首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The future existence of common ash (Fraxinus excelsior), an important tree species throughout temperate Europe, is threatened. An invasive fungal disease (ash dieback) has spread through much of the distribution area of common ash. The causal agent of the disease is Hymenoscyphus fraxineus, a necrotrophic ascomycete, most probably introduced from Asia in the early 1990s. Hymenoscyphus fraxineus infects ash trees and saplings through their leaves, from which it grows into the stem. The fungus was studied intensively in recent years but there is still a need to address the topic from an evolutionary perspective. In this overview, some key evolutionary aspects of ash dieback are discussed, from the Red Queen dynamics of host–pathogen interactions to the probable consequences for virulence evolution of multiple infections. The progression of ash dieback in Europe does not show spatial differences, but studies show variation in susceptibility within host populations, a probable consequence of genetic differences, thus providing material for evolution of disease resistance or tolerance. Breeding programmes need to maintain the genetic diversity of Fraxinus, to enable it to withstand further threats such as climate change and the emerald ash borer. Because H. fraxineus reproduces exclusively sexually, the pathogen is likely to overcome a narrow genetic resistance. The introduction of further strains of H. fraxineus to Europe and the movement of infected plant material should be avoided. This case study shows that the integration of evolutionary ecology considerations would benefit plant disease management and biosecurity in general.  相似文献   

2.
Rhizoctonia solani, the most important species within the genus Rhizoctonia, is a soilborne plant pathogen with considerable diversity in cultural morphology, host range and aggressiveness. Despite its history as a destructive pathogen of economically important crops worldwide, our understanding of its taxonomic relationship with other Rhizoctonia‐like fungi, incompatibility systems, and population biology is rather limited. Among the host of diseases it has been associated with, seedling diseases inflicted on soybean are of significant importance, especially in the soybean growing regions of North America. Due to the dearth of resistant soybean genotypes, as well as the paucity of information on the mechanisms of host–pathogen interactions and other molecular aspects of pathogenicity, effective management options have mostly relied upon a combination of cultural and chemical control options. The first section of this review summarizes what is currently known about the taxonomy and systematics, population biology and molecular genetics of R. solani. The second section provides an overview of the pathology and management of rhizoctonia root and hypocotyl rot of soybean, a seedling disease of importance in North America.  相似文献   

3.
Dieback of European ash was first observed in Europe in the early 1990s. The disease is caused by the invasive ascomycete Hymenoscyphus fraxineus, proposed to originate from Far East Asia, where it has been considered a harmless saprotroph. This study investigates the occurrence of H. fraxineus in tissues of local ash species in the Russian Far East, and assesses its population‐specific genetic variation by ITS sequencing. Shoot dieback symptoms, characteristic of H. fraxineus infection on European ash, were common, but not abundant, on Fraxinus mandshurica and Fraxinus rhynchophylla trees in Far East Russia. High levels of pathogen DNA were associated with necrotic leaf tissues of these ash species, indicating that the local H. fraxineus population is pathogenic to their leaves. However, the low levels of H. fraxineus DNA detected in shoots with symptoms, the failure to isolate this fungus from such tissues, and the presence of other fungi with pathogenic potential in shoots with symptoms indicate that local H. fraxineus strains may not be responsible (or their role is negligible) for the observed ash shoot dieback symptoms in the region. Conspicuous differences in ITS rDNA sequences detected between H. fraxineus isolates from Russian Far East and European populations suggest that the current ash dieback epidemic in Europe might not directly originate from the Russian Far East. Revision of the herbarium material shows that the earliest specimen of H. fraxineus was collected in 1962 from the Russian Far East and the oldest H. fraxineus specimen of China was collected in 2004.  相似文献   

4.
This study aimed to demonstrate the association of the ash dieback pathogen Hymenoscyphus fraxineus with leaf symptoms on Fraxinus excelsior and to test its pathogenicity towards leaves of three European ash species, F. excelsior, F. angustifolia and F. ornus, in wound inoculation experiments. On F. excelsior, H. fraxineus was isolated from 94% of leaf rachises with necrotic lesions and from 74% of necrotic leaflet midribs. Following wound inoculation of leaf rachises, in two separate experiments performed in 2010 and 2011, the ash dieback pathogen caused symptoms (necrotic rachis lesions, leaf wilting and premature leaf shedding) on all three ash species, while control leaves remained symptomless. Hymenoscyphus fraxineus was consistently reisolated from fungus‐inoculated rachises. All 10 isolates tested were pathogenic to the three ash species and varied in virulence. Koch's postulates for H. fraxineus as causal agent of leaf symptoms on F. excelsior were fulfilled in this study. Complemented with the isolation of the fungus from naturally infected, symptomatic leaf rachises of F. angustifolia and F. ornus in previous investigations, H. fraxineus was confirmed to be a leaf pathogen of these ash species as well. The leaf inoculation experiments showed that F. excelsior was highly susceptible to H. fraxineus, F. angustifolia was equally or slightly less susceptible, whereas F. ornus was the least affected species; however, F. ornus should also be regarded as a host tree for the ash dieback pathogen. This susceptibility ranking corresponds well with field observations and previous stem inoculation experiments.  相似文献   

5.
The Gram‐negative bacterium Erwinia amylovora, causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that translocates effector proteins into plant cells that collectively function to suppress host defences and enable pathogenesis. Until now, there has only been limited knowledge about the interaction of effector proteins and host resistance presented in several wild Malus species. This study tested disease responses in several Malus wild species with a set of effector deletion mutant strains and several highly virulent E. amylovora strains, which are assumed to influence the host resistance response of fire blight‐resistant Malus species. The findings confirm earlier studies that deletion of the T3SS abolished virulence of the pathogen. Furthermore, a new gene‐for‐gene relationship was established between the effector protein Eop1 and the fire blight resistant ornamental apple cultivar Evereste and the wild species Malus floribunda 821. The results presented here provide new insights into the host–pathogen interactions between Malus sp. and E. amylovora.  相似文献   

6.
Cytospora species are ubiquitous pathogens of numerous woody plants, causing dieback and wood cankers in agronomic crops, timber trees and wildland trees (e.g. Prunus, Eucalyptus and Salix, respectively). Cytospora chrysosperma, C. cincta and C. leucostoma have been reported from grapevines in Iran showing symptoms of one or more recognized trunk diseases (esca, botryosphaeria‐, eutypa‐ and phomopsis diebacks); however, only C. chrysosperma was shown to be pathogenic to grapevine. To understand the potential role of Cytospora species in the grapevine trunk‐disease complex, 21 Cytospora isolates were examined that were recovered from dieback and wood cankers of Vitis vinifera and Vitis interspecific hybrids in seven northeastern U.S. states and two Canadian provinces. Phylogenetic analyses of ITS and translation elongation factor 1‐α identified two novel species: Cytospora vinacea sp. nov. and Cytospora viticola sp. nov. Differences in culture morphology and conidial dimensions also distinguished the species. When inoculated to the woody stems of potted V. vinifera ‘Thompson Seedless’ in the greenhouse, both species were pathogenic, based on development of wood lesions and fulfilment of Koch's postulates. Cytospora viticola was the most virulent based on lesion length at 12 months post‐inoculation. As cytospora canker shares some of the same general dieback‐type symptoms as botryosphaeria‐, eutypa‐ and phomopsis diebacks, it may be considered part of the grapevine trunk‐disease complex in eastern North America.  相似文献   

7.
The development of plant diseases is associated with biophysical and biochemical changes in host plants. Various sensor methods have been used and assessed as alternative diagnostic tools under greenhouse conditions. Changes in photosynthetic activity, spectral reflectance and transpiration rate of diseased leaves, inoculated with Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV), and the powdery mildew fungus Sphaerotheca fuliginea were assessed by the use of non‐invasive sensors during disease development. Spatiotemporal changes in leaf temperature related to transpiration were visualized by digital infrared thermography. The maximum temperature difference within a leaf was an appropriate parameter to differentiate between healthy and diseased plants. The photosynthetic activity of healthy and diseased cucumber plants varied as measured by chlorophyll fluorescence and compared to the actual chlorophyll content. Hyperspectral imaging data were analysed using spectral vegetation indices. The results from this study confirm that each pathogen has a characteristic influence on the physiology and vitality of cucumber plants, which can be measured by a combination of non‐invasive sensors. Whereas thermography and chlorophyll fluorescence are unspecific indicators for plant diseases, hyperspectral imaging offers the potential for an identification of plant diseases. In a sensor data fusion approach, an early detection of each pathogen was possible by discriminant analysis. Although it still needs to be validated under real conditions, the combination of information from different sensors seems to be a promising tool.  相似文献   

8.
The troubled history of the two major diseases of the chocolate tree (Theobroma cacao) in South America, witches' broom and frosty pod, is reviewed, concentrating on critical aspects of the aetiology as well as the phylogeny of the causal agents. Both diseases are caused by sister species within the genus Moniliophthora, belonging to the Marasmiaceae family of mushrooms. The witches' broom pathogen, Moniliophthora perniciosa, evolved on the Amazonian side of the Andes and induces brooms not only in cacao and its relatives in the genera Theobroma and Herrania (Malvaceae), but also in species in the plant families Bignoniaceae, Malpighiaceae and Solanaceae, on which the mushrooms (basidiomata) are produced. Moniliophthora roreri, the type species of the genus, evolved as a pod pathogen on endemic Theobroma species on the western side of the northern Andean Cordillera. Because Moniliophthora was described originally as the asexual form of an unknown basidiomycete, the generic diagnosis is amended here to accommodate species with agaricoid basidiomata. In addition, the new variety Mroreri var. gileri is designated for the morphotype occurring on Theobroma gileri, in northwest Ecuador. Cytology studies indicate that the supposed conidia of Mroreri are, in fact, sexual spores (meiospores) and it is posited that the fruiting structure represents a much‐modified mushroom. Finally, based on preliminary data from pathogenicity testing, it is hypothesized that the true causal agent of both diseases is an as yet unidentified infectious agent vectored into the host by the fungus.  相似文献   

9.
Isolates of Hyaloperonospora brassicae inoculated onto cotyledons of 28 diverse Brassicaceae genotypes, 13 from Brassica napus, two from B. juncea, five from B. oleracea, two from Eruca vesicaria, and one each from B. nigra, B. carinata, B. rapa, Crambe abyssinica, Raphanus sativus and R. raphanistrum, showed significant effects (P ≤ 0.001) of isolate, host and their interaction. Host responses ranged from no visible symptom or a hypersensitive response, to systemic spread and abundant pathogen sporulation. Isolates were generally most virulent on their host of origin. Using an octal classification, six host genotypes were identified as suitable host differentials to characterize pathotypes of H. brassicae and distinguished eight distinct pathotypes. There were fewer, but more virulent, pathotypes in 2015–2016 isolates than 2006–2008 pathogen populations, probably explaining the increase in severity of canola downy mildew over the past decade. Phylogenetic relationships determined across 20 H. brassicae isolates collected in 2006–2008 and 88 isolates collected in 2015–2016 showed seven distinct clades, with 70% of 2006–2008 isolates distributed within clade I (bootstrap value (BVs) of 100%) and the remaining 30% in clade V (BVs 83.3%). This is the first study to define phylogenetic relationships of H. brassicae isolates in Australia, setting a benchmark for understanding current and future genetic shifts within pathogen populations; it is also the first to use octal classification to characterize pathotypes of H. brassicae, providing a novel basis for standardizing phenotypic characterization and monitoring of pathotypes on B. napus and some crucifer species in Australia.  相似文献   

10.
Quercus ilex is one of the European forest species most susceptible to root rot caused by the oomycete Phytophthora cinnamomi. This disease contributes to holm oak decline, a particularly serious problem in the ‘dehesas’ ecosystem of the southwestern Iberian Peninsula. This work describes the host–pathogen interaction of Q. ilex and P. cinnamomi, using new infection indices at the tissue level. Fine roots of 6‐month‐old saplings inoculated with P. cinnamomi were examined by light microscopy and a random pool of images was analysed in order to calculate different indices based on the measured area of pathogen structures. In the early stages of invasion, P. cinnamomi colonizes the apoplast and penetrates cortical cells with somatic structures. On reaching the parenchymatous tissues of the central cylinder, the pathogen develops different reproductive and survival structures inside the cells and then expands through the vascular system of the root. Some host responses were identified, such as cell wall thickening, accumulation of phenolic compounds in the middle lamella of sclerenchyma tissues, and mucilage secretion blocking vascular cells. New insights into the behaviour of P. cinnamomi inside fine roots are described. Host responses fail due to rapid expansion of the pathogen and a change in its behaviour from biotrophic to necrotrophic.  相似文献   

11.
Brachypodium distachyon (Bd) has established itself as an essential tool for comparative genomic studies in cereals and increasing attention is being paid to its potential as a model pathosystem. Eyespot and ramularia leaf spot (RLS) are important diseases of wheat, barley and other small‐grain cereals for which very little is known about the mechanisms of host resistance despite urgent requirements for plant breeders to develop resistant varieties. This work aimed to test the compatibility of interaction of two Bd accessions with the cereal pathogens Oculimacula spp. and Ramularia collocygni, the causal agents of eyespot and RLS diseases, respectively. Results showed that both Bd accessions developed symptoms similar to those on the natural host for all pathogen species tested. Microscopy images demonstrated that R. collo‐cygni produced secondary conidia and both Oculimacula spp. formed characteristic infection structures on successive tissue layers. Visual disease assessment revealed that quantitative differences in disease severity exist between the two Bd accessions. The results presented here provide the first evidence that Bd is compatible with the main causal agents of eyespot and RLS diseases, and suggest that future functional genetic studies can be undertaken to investigate the mechanisms of eyespot and RLS disease resistance using Bd.  相似文献   

12.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

13.
This study characterized the early infection and establishment of the sheath blight pathogen Rhizoctonia solani on a tolerant rice variety, Swarnadhaan (IET 5656), and a susceptible variety, Swarna (MTU 7029). Assays using whole plants showed that disease severity was higher in Swarna than Swarnadhaan. In a detached leaf assay, Swarnadhaan showed a disease index that was 50% less than that with Swarna. Rhizoctonia solani exhibited different growth behaviour in the tolerant and susceptible varieties. The pathogen showed more hyphal growth in the susceptible host than in the tolerant variety. It also showed profuse branching, making intimate contact with the host surface to form more inter‐ and intracellular structures, and greater sclerotial development in the susceptible host compared to the tolerant one. Using light and scanning electron microscopy, it was observed for the first time that the pathogen could intercept host surface structures and use these for anchorage or penetration. Transformed R. solani, expressing green fluorescent protein, was observed using confocal laser scanning microscopy to investigate pathogen behaviour, including the formation of infection cushions and subsequent colonization of the host tissues. This is the first ultrastructural report to characterize the differential behaviour of the sheath blight pathogen in the vicinity and within tolerant and susceptible rice plants.  相似文献   

14.
The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr‐vnt1 effector, recognized by the potato Rpi‐phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi‐Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C‐terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large‐scale cultivation of plants containing the Rpi‐Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi‐phu1 gene were found, the corresponding Avr‐vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.  相似文献   

15.
A large part of the area in Europe in which Fraxinus excelsior is native is currently affected by ash dieback, a threatening disease caused by the ascomycetous fungus Hymenoscyphus fraxineus. Fungi other than H. fraxineus also occur in large numbers on stems of the dying ash trees. To clarify their possible role in the dieback process, six fungal species common on dying stems and twigs of ash in Poland, i.e. Cytospora pruinosa, Diaporthe eres, Diplodia mutila, Fusarium avenaceum, F. lateritium and F. solani, were tested for pathogenicity using a test based on artificial wound inoculations of 6‐year‐old F. excelsior plants under field conditions, with H. fraxineus included for comparison. There were significant differences in index of pathogenicity among the fungi tested. Hymenoscyphus fraxineus (mean index 5.78) was the most pathogenic. Diplodia mutila (4.23) and C. pruinosa (4.02) were significantly less pathogenic than H. fraxineus, but significantly more than the other fungi. Diaporthe eres (2.43), F. avenaceum (1.92), F. solani (1.86) and F. lateritium (1.08) were the least pathogenic (< 0.0001). The extent of disease symptoms caused by F. solani and F. lateritium was statistically similar to the control (= 0.05). All tested fungi were successfully reisolated from inoculated stems. The contribution of the results to understanding the possible role of these fungi in the ash dieback process in F. excelsior, particularly in trees weakened after primary infection by H. fraxineus, is discussed.  相似文献   

16.
Olive leprosy, caused by the fungus Phlyctema vagabunda, is a classic fruit rot disease widespread in the Mediterranean basin. From 2009 to 2013, new disease symptoms consisting of small circular necrotic leaf lesions, coin branch canker and shoot dieback were observed in Spanish and Portuguese olive orchards showing intense defoliation. Phlyctema‐like anamorphs were consistently isolated from leaves and shoots with symptoms. Representative isolates from affected leaves, shoots and fruits were characterized based on morphology of colonies and conidia, optimum growth temperature and comparison of DNA sequence data from four regions: ITS, tub2, MIT and rpb2. In addition, pathogenicity tests were performed on apple and olive fruits, and on branches and leaves of olive trees. Maximum mycelial growth rate ranged between 0.54 and 0.73 mm per day. Conidia produced on inoculated apple fruits showed slight differences in morphology among the representative fungal isolates evaluated. Phylogenetic analysis clustered all of the Phlyctema‐like isolates in the same clade, identifying them as Phlyctema vagabunda. On fruits, influence of wounding, ripening and cultivar resistance was studied, with cv. Blanqueta being the most susceptible cultivar. On branches, a mycelial‐plug inoculation method reproduced olive leprosy symptoms and caused shoot dieback. On leaves, Koch's postulates were fulfilled and the pathogen caused characteristic necrotic spots and plant defoliation. This is the first time that the pathogenicity of P. vagabunda in olive leaves has been demonstrated.  相似文献   

17.
Potato blackleg, caused by Pectobacterium and Dickeya species, is one of the most significant bacterial diseases affecting potato production globally. Although it is generally accepted to be a seedborne disease, the processes underlying the spread of disease largely remain unknown. Spatial point pattern analysis was applied to blackleg occurrence in seed potato crops in Scotland during the period of 2010–2013 (approximately 8000 blackleg‐affected crops), to assess whether its distribution was random, regular or aggregated, and the spatial scales at which these patterns occurred. Blackleg‐affected crops derived from mother stocks with symptoms were omitted from the analyses in order to examine the statistical evidence for horizontal transmission of blackleg. The pair correlation function was used to test for global spatial autocorrelation, and results indicated significant (< 0·05) clustering of incidence at a wide range of spatial scales. Strength of clustering (degree of aggregation) among blackleg‐affected crops was notably larger at spatial scales of 25 km or less. A hot‐ and coldspot analysis was performed to test for local spatial autocorrelation, and statistically significant clusters of high and low values of disease were found across the country. These analyses provide the first quantitative evidence of localized and large‐scale spatial clustering of potato blackleg. Understanding the mode(s) of inoculum dispersal will be important for developing new management strategies that minimize host–pathogen contacts in potato and numerous other crops affected by pathogenic Pectobacterium and Dickeya species.  相似文献   

18.
Ascospores, discharged naturally from apothecia growing on rachis debris, were used as inoculum to examine the invasion of ash tissues by Hymenoscyphus fraxineus in order to understand the critical, but poorly understood, early interactions between host and pathogen. Methods were developed to collect ascospores for controlled infection assays on detached leaves, petioles and stem internode tissues. Light microscopy, using plasmolytic techniques, allowed the invasion of living plant cells to be observed. Ascospores were readily available from late May to September. On the plant surface, most spores differentiated directly to form appressoria without germ‐tube growth. Direct penetration was followed by a significant period of biotrophic fungal growth before lesions developed. Following the formation of a vesicle‐like structure after penetration, bulbous and elongated intracellular hyphae were produced in living plant cells. The use of ascospore inoculum, rather than mycelia, will allow natural and rapid screening of ash genotypes for resistance to the devastating dieback disease. The identification of the biotrophic phase of infection suggests that host range is controlled by effector‐triggered immunity.  相似文献   

19.
The clubroot pathogen Plasmodiophora brassicae is an obligate biotrophic protist that lives in close relationship with its host cell. The roots of the host plants are colonized and the plant growth is altered upon infection. While shoots can be stunted and show wilt symptoms after longer infection periods, the root system is converted to a tumorous root tissue, called ‘clubroot’, by alterations of the plant growth promoting hormones auxin, cytokinin and brassinosteroid. Because the life cycle occurs largely within the host cells, this leads to dramatic changes in host root morphology and anatomy. Thus, the identification of the respective protist structures in the host tissue by microscopy is challenging. Different staining methods as well as fluorescence and electron microscopy of thin sections can reveal specific life stages of P. brassicae and can yield additional information on the changes in the host tissues concerning, for example, cell wall properties. In addition, promoter–reporter fusions, immunostaining methods and in situ hybridization techniques can be used to gain additional information on the changes in the host roots.  相似文献   

20.
Pineapple heart rot disease, caused by Phytophthora nicotianae (syn. P. parasitica), is responsible for significant annual reductions in crop yield due to plant mortality. In Ecuador, new infections arise during the rainy season and increase production costs due to the need for biocontrol and fungicide applications. Studies of P. nicotianae population structure suggest that certain genetic groups are associated with host genera; however, it is not clear how many host‐specific lineages of the pathogen exist or how they are related. The objectives of this study were to determine the level of genetic variation in the P. nicotianae population causing heart rot disease of pineapple in Ecuador and compare the genotypes found on pineapple to those previously reported from citrus, tobacco and ornamentals. Thirty P. nicotianae isolates collected from infected pineapple leaves from four farms were genotyped using nine simple sequence repeat loci. In addition, the DNA sequences of mitochondrial loci cox2 + spacer and trnG‐rns were analysed. Together, these loci supported a single clonal lineage with two multilocus genotypes differing in a single allele and low mitochondrial diversity. This lineage was distinct but closely related to isolates collected from vegetables and ornamentals in Italy. The results support the hypothesis of host specialization of P. nicotianae in intensive cropping systems and contribute to the understanding of population structure of this important pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号