首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The freezing characteristics of wheat at ear emergence   总被引:1,自引:0,他引:1  
Wheat is occasionally exposed to freezing temperatures during ear emergence and can suffer severe frost damage. Few studies have attempted to understand the characteristics of freezing and frost damage to wheat during late development stages.

It was clearly shown that wheat appears to have an inherent frost resistance to temperatures down to −5 °C but is extensively damaged below this temperature. Acclimation, whilst increasing the frost resistance of winter wheat in a vegetative state was incapable of increasing frost resistance of plants at ear emergence. It is proposed that the ability to upregulate frost resistance is lost once vernalisation requirement is fulfilled.

Culms and ears of wheat were able to escape frost damage at temperatures below −5 °C by supercooling even to as low as −15 °C and evidence collected by infrared thermography suggested that individual culms on a plant froze as independent units during freezing with little or no cross ice-nucleation strategies to protect wheat from frost damage in the field appear to revolve around avoiding ice nucleation.  相似文献   


2.
Excised ears of Triticum durum (HD 4502 and B 449) and T. aestivum (Kalyansona and Kundan) varieties were cultured in 14C-sucrose, and the uptake and distribution of 14C within the ear was examined. Species-level differences in the distribution of 14C to spikelets at basal, middle and apical positions in the wheat ear (vertical distribution) were observed. T. aestivum var. Kalyansona and Kundan showed no limitation in vertical translocation of 14C-sucrose, whereas in T. durum there was a decrease in the distribution of 14C to apical spikelets. Within a spikelet, the distribution of 14C-sucrose to distal grains was significantly less than that to proximal grains in all the genotypes.  相似文献   

3.
Compensation capacity of wheat ears depending on temperature level during grain-filling period
In order to investigate the compensation capacity, effects of sterilization treatments on dry matter storage within spikelets and florets of wheat ears, growing in different temperatures during grain-filling period were tested. Alternatively proximal or distal florets from 6 spikelets in the central region were removed at different stages. — Grain weight/ear remained 40% smaller in the high compared with the low temperature level. With high temperature sterilization of proximal florets allowed more additional florets in distal positions to develop grains than with low temperature. Beyond of this in both levels single grain weights in the basal and the apical region of the ear increased. Compensation effects, especially by additional grains decreased as later the treatments were done. Relatively the grain weight loss by sterilization was compensated to a higher degree in high than in low temperatures.  相似文献   

4.
Autumn‐sown winter‐type faba bean (Vicia faba L.) has been shown to have a yield advantage over spring sowing. Still, adoption of this overwintered pulse crop remains limited in temperate locations, due to inadequate winter hardiness. This research sought to understand how the prevailing temperature during emergence and seedling development, that is pre‐acclimation, influences freezing tolerance. Seedlings grown under a controlled “warm” 17/12°C (day/night) pre‐acclimation environment were initially less freezing tolerant than those grown under a “cold” 12/5°C temperature treatment. Stem and particularly root tissues were primarily responsible for slower cold acclimation, and there was a genotype specific response of above‐ground tissues to pre‐acclimation treatment. Both above and below‐ground tissues should be tested across a range of pre‐acclimation temperatures when screening faba bean germplasm for freezing tolerance.  相似文献   

5.
Summary For breeding early heading wheat cultivars with resistance to frost damage which are well adapted to dry areas of West Asia and North Africa, the relationships between winter hardiness, ear primordia development and heading traits, i.e. veernalization requirement, photoperiodic response and narrow-sense earliness, were assessed using a total of 30 genotypes of wheat (Triticum aestivum L.) grown in an experiment in Syria. The results of artificial freezing tests indicated that cultivars with good winter hardiness were to be found only in the winter wheat cultivars which required 50 or more days of vernalization treatment. These winter wheat cultivars did not initiate internode elongation without vernalization even at 95 days after planting. Thus their ear primordia were still underground and were protected from frost injury at this stage. Photoperiodic response and narrow-sense earliness were not associated with winter hardiness and earliness of internode elongation, but were related to the number of days to heading after planting. This indicated the possibility for breeding early heading cultivars with winter hardiness and tiller frost avoidance by combining high vernalization requirement, short narrow-sense earliness and neutral response to photoperiod.  相似文献   

6.
基于顶端发育的小麦产量结构形成模型   总被引:5,自引:0,他引:5  
潘洁  朱艳  曹卫星 《作物学报》2005,31(3):316-322
小麦产量由单位面积穗数、每穗粒数与粒重构成。本研究以试验资料为基础,通过定量分析小麦茎顶端发育过程及其与环境因子和品种特性的动态关系,构建了小麦穗粒发育与结实的模拟模型,包括对叶原基数、叶片数、小穗原基数、小穗数、籽粒数及籽粒重的预测;进一步结合茎蘖发生与穗数决定模型,最终建立了小麦产量结构形成的模  相似文献   

7.
F. Rizza    D. Pagani    A. M. Stanca  L. Cattivelli 《Plant Breeding》2001,120(5):389-396
The efficiency of the excitation capture by open Photosystem II (PSII) reaction centres was measured by the Fv/Fm ratios in a collection of winter and spring oats in order to assess the effects of hardening and freezing on the functionality of PSII and also the suitability of a chlorophyll fluorescence‐based method to screen oat cultivars for frost tolerance. A significant reversible decrease in Fv/Fm was found in all genotypes during acclimation to low, non‐freezing temperatures. Fv/Fm analysis appears to be an attractive test for the evaluation of frost tolerance in oats, being rapid, non‐invasive and capable of monitoring a trait related to a crucial stage in the acquisition of frost tolerance. It is more sensitive and precise than other standard methods and highly correlated with field‐evaluated frost damage. The measurements made during recovery 1 or 2 days after stress when the visual symptoms are not yet expressed, were especially advantageous because of the large variability in genotype response. The r‐values (close to 0.8) were reduced due to the non‐standard behaviour of the winter cultivar ‘Aintree’. The cold acclimation response of this genotype has been analysed in detail and the limits of artificial freezing tests are discussed.  相似文献   

8.
The vast majority of the world's acreage of semi-dwarf wheat varieties is at present cultivated with varieties carrying one of two genetically similar dwarfing genes, Rht1 and Rht2, derived from the Japanese variety ‘Norin 10’. Near-isogenic lines have been developed and tested to determine the breeding potential of an allelic variant of Rht1, designated Rht1(B. dw). Following its introduction into four varietal backgrounds, Rht1 (B. dw) was seen to reduce height by around 25%, to increase the number of grains setting in spikelets and ears by around 20%, to reduce grain weight by 10%, and to increase yields of plants grown under spaced or drilled conditions by about 8%. When compared to the commercially utilized Rht1 allele, as near isogenic lines in a ‘Mercia’ varietal background, Rht1 (B. dw) gives a significantly greater reduction in plant height, a greater increase in spikelet and ear fertilities, slightly less reduction in 1000-grain weight, and significantly higher spikelet, ear and plot yields. If these results are repeatable in other varietal backgrounds, over seasons, and under differing environmental conditions, Rht1 (B. dw) should have considerable commercial potential as an alternative allele for producing shorter-than-average, high-yielding, semi-dwarf wheat varieties.  相似文献   

9.
O. Veisz  H.-J. Braun  Z. Bedő 《Euphytica》2001,119(1-2):179-183
In the first experiments, studies were made on the survival % of fourwinter wheat varieties with good frost resistance and two with poor frostresistance, and on the degree of plant damage after freezing at –14 °C and –16 °C under phytotron conditions. In the secondexperiment the frost resistance of the varieties included in the 9thFacultative and Winter Wheat Observation Nurseries (FAWWON) wasdetermined after freezing in the phytotron at – 15 °C. The scoresgave a good reflection of the variety ranking determined on the basis ofsurvival % and of the different effects of the two freezing temperatures. Onthe basis of the scores, the plants were divided into two groups for eachtreatment and each variety: plants which suffered frost damage (a score of2–3), and plants which suffered no frost damage (a score of 4–5).Twenty plants from each group were raised to maturity in pots. Theyield parameters of plants damaged by freezing at – 14 °C werereduced to a lesser extent than those frozen at –16 °C. Of the eightparameters tested, the reduction in the number of ears per plant andconsequently in the number of grains in the side ears, the grain mass andthe total grain yield, gave the clearest indication of the extent of plantdamage. The results of the second experiment indicated that in some casesthe frost resistance of the varieties could be predicted from the wheatproduction zone (e.g. varieties from Eastern Europe and Nebraska haveexcellent frost resistance), while in other zones winter hardiness and frostresistance depended rather on the country or on the breeding location.  相似文献   

10.
11.
Prehardening of winter rape, i.e. its early growth in a reduced day temperature (+12°C) from emergence to the beginning of cold acclimation at chilling temperatures (the 1st stage of cold acclimation), has a beneficial influence on frost resistance. In earlier studies it has been demonstrated that during prehardening, plants formed leaf rosettes and increased the photosynthetic efficiency at chilling temperatures. In the present study investigations were carried out on the effect of prehardening on the growth rate of the plants during the 1st stage of cold acclimation, and the progress of selected physiological processes occurring during this stage and resulting in increased frost resistance. It has been demonstrated that a greater inflow of photoassimilates during the 1st stage of cold acclimation results in greater increments of the dry mass of prehardened plants. These plants show also a distinct inhibition both of the elongation growth and the rate of expanding new leaves. The acquired energy is thus spent to a greater extent on the processes associated with increasing frost resistance, and not on growth. In prehardened seedlings, during the 1st stage of cold acclimation, there have been observed in leaves a higher rate of both water content decrease and drop in the osmotic potential of the cell sap and water potential in the tissues. Also an increased accumulation of soluble sugars and free proline was noticed. However, the beginning of these processes was not observed during the prehardening period. Prehardening stimulated the effectiveness of the 1st stage indirectly through changes leading to the increased amount of available energy and enabling the utilisation of the greater part of acquired energy in the cold acclimation process.  相似文献   

12.
Rice is most sensitive to heat stress at the flowering stage, with different degrees of heat damage in spikelets and leaves. To investigate the heat damage in spikelets and flag leaves, two rice genotypes, N22 (heat‐tolerant) and GT937 (heat‐sensitive), were subjected to a heat‐stress treatment (40 °C for 15 days). The results showed that more damaging was found in spikelets than in flag leaves and the heat stress significantly decreased the seed‐setting rate by 12.41 % in N22 and by 65.02 % in GT937. However, the difference in the net photosynthetic rate of the flag leaf between heat‐stressed and control was not significant. Moreover, the difference of temperatures in spikelets and flag leaves was attributed to the differences in heat dissipating. Under heat stress, the transpiration rate was significantly higher in flag leaves than in spikelets, and the temperature in flag leaves were at least 4 °C cooler than in spikelets. Although the spikelet temperatures did not differ significantly between the two genotypes under heat stress, spikelets of GT937 were more severely damaged than those of N22, which might result from the differences in the antioxidant capacities between genotypes. Results showed that little difference of superoxide dismutase, peroxidase and catalase activities of spikelets was found in N22, while significant reduction was found in GT937 under heat stress, compared with control. These results suggest that organ temperature is controlled mainly by transpirational cooling, and that heat stress is an indirect result of oxidative stress, rather than a direct result of heat damage.  相似文献   

13.
A wheat cultivar (Condor) was grown in two experiments (thermal regimes 18/13 and 21/16°C) under low (298 μE m-2: s-1) radiation regimes during either an early phase from seedling emergence to terminal spikelet initiation (S2), a late phase from terminal spikelet initiation to anthesis (S2), or for the full period from seedling emergence to anthesis (S12), or high (560 μE m-2s-1) radiation throughout the growing period (S12) to determine whether developmental events are affected by radiation. The main developmental events considered in this study were the timing of terminal spikelet initiation and anthesis, the final number of leaf and spikelet primordia initiated in the apex and the rate of leaf appearance. Number of grains per spike and culm height were also measured. The duration of each phenophase was not affected by radiation intensity. Temperature affected the rate of wheat development, but the acceleration of development due to temperature during the seedling emergence - terminal spikelet initiation phase only slightly reduced (from 24.8 to 23.2 days). Differences in time from terminal spikelet initiation to anthesis were greater than in the earlier phases, having been the duration reduced from 24.6 to 20.0 days due to high temperature. Associated with the lack of effect of radiation on phasic development and the negligible effect of temperature on the duration of the early phases of development, final Leaf number was practically unchanged in this study by either the radiation level or the growing temperature. Thus, radiation did not affect the rate of leaf initiation. The number of spikelets was affected by neither the treatments nor the thermal environment. The rates of leaf appearance were accelerated by temperature. Radiation, on the other hand, did not significantly alter the rates of leaf appearance in any of the treatments. As expected from many sources in the literature, the number of grains per spike was significantly affected by radiation during the phase from terminal spikelet initiation to anthesis. Due to the lack of significant effects of radiation on the developmental patterns of wheat, the changes in number of grains per spike were due to changes in the number of grains born in each spikelet. The results of the present study were compared with others available in the literature on the effects (or lack of them) of radiation and CO2 concentration on phasic development, plastochron and phyllochron in wheat to reach the general conclusion that the rate of developmental events in wheat, in contrast to other plants, is almost completely independent of the availability of assimilates, with a possible exception for the Equatorial latitudes.  相似文献   

14.
冬小麦品种抗霜冻力的影响因素分析   总被引:9,自引:1,他引:8  
应用移动式人工霜箱,研究了冬小麦幼穗抗霜冻力随发育期的变化规律。结果表明,随发育期进程,幼穗抗霜冻力呈下降趋势,从药隔前期开始进入低温敏感期。利用室内人工霜箱,在药隔前期对21个品种进行了抗霜冻力鉴定,进而分析了不同品种、冬春性、越冬抗冻力以及叶片可溶性糖含量等对冬小麦抗霜冻力的影响。结果表明,除少数品种有一定抗霜冻力外,多数品种抗霜冻力无显著差异。品种抗霜冻力与其冬春性和越冬抗冻力均无显著相关性,与叶片可溶性糖含量之间亦无显著相关性。  相似文献   

15.
Winter wheat has replaced spring wheat to a large extent under the climatic conditions of Western and Central Europe. But spring wheat genotypes are still important under the warm climate in large parts of Africa and Central America, since spring wheat needs no vernalization. To reach optimal yield, genotypes must be well adapted to heat stress. In this study 11 spring wheat varieties of Egypt, Sudan, CIMMYT and Germany were exposed to high temperatures at ear emergence and beginning of anthesis. There were reductions in kernel yield and kernel number of the main ear for all genotypes, but the differences in reduction were remarkable. The German variety 'Naxos' was best adapted. Some varieties showed an increased number of florets per spikelet under heat treatment, but this does not prohibit a reduction in kernel number per spikelet.  相似文献   

16.
The supernumerary spikelet character of bread wheat (Triticum aestivum L.) is an abnormal spike with extra spikelet per spike. Supernumerary spikelet line 51885 was derived from the cross between octoploid Triticale and common wheat Fei 5056. The number of spikelet is over 30, and supernumerary spikelet is genetically stable. The inheritance of supernumerary spikelets in the line 51885 was genetically analyzed by crossed with seven commercial cultivars of normal head type. The results indicated that supernumerary spikelet in the line 51885 was controlled by two dominant genes which shows complementary function. Transgressive segregation for increasing the number of spikelet were observed in the four crosses, suggesting the possibility of the presence of minor effect gene(s) or modification gene(s) affecting the expression of the supernumerary spikelet in addition to the two major dominant genes. The relatively simple inheritance, feature of dominance plus the stability of expression of supernumerary spikelet in the line 51885 indicate that line 51885 could be easily incorporated in high yield breeding program in common wheat.  相似文献   

17.
The development of grains of different positions in the apical, middle and basal spikelets of wheat var. Kaly-ansona showed that beyond first two basal grains, the more distal a grain in a spikelet the lower its weight. The distal grains received less assimilates than the proximal grains as revealed from sugar concentration in the grains. The eflficiency of distal grains of kalyansona to synthesize reserves was, however, not inferior than the proximal grains in a spikelet. The depression in grain weight lowards extreme spikelet was lower compared to the depression in weight of individual grams towards a distal position in a spikelet. The study seems to suggest that in order to ensure better grain uniformity while maintaining a higher grain number per ear, the spikelet number per ear should be increased instead of increasing the grain number per spikelet.  相似文献   

18.
Morphological features of the cereal ear, including awns, alter pre-harvest sprouting damage by changing the rate of water absorption during rainfall. In this paper, the potential for wheat (Triticum sp.) arid barley (Hordeum vulgare L.) waxes to reduce sprouting by increasing water repellency of the mature ear has been examined. Six barley F2 populations segregating for different non-glaucous single-gene mutants controlling waxes on ears were examined. Water repellency was assessed by measuring both the contact angle of a water drop placed on the lemma surface (internal angle) and by repetitive weighings of whole ears during their exposure to simulated rainfall. The lemma of glaucous (wild type) lines had larger water drop contact angles, an indication of poorer spread of water over the surface. In simulated rainfall, ears of the glaucous lines showed a clear reduction of wetting (20–30% less) and, after 72 h of wetting, their in-ear sprouting was reduced by 50 to 65%. When pre-wet, the glaucous ears also shed water more readily when shaken to simulate the combined effect of wind and rainfall. To reduce pre-harvest sprouting of barley it may be possible to screen visually for ears that are more glaucous but a more specific screen would be to select for lemma water drop contact angle since it is a good indicator of ear wettability and so allows differences in surface properties to be assessed. For bread wheat (T. aestivumL.), as for barley, the more glaucous the ear, the greater the water drop contact angle and the more tubular surface wax coverage seen in scanning electron microscope images. In addition, surface wax amount apparently affected in-ear wettingin lines of durum wheat, (T. turgidum L.). Possible genetic relationships between waxy/waxless genes in wheat and barley are suggested with the aim, ultimately, of altering ear glaucousness to give increased water repellency and a reduction of in-ear sprouting of wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The effect of prehardening (early stage of growth at moderate low temperatures (+12°C) during the day) on the reliability of frost resistance estimation in a controlled environment has been studied on three winter oilseed rape cultivars differing markedly in their field survival rate (Leo, Górczański and Idol). It has been also examined the relationship between the photosynthetic activity during the first stage of cold acclimation and the level of frost resistance observed in investigated cultivars. Presented results demonstrated that prehardening, which increases to a significant degree the effectiveness of the cold acclimation process, also increases the differences in cold hardiness between cultivars, and limits the magnitude of experimental errors made during frost resistance estimation under controlled conditions. In all studied cultivars, prehardening increases significantly the photosynthetic activity during cold acclimation. On the other hand, both in the prehardened and in the non-prehardened plants, no relation has been found between either gas exchange rates or chlorophyll 'a' fluorescence characteristics at low temperatures and cultivar ability for acclimation. Neither the existing differences in photosynthetic activity, nor the degree of photosynthetic apparatus acclimation to cold, which occurs during prehardening, are the factors responsible for the frost resistance variation observed between studied cultivars.  相似文献   

20.
An attempt has been made to work out a simple and reliable method of fast frost resistance evaluation of winter oilseed rape using in vitro cultures. In winter rape cv. Górczański, there was investigated cold acclimation ability of hypocotyle sections from 5-days old seedlings and also of callus tissue formed on these sections after subsequent 4 weeks growth on induction medium. It has been found that hypocotyle sections are unable to cold-acclimate. Winter rape calli acclimated well and optimum conditions for acclimation is fortnight's growth at +2°C. Exposure to light during hardening was not necessary for acquiring maximum resistance. On five winter rape cultivars freezing tests were performed using the best cold acclimation conditions. The differences in resistance between hypocotyle sections did not match the differences in field survival or frost resistance of whole plants. As distinct from hypocotyle sections callus tissue appeared to be suitable for evaluation of frost resistance. However, to ensure the objectiveness of assessment in this method is not so easy. The testing temperature must be chosen carefully, because the results can be reliable only at sufficiently low temperature. For correct estimation of the frost resistance level, it is possible to use both the decrease of triphenyltetrazolium chloride reduction rate during freezing and the increase of callus dry weight during 14 days after freezing.
(Abbreviations: BAP — 6-Benzylaminopurine; 2,4-D — 2,4-dichlorophenoxyacetic acid; LT50 — temperature at which 50 % of the plants (or plant material) has been frost killed; MS(0.5;2) — Moorashige and Skoog Basic Medium with addition of 0.5 mg 2.4-D and 2 mg BAP; PPFD — photosynthetic photon flux density; TTC — 2,3,5 triphenyltetrazolium chloride)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号