Nearly all the brightest of about 40 radio sources in M82' s nucleus decreased in intensity over 2.7 years up to October 1983. One source, which in February 1981 was ten times as bright as our Galaxy's most luminous supernova remnant, turned off within only a few months. Most of the other ten strongest sources are declining so rapidly that they will fade into the background within 30 years. Thus, new supernovae are expected to appear in M82' s nucleus every few years. The discovery has revealed the "engine room" of the mysterious activity in M82 and, by implication, similar active galaxies which have disturbed nuclei and which are unusually luminous in the far infrared. An estimate of the rate of energy input by the radio-visible supernovae closely matches the far-infrared luminosities which were recently measured for M82 and other similar galaxies.  相似文献   

20.
Merritt D 《Science (New York, N.Y.)》1993,259(5103):1867-1871
Elliptical galaxies were once thought to be similar in their structure and dynamics to rotationally flattened bodies like stars. The discovery that elliptical galaxies rotate much more slowly than a fluid body with the same shape has led to a qualitative change in our understanding of the dynamics of these systems. It is now believed that elliptical galaxies are fully triaxial in shape. Self-consistent triaxial equilibria have been constructed and appear to be long-lived; they are made possible by the existence of conserved quantities, or integrals of motion, for galactic potentials without rotational symmetry. Many self-consistent equilibria are unstable; the nonexistence of elliptical galaxies with axis ratios more extreme than 3:1 is probably the result of such an instability. There is evidence for strong central mass concentrations, perhaps massive black holes, at the centers of some nearby galaxies. Recent observations suggest that many elliptical galaxies formed through the merger of two or more spiral galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号