首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

2.
Oxidative damage by free radicals has been implicated in the pathogenesis of several diseases. In this study, the antioxidative effect of dietary garlic on rainbow trout was examined. Trout fingerlings were fed on diets containing 10, 20, 30, 40 and 50 g garlic powder kg?1 diet. Serum lipid peroxides and activities of antioxidant enzymes were measured. Serum thiobarbituric acid reactive substances (TBARS) assay showed that garlic consumption that resulted in a significant decrease in lipid peroxidation. The lowest levels of TBARS were observed in fish fed diet supplemented with 30 g kg?1 garlic. However, higher doses of garlic (40 and 50 g kg?1 diet) caused no further reduction in serum TBARS. The results showed a significant increase in superoxide dismutase in all of the garlic‐treated groups compared with the control. Ingestion of 10, 20 and 30 g kg?1 dietary garlic resulted in a significant reduction in the catalase activity compared with all but the 10 g kg?1 group. There was no significant difference in glutathione peroxidase activity among the different groups. Serum alanine aminotransferase and aspartate aminotransferase levels increased significantly in trout‐fed diets containing 40 and 50 g kg?1 garlic powder. These results suggest that dietary garlic may improve the antioxidant status of rainbow trout. However, undesirable effects of higher doses of garlic should be considered.  相似文献   

3.
The effects of nucleotides on growth, and physiological and antioxidant parameters were evaluated by feeding Pelteobagrus fulvidraco diets supplemented with 0, 0.2, 0.4, 0.6, 1.0 or 1.5 g kg?1 of nucleotides respectively. All nucleotide groups showed higher specific growth rate, feed efficiency, protein efficiency ratio, whole‐body lipid content and serum cholesterol concentrations than the control group, but the significant difference was seen only between fish from the 1.5 g kg?1 nucleotide group and fish from the control group. Whole‐body ash content in fish from the 0.6 g kg?1 nucleotide group, and liver superoxide dismutase and catalase in fish from the 0.4 g kg?1 nucleotide group were significantly higher than those in fish from the control group. Respiratory burst activity was significantly higher in fish from the 0.6, 1.0 and 1.5 g kg?1 nucleotide groups than in fish from the control. This finding was accompanied by lower liver concentrations of thiobarbituric acid‐reacting substances in fish from the same groups compared to those from the control group. The results indicate that dietary nucleotides could improve growth and antioxidant responses in juvenile yellow catfish.  相似文献   

4.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

5.
This study evaluated the effects of diets containing 0, 25, 50, 75 and 100 g kg?1 Spirulina platensis on proximate composition, fatty acid profile and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Supplementation of S. platensis did not change moisture and protein contents, but fish fed 50 and 100 g kg?1 S. platensis had lower muscle lipid content than those fed control diet (< 0.05). Fish fed 100 g kg?1 of S. platensis contained lower percentages of saturated and monounsaturated fatty acid and a higher percentage of polyunsaturated fatty acid than those fed control diet (< 0.05). The n‐3/n‐6 ratio of the fatty acid increased and muscle atherogenic and thrombogenic indices were significantly decreased as the dietary supplement of S. platensis increased. Furthermore, lipid peroxidation of the fillet significantly decreased with increasing dietary S. platensis at 4 °C and at ?20 °C (< 0.05). The results of this study show that supplementation of S. platensis to the diet improves muscle quality of the rainbow trout.  相似文献   

6.
A feeding trial was conducted to evaluate the effects of Optimûn, a commercial nucleotide (NT) product, on the growth, haemato‐immunological and serum biochemical parameters and stress responses of Caspian brown trout fingerlings (average initial weight of 12.26 g). A basal diet was supplemented with levels of 0 (control), 1.5, 2.5, 3.5 and 5 g NT kg?1 to formulate five experimental diets. After 8 weeks of feeding trial, fish fed diet with 2.5 g NT kg?1 had the highest final weight compared with other treatments. The fish fed diets with 2.5 g NT kg?1 had higher blood protein, albumin, albumin/globulin ratio, red blood cells, white blood cells and lymphocyte content and lower alkaline phosphatase. The lysozyme activity in serum was found to be significantly (P < 0.05) greater in fish fed diet with 2.5 g NT kg?1. Concerning both stressors (confinement and salinity stress), fish fed diet with 2.5 g NT kg?1 had lower plasma cortisol and glucose levels. Thus, administration of 2.5 g kg?1 of the Optimûn dietary nucleotide formula is recommended to promote growth and immunity as well as to enhance stress responses of Caspian brown trout.  相似文献   

7.
Camelina meal (Camelina sativa) (CM) is a potential protein source for aquaculture feeds, on account of its crude protein level (380 g kg?1) and inclusion of most indispensable amino acids. Two experiments were conducted with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Rainbow trout (44.9 g fish?1) were fed diets with CM at 0 g kg?1 (0% CM), 70 g kg?1 (7% CM), 140 g kg?1 (14% CM) or 210 g kg?1 (21% CM) for 12 weeks at 14 °C in freshwater, and salmon (241.8 g fish?1) were fed diets with CM at 0 g kg?1 (0% CM), 80 g kg?1 (8% CM), 160 g kg?1 (16% CM) or 240 g kg?1 (24% CM) for 16 weeks at 14 °C in sea water. Growth, lipid and amino acid tissue compositions were compared between species. Trout could tolerate up to 14% CM diets without affecting the growth compared to the control, while salmon fed ≥8% CM gained less weight than the control (P = 0.008). The feed conversion ratio in trout fed 21% CM was higher than the control (P = 0.002), and feed intake in salmon fed ≥8% CM was lower than the control (P = 0.006). Trout fatty acid and amino acid composition showed minimal differences between CM‐fed and control‐fed fish, while salmon showed significant alterations after feeding CM diets. Multivariate analyses emphasized differences in tissue composition between species fed CM diets.  相似文献   

8.
Twelve experimental diets (D‐1 to D‐12) in a 4 × 3 factorial design (four protein levels: 250, 350, 400 and 450 g kg?1 and three lipid levels: 50, 100 and 150 g kg?1) were formulated. Carbohydrate level was constant at 250 g kg?1. Rohu fingerlings (average wt. 4.3 ± 0.02 g) were fed the experimental diets for 60 days in three replicates at 2% BW  day?1. Weight gain (%), specific growth rate (% day?1) and feed gain ratio (FGR) indicated that diets containing 450 g kg?1 protein and 100 or 150 g kg?1 lipid (diets D‐11 and D‐12) resulted in best performance, although results were not significantly different from those of diet D‐9 (400 g kg?1 protein and 150 g kg?1 lipid). Protein efficiency ratio was highest with diets D‐6 (350 g kg?1 protein and 150 g kg?1 lipid) and D‐9 (400 g kg?1 protein and 150 g kg?1 lipid) (P > 0.05) and declined with higher and lower protein diets at all levels of lipid tested. Elevated lipid level (50, 100 or 150 g kg?1) did not produce better FGR in diets containing 400 and 450 g kg?1 dietary protein (P > 0.05). The combined effects of protein and lipid were evident up to 400 g kg?1 protein. Growth and FGR showed consistent improvement with increased lipid levels from 50 to 150 g kg?1 at each protein level tested except with diets containing 450 g kg?1 protein. Apparent nutrient digestibility (for protein, lipid and energy) did not show significant variation among different dietary groups (P > 0.05). Whole body protein and lipid contents increased significantly (P > 0.05) with dietary protein level. The results of this study indicate that rohu fingerlings are adapted to utilize high protein in diets with varying efficiency. The fish could utilize lipid to spare protein but there is no significant advantage from this beyond the dietary protein level of 350–400 g kg?1 in terms of growth and body composition.  相似文献   

9.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

10.
An 11‐week feeding trial was conducted to evaluate the effect of dietary methionine on the growth, antioxidant status, innate immune response and disease resistance to Aeromonas hydrophila of juvenile yellow catfish. Six isonitrogenous and isolipidic practical diets were formulated to contain different graded methionine levels ranging from 6.1 to 16.4 g kg?1 of dry weight. The results indicated that growth performance and feed utilization were significantly influenced by the dietary methionine levels; fish fed the diet containing 6.1 g kg?1 methionine level had lower specific growth rate, percentage weight gain (PWG), feed efficiency and protein efficiency ratio than those fed the other diets (P < 0.05). Fish fed the diet containing 16.4 g kg?1 methionine level had lowest protein contents in whole body and muscle among all treatments. Triacylglycerols, cholesterol, aspartate aminotransferase, alanine aminotransferase and haemoglobin (Hb) in plasma or whole blood were significantly affected by dietary methionine levels. Fish fed the diet containing 6.1 g kg?1 methionine level had higher superoxide dismutase, glutathione peroxidase activities and malondialdehyde values than those fed other diets. Fish fed diets containing 9.7 and 11.8 g kg?1 methionine levels had higher lysozyme activity, total immune globulin, phagocytic activity and respiratory burst than those fed other diets. The lowest survival after A. hydrophila challenge was observed in fish fed a diet containing 6.1 g kg?1 methionine. Quadratic regression analysis of PWG against dietary methionine levels indicated that the optimal dietary methionine requirement for the maximum growth of juvenile yellow catfish was estimated to be 11.5 g kg?1 of the diet in the presence of 4.0 g kg?1 cystine (corresponding to 23.5 g kg?1 of dietary protein on a dry weight basis).  相似文献   

11.
A feeding trial was conducted to study the effect of dietary lipid on growth performance and heat‐shock protein (HSP70 and HSP60) response of white seabass (WSB), Atractoscion nobilis. Five diets were formulated to contain 440 g kg?1 protein from 300 g kg?1 fish meal, 240 g kg?1 soybean meal and 100 g kg?1 soy protein concentrate with different levels of lipid: 100, 120, 140, 160 or 180 g kg?1. At the end of the trial, heat shock response based on HSP70 and HSP60 was measured in liver and white muscle from fish at ambient temperature and temperature shock conditions. Final weight and percent gain were significantly higher for fish fed the 100 g kg?1 lipid diet than for fish fed the rest of the diets (P ≤ 0.05). Feed conversion ratio was lowest for fish fed the 100 g kg?1 lipid diet. The HSP70 and HSP60 responses were positively correlated to dietary lipid levels following temperature shock. At ambient temperature, HSP60 and HSP70 responses in muscle and HSP60 response in liver increased with dietary lipid level. Temperature shock significantly increased the HSP response of fish in all treatments. Results of this study demonstrated that a moderate (110–120 g kg?1) level of dietary lipids would be recommended for production diets but a higher dietary lipid level may be required for optimal stress tolerance.  相似文献   

12.
Six fish meal basal diets supplied with 0 (control), 0.25, 0.5, 1, 2.5 and 5 g kg?1 of choline chloride, resulting in choline levels of 2.57, 2.67, 2.94, 3.84, 4.99 and 7.71 g kg?1, respectively, were fed to giant grouper, Epinephelus lanceolatus, for 56 and 30 days to evaluate the growth and lipid metabolism, and stress tolerance respectively. In the first trial, fish fed different levels of choline‐containing diets for 56 days had no significant difference in weight gain, survival and feeding efficiency. Fish fed increased levels of dietary choline, however, tended to have decreases in the hepatic somatic index; lipids, triglycerides, and cholesterol in liver; and triglycerides and cholesterol in serum. A decrease of lipid content in dorsal muscle was recorded in fish fed the diets containing choline >2.94 g kg?1. Additionally, dietary choline improved the reactions of fish to ammonia stress, including survival and behavioural responses, in fish fed diets containing choline levels >2.94 g kg?1. These findings indicate that choline plays important roles in lipid metabolism and stress tolerance in giant grouper.  相似文献   

13.
A 56‐d feeding trial was conducted to investigate the effect of dietary mannan‐oligosaccharides (MOS) and fructo‐oligosaccharide (FOS) on growth indices, body composition, intestinal bacterial community and digestive enzymes activity of regal peacock. A total of 240 fish were randomly distributed to 15 experimental units (40‐L aquariums) of 16 fish each. These replicates were randomly assigned to one of five treatments in a 2 × 2 + 1 factorial arrangement. The treatments were control diet (no MOS and FOS), diet A (2 gkg?1 MOS + 1.5 g kg?1 FOS), diet B (2 g kg?1 MOS + 3 g kg?1 FOS), diet C (4 g kg?1 MOS + 1.5 g kg?1 FOS) or diet D (4 g kg?1 MOS + 3 g kg?1 FOS). The results showed that feeding diet C increased specific growth rate and protein efficiency ratio and decreased feed conversion ratio compared with control diet. Higher intestinal trypsin activity and increased Lactobacillus counts were observed in fish fed diets B and C. All diets significantly elevated body protein deposition and intestinal amylase activity compared to the control diet. In conclusion, the diet supplemented with 4 g kg?1 MOS + 1.5 g kg?1 FOS was advantageous over other MOS + FOS‐supplemented diets, with respect to growth performance and health benefits of regal peacock.  相似文献   

14.
This study was conducted to evaluate the effects of citric acid (CA) supplementation in diet without inorganic phosphorus (P) on growth, muscle and bone composition, proteolytic activities and serum antioxidant property of rainbow trout. Six diets were designed as the negative diet without monocalcium phosphate (MCP) supplementation, the positive diet containing 10 g kg?1 MCP and CA supplementation diets with 4, 8, 12, 16 g kg?1 CA supplementation in negative diet, and then were fed to rainbow trout (113.6 g) for 60 days. Results showed that the fish fed 8 g kg?1 CA, 12 g kg?1 CA diet had higher weight gain, higher contents of crude ash and P in bone, and lower feed conversion ratio than those of fish fed negative diet (P < 0.05), and showed the similar levels as those of fish fed positive diet (P > 0.05). The proximate composition and P level of muscle were not affected by dietary CA and MCP. The proteolytic activity in intestine, but not in stomach and gastric digesta, was significantly improved by dietary CA and MCP (P < 0.05), when compared with negative control. The activities of serum superoxide dismutase of 12 g kg?1 CA and 10 g kg?1 MCP groups were significantly higher, and the malondialdehyde of 8 g kg?1 CA and 12 CA g kg?1 groups were significantly lower than those of negative control (P < 0.05). The above results indicated that the supplementation of CA could substitute the inclusion of MCP in rainbow trout diet and the supplementation level was suggested to be 8–12 g kg?1.  相似文献   

15.
Critical to the development of a cost‐effective feed for the tropical spiny lobster Panulirus ornatus is knowledge of its response to the protein and lipid (or energy) content of the feed. An experiment of 12 weeks duration was carried out to examine growth responses of juvenile lobsters to pelleted diets that provided six crude protein (CP) levels [320–600 g kg?1 dry matter (DM)] and two lipid levels (nominally 60 and 100 g kg?1 DM). Lobsters (mean initial weight of 1.8 g) were held in groups of nine or 10 animals in 24 × 350 L tanks, fed twice daily at a restricted level, and maintained at 28 °C. Maximal growth responses occurred at dietary CP contents of 474 g kg?1 for the 60 g kg?1 lipid series and 533 g kg?1 for the 100 g kg?1 lipid series. A second experiment, of 4 weeks duration, compared two dietary treatments: a mixture of two of the best diets from the first experiment, and a commercial shrimp (Penaeus japonicus) feed. Lobsters were held under the same experimental conditions as in the first experiment, but were fed to excess twice daily. Their growth was significantly greater (P < 0.05) on the shrimp feed (0.68 g week?1) than on the laboratory‐pelleted diets used in the main study (0.32 g week?1). The results indicate that the optimal dietary protein and lipid content of the diet for P. ornatus is about 530 and 100 g kg?1, respectively.  相似文献   

16.
A growth trial was conducted to evaluate the effects and safety of nucleotides in low fish meal diets on the growth performance, antioxidative capacity and intestinal morphology of turbot (Scophthalmus maximus). High fish meal control diet was formulated with 500 g kg?1 fish meal. Seven levels (0.075, 0.15, 0.225, 0.300, 1.5 and 3.0 g kg?1, respectively) of nucleotides were added to a low fish meal basal diet, which was formulated with 400 g kg?1 fish meal. The eight experimental diets were fed to groups of juvenile turbot (initial weight: 6.0 ± 0.03 g) for 60 days. Results showed that compared with high fish meal control diet, low fish meal basal diet treatment had lower total antioxidative capacity (T‐AOC), glutathione peroxidase activity, fold height of proximal and distal intestine, enterocyte height of all evaluated enteric section and microvillus height of mid‐intestine and distal intestine (< 0.05). However, supplemented nucleotides in diets could significantly improve growth (specific growth rate, SGR), feed utilization, antioxidative capacity and intestinal morphology of turbot (< 0.05). Broken‐line regression analysis of SGR and T‐AOC showed that the optimal supplemental levels of dietary nucleotide for juvenile turbot were 0.366 and 0.188 g kg?1, respectively. In summary, 0.300 g kg?1 of dietary nucleotides was helpful in improving growth, feed utilization, antioxidative capacity and intestinal morphology of turbot fed with low fish meal diet. Excessive dietary nucleotides (3.0 g kg?1) might cause oxidative stress and morphological damage in intestine and then reduce the growth of turbot.  相似文献   

17.
An 8‐week feeding trial was conducted to assess dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile red‐spotted grouper (7.85 ± 0.03 g fish?1). Nine semi‐purified diets were formulated containing varying protein levels (440–520 g kg?1, dry matter) and lipid levels (60–120 g kg?1, dry matter). The weight gain of juvenile Epinephelus akaara was affected by dietary protein (= .005) and its interaction with dietary lipid (= .020). Viscerosomatic index, intraperitoneal fat ratio and whole‐body lipid level increased with increasing dietary lipid level (p < .001). Nitrogen retention was not affected by dietary protein and lipid, while lipid retention decreased with increasing dietary lipid level (p < .001). The plasma blood urea nitrogen increased with increasing dietary protein level (= .003). This study showed that diet with 520 g kg?1 protein and 60 g kg?1 lipid with 30.58 mg kJ?1 P:E provided a maximal growth for this species. Moreover, an increase in dietary lipid levels (from 60 to 90 g kg?1) could reduce the protein requirement (from 520 to 480 g kg?1) without affecting the growth performance, while higher fat deposition was observed in fish fed high‐lipid diets.  相似文献   

18.
This study was conducted to evaluate the effects of dietary taurine on growth performance and feed utilization of Nile tilapia (Oreochromis niloticus) larvae. Four plant protein‐based, isonitrogenous (400 g kg?1 protein), isoenergetic (19 MJ kg?1) diets supplemented with four taurine concentrations (0.0, 5.0, 10.0 and 15.0 g kg?1; designated as T0, T0.5, T1 and T1.5, respectively) were prepared. The diets were fed to triplicate groups of fish larvae (0.024 g average body weight), to apparent satiation, three times per day for 60 days. Larval growth rates and feed utilization efficiency were significantly improved with increasing supplemental taurine up to 10 g kg?1 and decreased with further taurine supplementation. The quadratic regression analyses indicated that the maximum larval performance occurred at about 9.7 g kg?1 of total dietary taurine. Fish survival was significantly lower at 15 g kg?1 dietary taurine than at other taurine levels. Body protein significantly increased, while body moisture and ash decreased, with increasing dietary taurine up to 10 g kg?1 and decreased with further taurine supplementation to 15 g kg?1. Body lipid was not significantly affected by dietary taurine concentration. A number of body amino acids (tryptophan, arginine, histidine, leucine, isoleucine, valine, alanine, glycine, threonine and taurine) significantly increased with increasing supplemental taurine up to 10 g kg?1 and then decreased with further increase in dietary taurine levels. The rest of body amino acids were not significantly affected by dietary taurine. The present results suggest that about 9.7 g kg?1 dietary taurine is required for optimum performance of Nile tilapia larvae fed soybean meal‐based diets.  相似文献   

19.
A feeding trial was conducted to determine the suitable dietary protein and lipid levels for juvenile golden pompano Trachinotus ovatus reared in net pens. Ten test diets were formulated at five levels of crude protein (330, 370, 410, 450 or 490 g kg?1) and two levels of crude lipid (65 or 125 g kg?1). Golden pompano fingerlings (initial body weight 4.7 g ind?1) were fed the test diets for 8 weeks. Weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), condition factor (CF), hepatosomatic index (HSI), body protein content and total nitrogen waste (TNW) were dependent on both dietary protein and lipid levels. Feed intake (FI) and viscersomatic index (VSI) were dependent on dietary protein level, while body lipid content was dependent on dietary lipid level. Weight gain increased with increasing the dietary protein level (at the same lipid level) but was lower at the dietary lipid level of 65 g kg?1 than at 125 g kg?1 (at the same protein level). Fish fed at the dietary protein levels of 460–490 g kg?1 had higher WG and lower FCR than at 330–410 g kg?1. Energy retention efficiency tended to increase with increasing the dietary protein level from 330 to 410 g kg?1, while no significant difference was found in nitrogen retention efficiency between the dietary protein levels (at the same lipid level). Results of this study suggest increasing the dietary lipid level from 65 to 125 g kg?1 could not induce protein‐sparing action in golden pompano, and the suitable dietary protein and lipid levels for juvenile golden pompano reared in net pens should be 450–490 and 65 g kg?1.  相似文献   

20.
A study was conducted to estimate the optimum requirement of dietary phosphorus (P) for Channa argus × Channa maculata. Effects of dietary P levels on the tissue composition, serum biochemical parameters and antioxidant status were also examined. Five practical diets were formulated to contain graded levels (4.8 g kg?1, 6.4 g kg?1, 7.9 g kg?1, 9.4 g kg?1 and 11.0 g kg?1) of available P from dietary ingredients and monocalcium phosphate (MCP). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (initial body weight, 20.50 ± 0.53 g) for 8 weeks. The results showed that the specific growth rate (SGR) and weight gain (WG) were all significantly improved by dietary P up to 9.4 g kg?1 (< 0.05) and then levelled off beyond this level. Broken‐line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 9.6 g kg?1. With the increase in dietary P level, protein efficiency rate (PER) increased significantly and reached a plateau, while the feed conversion ratio (FCR), the mesenteric lipid somatic index (MSI) and the whole‐body lipid content significantly reduced (< 0.05). Dietary P levels also affected the mineralization (ash and P) of whole body, vertebrae and scale (< 0.05). Quadratic analysis based on P contents in whole body, vertebrae, scale and ash content in vertebra indicated that the available P requirements were 10.4, 9.8, 10.0 and 10.3 g kg?1, respectively. However, no differences were found in the whole‐body moisture, crude protein, serum calcium (Ca) contents or Ca/P value, as well as the viscerosomatic index (VSI) and hepatosomatic index (HSI) among all the treatments (> 0.05). Triglyceride (TG), total cholesterol (TC), high‐density lipoprotein cholesterol (HDL‐C) and low‐density lipoprotein cholesterol (LDL‐C) decreased significantly, while serum P content, HDL‐C/TC and HDL‐C/LDL‐C value increased significantly with dietary available P levels (< 0.05). No significant changes in superoxide dismutase activity and malondialdehyde (MDA) content were observed (> 0.05), but serum catalase (CAT) and glutathione peroxidase (GPx) activities and the ratio of CAT/SOD and GPx/SOD increased significantly with increasing dietary P levels (< 0.05). In conclusion, the optimal P requirement of juvenile snakehead in practical feed was 9.6 g kg?1. Signs of P deficiency were characterized by poor growth, slightly reduced mineralization and the antioxidant capacity and an increase in body lipid content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号