首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Measurements of rates of growth and senescence of leaf lamina per tiller and of changes in tiller population densities were made in three experiments designed to investigate the influence of sward slate on leaf turnover and net production under continuous stocking. In each experiment initially uniform swards were fenced to provide four plots on which animal numbers were adjusted twice weekly to give a series of swards maintained as nearly as possible in a steady state with respect to sward surface height (range 1.1–6.4 cm) and herbage mass (range 440–2690 kg OM ha?1). Two experiments were carried out in July–September on vegetative swards and one in May–June on a reproductive sward. Measurements were begun 3–7 weeks after treatments were started and were repeated weekly during 3–4 week measurement periods. In all three experiments the rate of lamina growth per tiller increased linearly with an increase in sward surface height and herbage mass. In the two experiments conducted in July–August this relationship was partially offset by a linear increase in the rate of senescence per tiller but net production per tiller also increased linearly in relation to sward height and mass. In the experiment conducted in May–June the rates of growth and senescence per tiller increased in parallel so that net production per tiller showed no relationship with sward condition. Tiller population densities in the July–August experiments were highest in swards maintained between 2 and 3 cm surface height and declined in swards maintained above and below this height. In the experiment in May–June tiller numbers were similar in all treatments prior to the summer solstice but diverged in a manner similar to the other experiments later in the year. The rate of lamina growth per unit area increased in a manner consistent with an asymptotic relationship and the rate of senescence increased linearly with increasing sward height and mass in all three experiments. Net production per unit area was reduced on swards below about 2.5 cm in height but was insensitive to variation in sward surface height between 2.5 and 6.0 cm (approximately 1000–2500 kg OM ha?1 herbage mass). The effectiveness of adjustments in tiller numbers and production per tiller and of changes in the balance between growth and senescence as mechanisms of sward homeostatis, together with their implications in the scope for manipulating herbage production by grazing management are discussed briefly.  相似文献   

3.
An experiment was conducted lo compare the effects of the grazing by ewes and weaned lambs on aftermath and previously continuously grazed perennial ryegrass-dominant swards, at two sward heights (4 and 8 cm) in (he autumn, on changes in structure and growth of the swards. The experiment had a factorial design, was replicated twice and was conducted from mid-August to early November with measurements being made on three occasions in the autumn. Aftermath swards had lower tiller population densities and lower herbage masses than those that had been previously continuously grazed, the differences being greatest in August. On an area basis net growth rates of herbage on aftermaths were lower than those on previously continuously grazed swards in August and September but not in October. Growth rates of herbage were higher on the taller sward, but the senescence rates were similar at the two sward heights. It was concluded that autumn swards may be managed at taller sward heights than summer swards without increasing senescence of the sward and a consequent reduction in efficiency of utilization. The effects of previous sward management on tissue turnover in the autumn were not long lasting.  相似文献   

4.
A 10-week grazing experiment was conducted on a perennial ryegrass sward with lactating ewes and their twin lambs. Three paddocks were rotationally grazed with rest periods of from 4 to 5 weeks. Sward surface heights at the start of each grazing were 145, 259 and 250mni for treatments RG1, RG2 and RG3. A further four paddocks were maintained by continuous variable stocking (CS) at sward surface heights (SSHs) of about 30, 60, 90 and 120mm. Sward and animal measurements were made on the two different grazing managements as the RG swards were grazed down, giving measurements at similar sward heights for treatments RG and CS.
There was less green leaf and the total herbage mass present under RG was less than on CS swards at the same sward heights, demonstrating the differences in structure between rotationally and continuously grazed swards.
Regression analysis of animal factors on sward factors showed that grazing behaviour was more highly correlated with green leaf mass than SSH or any of the other sward measurements. On the RG swards, maximum intake per animal was reached at about 1500 kg green leaf mass ha−1. A SSH of 60mm allowed the CS ewes to achieve the highest intake rate, but at this height the ewes on treatments RG2 and RG3 were restricted to approximately half this rate. The results suggest that green leaf mass or leaf area index, rather than sward surface height, could be used as a rational basis to relate intake of herbage to sward state for swards changing rapidly in leaf to stem ratio.  相似文献   

5.
Preliminary studies were carried out on the effect of stocking rate during late autumn on a continuously stocked Lolium perenne -dominated sward at an upland site in central Scotland. Measurements were made of L. perenne tiller population density on 29 September and 2 November and of L. perenne net production, mean sward height and total herbage mass in early and late October and early and late November. Stocking rates were 12 ewes per ha during October and 8 and 16 ewes per ha during November. Sward height and herbage mass declined with time and more rapidly at the higher stocking rate. L. perenne growth per tiller and per unit area was influenced by time but not by stocking rate and was closely related to the 5·5°C soil temperature at 10 cm depth. Tiller senescence was greatly reduced at the higher stocking rate and/or the consequentially lower sward height and herbage mass. Tiller net production was therefore sustained at a positive level on the higher stocked sward throughout November while on the lower stocked sward it fell below zero early in November.  相似文献   

6.
Continuous stocking with sheep at high stocking rates may reduce the content of white clover (Trifolium repens) in mixed grass-clover swards. The present experiment was carried out to investigate the effects on sward production and composition of resting a perennial ryegrass (Lolium perenne)- white clover sward from grazing and taking a cut for conservation. Swards were set-stocked with 25 and 45 yearling wethers ha?1 either throughout a grazing season, or on swards that were rested for a 6-week period and then cut in early, mid- or late season. In an additional treatment swards were cut only and not grazed. Net herbage accumulation was higher at the lower of the two stocking rates and was marginally increased by the inclusion of a rest period at the high but not the low stocking rate. Clover content was higher at the lower stocking rate and was increased by the inclusion of a rest period by 30% at 45 sheep ha?1and by 11% at 25 sheep ha?1 The effect was most marked at the end of the rest period before cutting. When rested from grazing the tiller density of ryegrass decreased although tiller length increased, and clover stolon length, petiole length and leaflet diameter increased though leaf and node number per unit length of stolon decreased; the reverse applied when the sward was returned to grazing after cutting. At the high stocking rate, rest periods in mid-season or later maintained the greatest clover content and marginally increased total net herbage accumulation. At the low stocking rate the timing of the rest period had no significant effect on total net herbage accumulation or on clover content. These results show that the combination of grazing and cutting is of benefit where the stocking rate is high enough to threaten clover survival and limit sheep performance. However, at such a stocking rate, feed reserves are at a minimum throughout the grazing season and so opportunities for resting the sward are probably low.  相似文献   

7.
A perennial ryegrass sward was managed by continuous stocking with sheep (April–September) for 4 successive years after sowing. The sward was grazed to maintain a leaf (lamina) area index (LAI) close to 1.0. Areas of the sward were released from grazing on three occasions: once during summer in the third year after sowing, and twice during spring and summer in the fourth year after sowing. There were marked changes in the structure and physiology of the continuously stocked sward following release from grazing. After several successive years of continuous stocking, the sward comprised a large population of small tillers and the small LAI resulted in consistently low rates of photosynthesis. Following release from grazing, photosynthesis increased markedly as the LAI increased but this change was associated with the loss of a large proportion of the population of tillers. There were seasonal differences in the pattern of changes in photosynthesis and tiller numbers following release from grazing which were not apparent under continuous stocking. The changes in the structure and physiology of the sward following release from grazing suggest that the net accumulation of herbage in areas of sward from which the animals are excluded, for instance using cages, may be an unreliable estimate of production under continuous stocking.  相似文献   

8.
Tiller pulling was studied in a perennial ryegrass sward that was continuously grazed by cattle. The treatments included severe (sward height after grazing 25 mm), medium (50 mm) or lenient (75 mm) grazing from turn-out in April to 1 June, followed by grazing to 50 mm in the remainder of the season. Tiller pulling was confined to the midsummer-autumn period of the grazing season. The losses were most severe in swards that had been leniently grazed to a mean height of 75 mm during the spring and least severe in swards grazed to a height of 25 mm. The lenient grazing treatment allowed both the true stem development and aerial tillering whereas in the more tightly grazed swards true stem development was significantly less and aerial tillering was virtually absent. The pulled organic matter in the lenient treatment was equivalent to about 5·3% of the total harvested yield. In the severely grazed swards, pulling losses were equivalent to about 1·7% of the total harvested yield. A high rate of turnover of the pulled herbage was found in all the treatments with between 69 and 78% of the freshly pulled herbage disappearing within a week of being pulled. Tiller pulling was found to have no effect on either the subsequent autumn-winter tiller density or yields of cuts taken in the following year.  相似文献   

9.
The study was designed to test the hypothesis that grazing management in early season could alter sward structure to facilitate greater animal performance during critical periods. The effects of grazing a mixed perennial ryegrass/white clover sward at different sward surface heights, by cattle or sheep, in early season on sward composition and structure, and on the performance of weaned lambs when they subsequently grazed these swards in late season were determined. In two consecutive years, from mid‐May until mid‐July, replicate plots (three plots per treatment) were grazed by either suckler cows and calves or ewes and lambs at 4 or 8 cm sward surface heights (Phase 1). From mid‐August (Year 1) or early August (Year 2), weaned lambs continuously grazed, for a period of 36 d (Year 1) or 43 d (Year 2) (Phase 2), the same swards maintained at 4 cm (treatment 4–4), 8 cm (treatment 8–8) or swards which had been allowed to increase from 4 to 8 cm (treatment 4–8). Grazing by both cattle and sheep at a sward surface height of 4 cm compared with 8 cm in Phase 1 resulted in a higher (P < 0·001) number of vegetative grass tillers per m2 in Phase 2, although the effect was more pronounced after grazing by sheep. Sheep grazing at 8 cm in Phase 1 produced a higher number of reproductive tillers per m2 and a greater mass of reproductive stem (P < 0·001) than the other treatment combinations. The mass of white clover lamina was higher under cattle grazing (P < 0·05), especially on the 8‐cm treatment, and white clover accounted for a greater proportion of the herbage mass. These effects had mainly disappeared by the end of Phase 2. On the 4–4 and 8–8 sward height treatments the liveweight gain of the weaned lambs was higher (P < 0·05) on the swards previously grazed by cattle than those grazed by sheep. The proportion of white clover in the diet and the herbage intake also tended to be higher when the weaned lambs followed cattle. However, there was no difference in liveweight gain, proportion of white clover in the diet or herbage intake between swards previously grazed by cattle or sheep on the 4–8 sward height treatment. It is concluded that grazing grass/white clover swards by cattle compared with sheep for the first half of the grazing season resulted in less reproductive grass stem and a slightly higher white clover content in the sward, but these effects are transient and disappear from the sward by the end of the grazing season. They can also be eliminated by a short period of rest from grazing in mid‐season. Nevertheless these changes in sward structure can increase the performance of weaned lambs when they graze these swards in late season.  相似文献   

10.
Two experiments were conducted to examine the effect of inter-tussock grass height and stocking rate on the utilization of the rush ( Juncus effusus ) by grazing goats. In the first experiment, on rush-infested Festuca rubralTrifolium repens pasture, the utilization of rushes by goats grazing at a sward height of 3–4cm or 5–6cm was compared with that occurring on plots grazed by sheep at a sward height of 3–4 cm. Sheep grazed minimal amounts of rush. In contrast, it was estimated that 90% and 75% of current seasons growth of rush was grazed by goats at sward heights of 3–4 and 5–6 cm respectively during the first year. With continued goat grazing at 5–6cm there was a dramatic reduction in the cover and vigour of the rushes, and at a sward height of 3–4cm established tussocks were eliminated from the pasture.
The second experiment compared the utilization of rushes invading predominantly Agrostis swards stocked with goals at 10, 20 or 30 ha-1 and in which inter-tussock sward height was maintained at 4–5cm on all treatments, by adding or subtracting sheep. On one site rush utilization increased with the increase in stocking rate of goats and rush tussocks were eliminated within 3 years at 30 goats ha-1. On another, there was no difference between plots stocked at 20 or 30 goats ha-1 and viable tussocks remained. The influence of the composition and productivity of the inter-tussock herbage and the proportion of rush in the biomass are discussed.
Goats can be used lo control rushes in grassland but high stocking levels and low inter-tussock pasture heights are required to promote adequate levels of utilization.  相似文献   

11.
Over a 24-week period, three groups of dairy cows were continuously stocked at 8, 10 or 12 cows ha-1 between morning and afternoon milkings, and overnight were housed and offered grass silage ad libitum. Due to a prolonged drought, sward heights only averaged 4·1 cm.
The increase in daytime stocking rate led to a decline in herbage intake, and increases in silage intake. At the highest stocking rate (12 cows ha-1), the silage intake failed to compensate for the reduced herbage intake. Consequently the total dry matter and estimated metabolizable energy intakes were lower than for the 8 and 10 cows ha-1 treatments. Milk yields and milk composition were not significantly affected by treatment but the 12 cows ha-1 stocking rate gave the lowest milk and milk solids yields.
The utilized metabolizable energy (UME) on the grazed swards was greatest for the 10 cows ha-1 treatment. The sward cut to provide the silage had a UME level (GJ ha-1) 32% greater on average than the grazed swards during the same growth period. The total areas utilized for grazing and silage production for 8, 10 and 12 cows ha-1 were 0·240, 0·224 and 0·215 ha respectively. Fat and protein yields per unit area were greatest for the 10 cows ha-1 group.  相似文献   

12.
Swards of Phalaris aquatica-Trifolium subterraneum were subjected to four defoliation treatments—zero, low (11 sheep ha−1) and high (22 sheep ha−1) stocking rates, and weekly cutting. At high stocking rate the annual grass Hordeum leporinum dominated while clover was dominant at low and zero stocking rates. Weekly cutting suppressed species other than clover and so failed to simulate grazing.
There were similarities in net herbage production between zero and lightly grazed swards and between heavily grazed and repeatedly cut swards. Net herbage production decreased in the order undisturbed sward < lightly grazed sward < heavily grazed sward < repeatedly cut sward.
When sheep grazed swards where herbage mass was low their daily consumption of herbage, and therefore liveweight change, depended on their recent grazing experience. Sheep accustomed to swards where herbage mass was low ate more because they grazed for much longer each day than unaccustomed sheep, although they selected a diet of similar digestibility.  相似文献   

13.
A comparison was made of stocking rates of 4·7, 5·6 and 6·4 cows ha-1 during the first 7 weeks (period 1) of the grazing season. Each group of British Friesian cows was continuously stocked on a day and a night field. In the subsequent periods 2 and 3 (each lasting 7 weeks) the three groups were maintained at the same stocking rate within periods (4·2 and 31 cows ha-1, respectively). The differential stocking rates were achieved by the addition and removal of cows.
The stocking rates applied in period I had no significant effects on milk yield, milk composition, liveweight change or condition score, in any period. Milk production ha-1 over the three periods totalled 12390,13 978 and 14986 kg, and the estimated utilized metabolizable energy totalled 773, 81·5 and 86·6 GJ ha-1 for low, medium and high stocking rates, respectively.
Increased stocking rate in period I was associated with a decrease in sward height in periods 1 and 2. This led to an increase in herbage metabolizable energy, and crude protein contents, and to an increase in tiller population density. The lowest stocking rate gave greater live individual tiller weights throughout the experiment and a longer interval between defoliation of individual tillers in period 1.
The results indicate that high stocking rates in the spring are not necessarily detrimental to overall summer performance of spring calving dairy cows. However, high stocking rates in the early season ensure a high level of herbage utilization and milk output ha-1 in that period. Although this practice leads to a reduced sward height in mid season, the sward has less rejected area, a higher tiller population density and a higher digestibility than swards stocked at a lower level.  相似文献   

14.
The change in structure of continuously grazed versus infrequently cut swards of perennial ryegrass ( Lolium perenne L), cv. S23, was investigated during their first full harvest year. Measurements were made from early May until late September. The intensity of stocking by sheep in the grazed sward was adjusted in an attempt to maintain a high level of radiation interception and the cut sward was harvested at approximately monthly intervals.
The herbage mass, lamina area index and radiation interception of the cut sward varied in a cyclic pattern between harvests but in the grazed sward these parameters showed considerably less variation, although they all increased early in the season and then declined later. The proportion of dead material above ground increased throughout the season in both sward types but was more marked in the grazed sward.
There were major differences between the grazed and cut swards in the number of tillers per unit ground area; the difference became more marked throughout the season and by September the tiller densities in the grazed and cut swards were 3·204 m-2 and 6·203 m-2 respectively. Divergence in tiller density was associated with differences in specific stem weight and leaf area per tiller.
Rates of appearance and death of leaves on tillers in the grazed sward were determined. During May, leaf appearance exceeded leaf death but this was reversed in June. During the rest of the season as a new leaf appeared on a tiller so the oldest leaf died.  相似文献   

15.
The effects on herbage intake and ingestive behaviour by ewes and weaned lambs of grazing aftermath and previously continuously grazed perennial ryegrass-dominant swards at two different sward heights (4 and 8 cm) in the autumn were studied. The experiment had a factorial design, was replicated twice and was conducted from mid-August to early November. There were six ewes and six weaned lambs per treatment plot and measurements were made in three periods. The effects of previous treatment of swards on herbage intake by ewes and weaned lambs were greatest in August, with herbage intakes being significantly lower on the aftermath swards. Differences disappeared by October. The lowest herbage intakes were obtained on the aftermath sward at the lowest sward height, with ewes being more affected under those conditions than lambs. Grazing time and biting rate increased with a reduction in sward height and were higher on aftermath swards. However, these increases did not compensate for reductions in estimated bite size on the aftermath swards. It was concluded that the effects of the sward management treatments in the summer on tissue turnover of the sward and herbage intake in the autumn were considerable in the early part of the autumn but had largely disappeared by the end of the autumn period.  相似文献   

16.
Turnover rates of grass laminae and clover leaf tissue were estimated over a range of intervals within three periods each year in the second to fourth years (1983-85) of a trial involving swards continuously grazed by steers and receiving either 60 kg N ha-1 in spring (60N) or 360 kg N ha?1 throughout the year (360N). Within the 60N swards initial stocking rates at turnout were low (60N LS) at 7-2 steers ha?1 and high (60N HS) at 90 steers ha?1 in 1983, and in 1984 and 1985 corresponding rates were 10-8 and 13-5 ha?1. The 360N swards were initially stocked at turnout at 96 (360N LS) and 120 (360N HS) steers ha?1. Stocking rates were reduced by 33% in midsummer except for 60N in 1984 and 1985 when they were reduced by 50%. Meaned over 3 years, 360N HS had lower herbage mass than 60N LS. Tiller density in 360N was almost 50% higher than in 60N and clover growing point density was only one quarter that of 60N with the 60N LS having lower clover densities than 60N HS in 1985. Generally, leaf extension rate per tiller was higher in 360N than 60N and, when significant, 60N LS had higher senescence rates per tiller than 360N HS. Rate of increase in new clover lamina tissue per stolon was not affected by treatments, whereas in 1983 LS had higher senescence rates of clover laminae than HS. Petiole growth per stolon was higher in LS than HS in 1983 and 1984, the mean over these years for 360N HS being 77% that of 60N LS. Petiole senescence per stolon was lower in 360N HS than 60N LS only in 1983. When comparing 60N HS and 360N LS (representing similar levels of grazing intensity, having similar herbage mass) the gross growth of leaf material in the former was 75% of the latter, in contrast to 57% for net growth. Clover contributed 18% to the estimated growth of leaves compared to a mean of 7% in herbage mass. Taking inflorescence and pseudostem into account in 1984 and 1985,60N HS had 7% clover in standing herbage and 14% in net growth. Therefore, the contribution of clover to growth is considerably higher than its presence in herbage mass would suggest in continuously grazed swards. It is concluded that low-N swards, owing to their lower tiller density and slower grass leaf extension rate, will be less efficiently grazed than swards at higher N levels at a given herbage mass, but the presence of clover will partly offset that disadvantage.  相似文献   

17.
The use of sward height as a criterion for determining the time and extent of stocking-rate changes on continuously grazed swards was investigated over a 2-year period (1985–86) in a sheep production experiment. Swards of three contrasting perennial ryegrass ( Lolium perenne L.) varieties were established with and without Aberystwyth S184 small-leaved white clover ( Trifolium repens L.) at an upland site (310–363 m) in mid-Wales. From spring (late April) until weaning (mid-July) the pastures were continuously stocked with Beulah Speckled Face ewes and Suffolk cross lambs. During this period sward heights of 4 ± 0.5 cm were obtained and maintained by regular adjustment of animal number on individual paddocks. Grass-only swards received 160 and 200 kg N ha−1 and the grass clover swards were given 80 and 75 kg N ha−1 in 1985 and 1986 respectively.
Differences were observed between the treatments in sward height profiles over the season necessitating contrasting adjustments to stocking rates. Mean stocking rate necessary on early flowering Aurora (22 6 ewes ha−1) was respectively 27% and 17% higher than on late-flowering Aberystwyth S23 and Meltra (tetraploid) ryegrasses; mean stocking rate on grass-only swards was 19% higher than on the grass-clover pastures.
It is concluded that sward height is a useful criterion on which to make adjustments to stocking rates to compare the potential performance of contrasting swards, under continuous grazing. The infrequent adjustments required to maintain a constant sward height, especially on the late flowering diploid perennial ryegrass variety on which many upland pastures are based, suggest that the criterion of sward height could be successfully employed on farms as an aid to efficient grazing management.  相似文献   

18.
The effect of level of nitrogen application upon the dynamics of herbage growth in a continuously grazed sward of tall fescue was investigated during two successive years. In order to obtain a large range of sward structural conditions, the experiments were carried out with two contrasting cultivars: cv. Clarìne and cv. Barcel, and, in Year 2, with two different sward heights or leaf area indices (LAIs). During each of five experimental periods (2-3 weeks), swards received either optimum (N2) or deficient (N1) N applications, were maintained at their target LAI, and leaf growth was measured on labelled tillers. With continuously defoliated tillers, N-shortage had only a small effect on the leaf elongation rate compared with tillers protected by cages. The leaf production per tiller was only slightly reduced by N shortage, and it was mainly by the means of a reduction in tiller density that the N deficiency resulted in reduced herbage growth per hectare. These results indicate that, in continuously grazed swards, in contrast with results previously found in intermittently defoliated swards, leaf elongation is not the only important component of difference in herbage growth and that the promotion of tillering rate is an additional pathway for N response in such management regimes.  相似文献   

19.
The long-term influence of sward height from April to July (Phase 1) and from July to early October (Phase 2) on total herbage and white clover production was measured over four years (1988–1991) as herbage accumulation. A subsidiary experiment to determine the influence of leaf area index (LAI) on gross canopy photosynthesis was conducted to aid interpretation of growth from herbage accumulation data. Target sward heights in 0·5 ha plots in two blocks were 5,7 or 9 cm in Phase 1 and 7 or 9 cm in Phase 2, although mean actual heights per phase were slightly higher. Net herbage accumulation (NHA) was measured within mobile exclosure areas over successive two-week intervals. Gross photosynthesis was measured in circular turves removed from the trial area representing a range of LAIs with an at least reasonable clover content. Despite wide differences in mean sward height and herbage mass, NHA and net clover accumulation for a given phase were not generally affected by treatments. Positive effects of grazing at 5 cm in Phase 1 on NHA and clover accumulation later in the year, and of grazing at 7 cm in Phase 2 on NHA in the following spring were sometimes apparent. Gross canopy photosynthesis (g CO2 m?2 h?1) at 1500 μE m?2 s?1 and 18–21°C was linearly related to LAI described by 1·003 + 1·165 LAI over the LAI range 0·7 to 4·5. Total herbage and clover growth, interpreted from NHA by a previously described model, was predicted to be marginally lower in shorter swards. Similarity in NHA and clover accumulation between treatments was considered to be because of lower senescene and decomposition, and a higher proportion of new tissue being assigned to lamina growth, despite lower LAI and gross photosynthesis in the shorter swards. It was concluded that stocking intensity in swards continuously stocked with cattle did not have a strong influence on net total herbage and clover growth.  相似文献   

20.
Photosynthetic rate and carbon balance of grazed ryegrass pastures   总被引:3,自引:0,他引:3  
The relationship between net canopy photosynthesis (Pnc) measured at 400 J m−2 s-1 and leaf area index (LAI) was determined on ryegrass-dominant swards over a range of her bage masses in five grazing experiments. In three experiments the swards were continuously stocked either by sheep or by cattle to maintain a number of herbage heights and hence LAI values. In two experiments the swards were intermittently grazed with 21 -d regrowth intervals. On the continuously stocked swards measurements were made over nine periods each of 7 to 21 d in length. On the intermittently grazed swards measurements were made over six periods while the herbage was being grazed down from a high to a low LAI and over three periods during the regrowth phase.
On all the swards where measurements were made while grazing was in progress, the relation of Pnc to LAI was linear. The photosynthetic rate was greater on the continuously grazed than on the intermittently grazed swards up to LAI 35 and in two experiments to LAI 5. The relationship of Pnc to LAI of swards in the regrowth phase was predominantly curvilinear and such that over much of the LAI range they had a greater photosynthetic potential than the same swards being grazed down from high to low mass. Daily rates of CO2 uptake and growth in the field were calculated for one continuously stocked experiment. Both were linearly related to LAI in the range LAI 2–4·5. The agronomic implications of the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号