首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Worldwide, the land area devoted to timber plantations is expanding rapidly, especially in the tropics, where reptile diversity is high. The impacts of plantation forestry and its management on native species are poorly known, but are important, because plantation management goals often include protecting biodiversity. We examined the impact of pine (Pinus caribaea) plantations, and their management by fire, on the abundance and richness of reptiles, a significant proportion of the native biodiversity in tropical northern Australia, by (i) comparing abundance and diversity of reptiles among pine plantations (on land cleared specifically for plantation establishment), and two adjacent native forest types, eucalypt and Melaleuca woodlands, and (ii) comparing reptile abundance and richness in pine forest burnt one year prior to the study to remove understorey vegetation with pine forest burnt two years prior to the study. We also examined the influence of fire on reptile assemblages in native vegetation, by comparing eucalypt woodland burnt two years prior to the study and unburnt for eight years. To quantify mechanisms driving differences in reptile richness and abundance among forest types and management regimes, we measured forest structure, the temperatures used by reptiles (operative temperature) and solar radiation, at replicate sites in all forest types and management regimes. Compared to native forests, pine forests had taller trees, lower shrub cover in the understorey, more and deeper exotic litter (other than pine), and were cooler and shadier. Reptile assemblages in pine forests were as rich as those in native forests, but pine assemblages were composed mainly of species that typically use closed-canopy rainforest and prefer cooler, shadier habitats. Burning did not appear to influence the assemblage structure of reptiles in native forest, but burning under pine was associated with increased skink abundance and species richness. Burned pine was not warmer or sunnier than unburned pine, a common driver of reptile abundance, so the shift in lizard use after burning may have been driven by structural differences in understorey vegetation, especially amounts of non-native litter, which were reduced by burning. Thus, burning for management under pine increased the abundance and richness of lizard assemblages using pine. Pine plantations do not support the snake diversity common to sclerophyllous native forests, but pine may have the potential to complement rainforest lizard diversity if appropriately managed.  相似文献   

2.
Two contrasting trajectories for vegetation restoration in agricultural landscapes are secondary succession following cropland abandonment that can regenerate woodlands (passive restoration) and conversion of cropland to tree plantations (active restoration), which have mostly focused on pine species in the Mediterranean Basin. We compared the effects of these two contrasting trajectories of vegetation restoration on bird assemblages in central Spain. Vegetation structure differed in the two restoration trajectories, pine plantations attaining higher tree cover and height (31% and 4.1 m, respectively) but lower strata complexity than secondary shrubland and holm oak woodland (which attained 10% and 1.4 m of tree cover and height, respectively). Bird species richness differed in stands under active or passive restoration trajectories, the former collecting a higher total number of species (4.2 species per 0.78 ha plot) than the latter (3.5 species per plot). The number of forest species increased with vegetation maturity in both restoration trajectories, but especially in stands under active restoration. The occurrence of woodland generalist species increased and of species inhabiting open habitats decreased in actively restored stands, being some of these latter species of high conservation priority in the European context but relatively common at the regional level. Bird species inhabiting pine plantations had broader habitat breadth at the regional level than those inhabiting secondary shrublands and woodlands. Maximum regional density did not differ between both restoration trajectories, but it increased with development of the herbaceous layer only at the secondary succession trajectory. The relative importance of species of European biogeographic origin was higher in mature pine plantations (58.9% of total bird abundance) than in mature holm oak woodlands (34.4%), whereas that of Mediterranean species was considerably higher in the latter (40.1%) than in the former (20%). Bird assemblages of relatively small patches of pine plantations are unable to reflect the regional avifauna, in contrast with the relationships between local and regional assemblage characteristics that can be found in isolated natural forests. We conclude that programs of vegetation restoration should base upon a range of approaches that include passive restoration, active restoration with a variety of tree and shrub species, and mixed models to conciliate agricultural production, vegetation restoration and conservation of target species.  相似文献   

3.
Oribatid mites (Acari) represent a considerable part of the biodiversity in Fennoscandian forests, but our knowledge about their habitat requirements is limited. We studied 10 Carabodes species in the forest floor of seven coniferous forest types, and in dead fruiting bodies (sporocarps) of 6 species of wood-living polypore fungi in southern Norway. The most common Carabodes species in soil were rare in sporocarps, and vice versa. The density of several ground-living species was significantly influenced by vegetation type and soil type. Carabodes willmanni and C. subarcticus were considered as lichen feeders on the ground, and occurred abundantly in Cladonia-rich pine forests. Three species, C. femoralis, C. areolatus and C. reticulatus, seem to be sporocarp specialists. Their relative numbers were rather similar in dead sporocarps of five different fungal species, including annual and perennial sporocarps, soft and hard. This was in contrast to beetles from the same sporocarps, which in a previous study proved to be strongly host-specific. Although being tolerant to different fungal species, the association of certain Carabodes species to dead sporocarps could make them vulnerable in forests with little dead wood and few sporocarps.  相似文献   

4.
To gain insight into the question of which vegetation characteristics have the most influence on avian assemblages in late-successional forests, the habitat preferences of bird-guilds in old-growth endemic forests of Macedonian pine were studied over 3 years in the Pirin National Park, Bulgaria. Bird–habitat relationships were investigated by comparing vegetation characteristics, and bird species richness, diversity, abundance, and guild structure of birds (determined according to food type, foraging and nesting sites) between mature (60–100 years old) and over-mature (>120 years old) Macedonian pine forest stands. Studied forest age-classes differed mainly by the density, height and diameter of trees, and the amount of dead wood. The first one of these parameters decreased and the latter two parameters increased with the forest succession. The difference in the vegetation structure affected the abundance of bird-guilds and thus, the overall bird abundance and the structure of avian assemblages within Macedonian pine forests. There was no significant difference in bird diversity among studied forest age-classes, but the overall bird abundance increased with forest maturation. Analyzed by study plots, species richness was higher in over-mature forests, but at cluster level, there was no significant difference between mature and over-mature forest age-classes. Half of the studied (insectivorous, hole- and ground-nesters, bark- and canopy-foraging bird species) guilds were more abundant in over-mature forests, while there was no bird-guild exhibiting a preference for mature forest stands. The abundances of bird-guilds were correlated with tree height, diameter at breast height and the amount of dead wood between the studied forest age-classes and this might explain their preferences for over-mature pine forests. Therefore, for future sustainable management of these endemic forests and the conservation of their avifauna, efforts should focus on protecting the remaining native old-growth forest stands and the importance of the structure of Macedonian pine forests on their bird assemblages should be considered in forestry practices.  相似文献   

5.
We compared breeding avian communities among 11 habitat types in north-central Michoacán, Mexico, to determine patterns of forest use by endemic and nonendemic resident species. Point counts of birds and vegetation measurements were conducted at 124 sampling localities from May through July, in 1994 and 1995. Six native forest types sampled were pine, pine–oak, oak–pine, oak, fir, and cloud forests; three habitat types were plantations of Eucalyptus, pine, and mixed species; and the remaining two habitats were shrublands and pastures. Pastures had lower bird-species richness and abundance than pine, oak–pine, and mixed-species plantations. Pine forests had greater bird abundance and species richness than oak forests and shrublands. Species richness and abundance of endemics were greatest in fir forests, followed by cloud forests. Bird abundance and richness significantly increased with greater tree-layer complexity, although sites with intermediate tree complexity also supported high abundances. When detrended correspondence-analysis scores were plotted for each site, bird species composition did not differ substantially among the four native oak-and-pine forest types, but cloud and fir forests, Eucalyptus plantations, and mixed-species plantations formed relatively distinct groups. Plantations supported a mixture of species found in native forests, shrublands, and pastures. Pastures and shrublands shared many species in common, varied greatly among sites in bird-species composition, and contained more species specific to these habitats than did forest types.  相似文献   

6.
In Central Europe,a large portion of post-mining sites were afforested with Scots pine,which is characterized by good adaptability and a tolerance for poor habitat at the beginning of forest ecosystem development.Conversion of monoculture on mine sites into more biodiverse mixed hardwood forests,especially on more fertile deposits,can be an emerging need in this part of Europe in next decades.The ability to classify the forests at these post-mining sites will facilitate proper species selection as well as the management and formation of the developed ecosystem’s stability.This work describes the guidelines that can be followed to assess reclaimed mine soil(RMS)quality,using the mine soil quality index(MSQI)and a classification of developed forest sites as a basis of tree-stand species selection and conversion of pine monocultures.The research was conducted on four post-mining facilities(lignite,hard coal,sulphur,and sand pit mining areas)on different RMS substrates dominant in Central Europe.Soil quality assessment takes into account the following features of the soil:texture soil nutrients(Ca,Mg,K,Na,P);acidity(pH KCl);and Corg-to-Nt ratio in the initial organic horizon.An analysis was conducted of classification systems using the MSQI validation correlation(at p=0.05)with vegetation features affected by succession:aboveground biomass of forest floor and ecological indicators of vascular plants(calculated on the basis of Ellenberg’s(2009)system).Eventually,in the analysed data set,the MSQI ranged from0.270 for soils on quaternary sands to 0.720 for a mix of quaternary loamy sands with neogene clays.Potential forest habitat types and the role of the pine in the next generation of tree stands on different RMS parent rock substrate were proposed.  相似文献   

7.
Unique 600-year-old tall herb taiga forests are located in the European North-East of Russia at the foothills of the Middle Urals and are characterized by extremely diverse and vertically differentiated vegetation. This study addresses how vegetation parameters such as net primary productivity and diversity influence the community structure of Collembola in fir forests of different ages. Sample plots were arranged along diversity and biomass gradients of vegetation: Vaccinium-moss, short herb-moss, and nitrophilous tall herb fir–spruce forests. Plants and collembolans were compared with respect to their species richness, abundance, species structure and traits. The number of species of vascular plants, mosses and liverworts along the studied gradient increased by about double, whereas the species richness of collembolans did not differ significantly. The biomass of vascular plants increased, whereas that of mosses declined, and the abundance of collembolans remained approximately consistent. Despite sharp differences in ground vegetation, in all phytocenoses the dominant Collembola species were widespread. However, the collembolan community of old-growth tall herb forests showed a trend of more complex structure reflected by greater evenness of abundances compared to younger ecosystems with less diverse ground vegetation. In conclusion, the springtail communities in forests that have developed spontaneously for over 600 years appeared to be no more complex than those in 200-year-old stands. Multi-species ground vegetation did not increase collembolan diversity and abundance indices. Thus, soil mesofauna (in this case, springtails) appeared to be relatively independent of long-term spontaneous development in vegetation in the studied area.  相似文献   

8.
Pterocarpus angolensis is an important timber tree of the miombo woodlands of sub-Saharan Africa. The species only grows in natural mixed forests and little is known about is productivity potential. This study aimed at investigating productivity of P. angolensis on a local scale in Namibia and Angola and on a regional scale in southern Africa. The most commonly accepted productivity indicator is stem diameter increment and this was used to study productivity at a regional scale. Indicators of productivity used at the local scale were basal area, proportional basal area and site form, which were derived from 217 forest inventory plots in Namibia and Angola. The productivity measures were modelled with abiotic site factors; biotic factors were added for the local scale. Results indicated that the most consistent site factors at local and regional scale were not related to climate but to forest cover, with the species having a competitive advantage in more open forests. Mean annual diameter increment in the open forests of Namibia was 0.51 cm after 50 years. Boosted regression tree models at a local scale showed that species presence can be modelled more successfully than species basal area, proportional basal area (correlation of 0.72 vs 0.56 and 0.45, respectively) and site form. The sites with the highest productivity of P. angolensis at the local scale had a temperature seasonality below 34.5 °C, a slope of less than 1.5°, tree cover less than 20% and stand basal area higher than 9 m2 ha?1. The results can assist in establishing a site-dependent growth model for the species and direct forest and fire management towards the most productive areas.  相似文献   

9.
Novel fire mitigation treatments that chip harvested biomass on site are increasingly prescribed to reduce the density of small-diameter trees, yet the ecological effects of these treatments are unknown. Our objective was to investigate the impacts of mechanical thinning and whole tree chipping on Pinus ponderosa (ponderosa pine) regeneration and understory plant communities to guide applications of these new fuel disposal methods. We sampled in three treatments: (1) unthinned forests (control), (2) thinned forests with harvested biomass removed (thin-only), and (3) thinned forests with harvested biomass chipped and broadcast on site (thin + chip). Plots were located in a ponderosa pine forest of Colorado and vegetation was sampled three to five growing seasons following treatment. Forest litter depth, augmented with chipped biomass, had a negative relationship with cover of understory plant species. In situ chipping often produces a mosaic of chipped patches tens of meters in size, creating a range of woodchip depths including areas lacking woodchip cover within thinned and chipped forest stands. Thin-only and thin + chip treatments had similar overall abundance and species richness of understory plants at the stand scale, but at smaller spatial scales, areas within thin + chip treatments that were free of woodchip cover had an increased abundance of understory vegetation compared to all other areas sampled. Relative cover of non-native plant species was significantly higher in the thin-only treatments compared to control and thin + chip areas. Thin + chip treated forests also had a significantly different understory plant community composition compared to control or thin-only treatments, including an increased richness of rhizomatous plant species. We suggest that thinning followed by either chipping or removing the harvested biomass could alter understory plant species composition in ponderosa pine forests of Colorado. When considering post-treatment responses, managers should be particularly aware of both the depth and the distribution of chipped biomass that is left in forested landscapes.  相似文献   

10.
Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We examined effects of varying prescribed fire-return intervals (1, 2, 4, 6, 8, and 10 years, plus unburned) on the abundance and composition of understory vegetation in 2007 and 2008 after 30+ years of fall prescribed burning at two ponderosa pine sites. We found that after 30 years, overstory canopy cover remained high, while understory plant canopy cover was low, averaging <12% on all burn intervals. We attributed the weak understory response to a few factors – the most important of which was the high overstory cover at both sites. Graminoid cover and cover of the major grass species, Elymus elymoides (squirreltail), increased on shorter fire-return intervals compared to unburned plots, but only at one site. Community composition differed significantly between shorter fire-return intervals and unburned plots at one site, but not the other. For several response variables, precipitation levels appeared to have a stronger effect than treatments. Our findings suggest that low-severity burn treatments in southwestern ponderosa pine forests, especially those that do not decrease overstory cover, are minimally effective in increasing understory plant cover. Thinning of these dense forests along with prescribed burning is necessary to increase cover of understory vegetation.  相似文献   

11.
Pan-European distribution maps have been compiled for six main species groups in Europe. The aim was to combine detailed tree species information from plot data of the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) with other existing spatial and statistical information on forests. The applied method involves the interpolation of the plot data using the geo-statistical interpolation method kriging and a scaling and calibration procedure which makes the maps correspond both to the Forest map of Europe on pixel level and to national forest inventory statistics at regional or national level. Output is a set of European-wide maps with a resolution of 1 km, showing the proportion of the main tree species groups as a percent of the total land area. The maps are considered to be potentially valuable input for various applications in the forestry and biodiversity field at a pan-European scale.  相似文献   

12.
Our study focused on the functional aspects of plant species and vegetation at the transition from larch (Larix decidua Mill.) forest to mountain pine (Pinus mugo Turra) stands on the alpine treeline ecotone. With increasing elevation, living conditions grow harsher, which is reflected in the plant species and functional trait composition of plant communities. At four different localities in the Slovenian Alps, relevés along an altitudinal gradient and according to vegetation type were made (European larch forests, larch trees-mountain pine shrubs, mountain pine shrubs), using standard Central European phytocoenological method. In the upper mountain pine belt, few differential species were found, since most species represented in mountain pine stands also occurred in the lower two vegetation belts, while there were many differential species in the lower forest belt. Species with considerable competitive ability and moderate stress tolerance dominated the upper treeline ecotone, whereas ruderality is poorly expressed. The importance of stress tolerance in plant strategies increased slightly in the mountain pine belt. Changes in the representation of some functional traits attributes were detected by vegetation belts, but complete species turnover did not occur. Changes in dominant life form involved greater cover of chamaephytes and nanophanerophytes in the upper mountain pine belt. Species with evergreen leaves dominated mountain pine stands and deciduous forest stands. The share of species with scleromorphic leaves increased in the direction of the mountain pine belt while the share of species with mesomorphic and hygromorphic leaves declined. Mountain pine stands create good conditions for the regeneration of tree species and colonisation by ecologically more demanding forest species while species of alpine grasslands withdraw on open areas. Since today’s treeline is lowered due to past human activity, an upward shift is expected. Also, considering the great importance of competition strategy, current conditions in mountain pine stands are favourable for future forest succession.  相似文献   

13.
We assessed species composition, richness and abundance of understory vegetation, as well as arbuscular mycorrhizal (AM) inoculum potential on the San Francisco Peaks, tallest mountains in Arizona, crossing a steep, south-facing elevational gradient. These mountains have a high conservation value due to their rare habitats but previous vegetation studies have been limited. Because mature trees in the Pinaceae do not form associations with AM fungi, there may be more variation in plant community and AM fungal associations in coniferous forest than in ecosystems where all species associate with AM fungi. Differences in species composition between forest types reflected differences in the historical disturbance regimes. Species richness was highest in ponderosa pine forest (32.6 ± 1.4 per 1000 m2 plot), although plant abundance was highest in aspen forest (49.4 ± 3.8%). Ponderosa pine and bristlecone pine forest were both high in species richness and contained species which were tolerant of frequent, low-intensity fire. Exotic species richness and abundance were highest in the lower elevations, which were also areas of high species richness and greater anthropogenic disturbance. Arbuscular mycorrhizal inoculum potential varied widely (1.2–80.1%), decreasing with increases in tree cover. We suggest indicator species that may be of use in monitoring these forests under changing climate and fire regimes.  相似文献   

14.
To examine the relationship between forest succession following fire and the composition of bird communities, we investigated the vegetation structure, bird population density, foraging behavior and guild structure in bamboo grasslands (11 years since the last fire), pine savanna (41 years), pine woodland (58 years), old-growth hemlock forest (never burned), and old-growth spruce forest (never burned) in the Tatachia area of central Taiwan. Canopy height, total foliage cover, tree density, total basal area of tree, total basal area of snags, foliage height diversity, and tree species richness all increased with successional age. However, shrub cover peaked in intermediate successional stages. The vertical profile of foliage cover was more diverse in later successional forests, which had more breeding bird species and ecological guilds. All the breeding bird species recorded in early and intermediate stages were also found distributed in the late successional forests. Because Taiwan has high precipitation and humidity, and most forest fires in Taiwan are caused by human activities, forest fires and large areas of early successional vegetation were probably rare in the mountain areas of Taiwan prior to the arrival of humans. Therefore, bird species have not had enough time to adapt to areas with early or intermediate successional vegetation. Moreover, late successional forests host all the major plant species found in the early and intermediate stages and have higher foliage height diversity index, which was positively correlated with the bird species richness and bird species diversity index in this study. As a result, all breeding bird species and guilds in the area can be found in late successional forests. Efforts for conserving avian diversity in Taiwan should focus on protecting the remaining native old-growth forests.  相似文献   

15.
不同强度间伐对长白山天然林林下植物多样性的影响   总被引:1,自引:0,他引:1  
对吉林森工集团松江河林业局辖区内的阔叶红松林、杂木林和杨桦林采取30%~40%(T1)、20%(T2)株数强度的均匀间伐处理,以不间伐处理为对照(CK),对间伐2 a后林下植物木本、草本植物进行调查,采用Simpson、Shannon-Wiener多样性指数和Pielou均匀度指数进行植物多样性分析,探讨不同强度间伐对3个林型林下植物多样性的影响。研究结果表明:T1间伐后3个林型的物种丰富度均有增加(杂木林木本植物例外),T2间伐后杨桦林木本植物丰富度降低,草本植物丰富度增加。两种间伐处理均增加阔叶红松林木本植物多样性,T1处理尤为明显。T1处理增加杂木林和杨桦林木本植物多样性,而T2间伐处理有较弱的降低作用。两种间伐处理均降低阔叶红松林和杂木林草本植物多样性,与强度无明显关系。随着间伐强度的增加杨桦林草本植物多样性增大。在长白山天然林中,较大间伐强度T1(30%~40%)能够有效提高植物多样性。  相似文献   

16.
Although intensively managed pine forests are common in the southeastern US, few studies describe how combinations of mechanical (MSP) and chemical site preparation (CSP) and herbaceous weed control (HWC) techniques affect bird communities that use early successional habitats within young pine forests. Therefore, we examined effects of six treatments of increasing management intensity via combinations of MSP (strip-shear and wide spacing or roller chop and narrow spacing) and CSP (application or no application) treatments with banded or broadcast HWC on bird communities in six loblolly pine (Pinus taeda) plantations in the Coastal Plain of North Carolina, USA, for 8 years following site preparation. Wide pine spacing and strip-shear MSP increased bird abundance and species richness over narrow spacing and chopped MSP for 6 years after planting. Chemical SP reduced bird abundance in year 2, increased bird abundance in year 6, had no effect on abundance after year 7, and did not affect species richness in any year. Total bird abundance and species richness were similar between banded and broadcast HWC. Site preparation and HWC had no effect on bird diversity and bird communities were most similar in treatments of similar intensity. Site preparation and HWC had few or no effects on birds based upon migratory status, habitat association, or conservation value. The addition of chemical site preparation or HWC had little effect on birds beyond pine spacing, and bird abundance was not proportional to management intensity. Although we observed treatment effects, all treatments provided habitat used by a variety of bird species, and pine plantations may play an increasingly important role in bird conservation as forests become fragmented and converted to other land uses and as natural processes that create early successional habitat, such as fire, are suppressed.  相似文献   

17.
The conversion of anthropogenic into more natural, self-regenerating forests is one of the major objectives of forestry throughout Europe. In this study, we present investigations on permanent plots with different silvicultural treatment in NE German pine stands. Management of old-growth pine stands on acidic and nutrient-poor sandy sites differs in fencing, thinning, and planting of certain tree species. The investigations were carried out on the community, population, and individual level of the pine forest ecosystems. Thus, vegetation changes, size and height of tree populations, and height increment of tree individuals were observed over a time span of 6 years. Special attention was paid to short-lived tree species such as, e.g., Frangula alnus and Sorbus aucuparia, as well as to Fagus sylvatica as one of the most typical forest tree species of Central Europe. Vegetation changes are interpreted as a consequence of natural regeneration of formerly degraded forest sites, involving an increase in nutrient availability. High browsing pressure can be considered as a key factor for the inhibition of tree seedlings and growth of saplings. Some Sorbus aucuparia individuals, however, succeeded in growing out of the browsing height also in unfenced stands. Few found specimens of Fagus sylvatica proved that this species is able to establish spontaneously on these relatively dry, acidic sites under continental climate influence. Such natural regeneration processes, also including spontaneous rejuvenation of trees, can be integrated into silviculture as passive forest conversion management. An active management like thinning of stands, planting of trees, and fencing can accelerate forest conversion with regard to height growth and species number of trees.  相似文献   

18.
We compared pristine and managed beech–fir mixed forestsin Bosnia to assess the impact of management on plant speciesdiversity, vegetation structure and soil–vegetation interaction.Traditionally, management of Bosnian mixed forests has beenby the opening of small gaps, similar to those occurring naturally.Species composition revealed three successional vegetation groups,two mainly in managed forests (regenerating and mature) andone mainly in pristine old growth forests. Managed sites showeda tendency to be more diverse in plant species than pristinesites, and were also more heterogeneous. Diversity was clearlyexplained by vegetation groups; mature managed stands showingthe highest plant diversity and regenerating stands the lowest,both in terms of species richness and abundance distributions.Plant diversity decreased with canopy cover and increased withcarbon concentration in the Ah horizon, being accurately modelledby both factors. Although topographical conditions were homogeneousamong sites, vegetation was very sensitive to small changesin environmental variables at the local scale. Vegetation reflecteda combination of past situations, represented by C in the Ahhorizon, and current conditions, represented by canopy coverand the C : N ratio in the LF organic layers, suggesting bothsensitivity to present-day environmental conditions as wellas the imprint of past events.  相似文献   

19.
Enhancement of Juniperus thurifera recruitment and colonisation by oak and pine species has been related at the local level to changes in livestock pressure. We used forest inventory data from Castilla y León Autonomous Region (Central Spain), an area comprising 34% of the world range of J. thurifera, to assess whether this process is occurring at a larger scale. We compared tree composition and density in a set of 659 permanent plots over a 10-year period. Logistic models and redundancy analysis were used to assess the effect on this process of parameters such as livestock pressure, propagule availability and climatic conditions. Between 1992 and 2002, juniper woodlands became denser (1.31% juniper stem year−1) and tree diversity increased due to rapid colonisation by oaks and pines (2.21% occupied plots year−1). In addition, the presence of juniper increased in other types of forests at a moderate rate (0.6% y−1). Thus, we observed both a disruption of the borders between current forest types and a generalised increase in α-diversity of tree species. The seed source was the main factor explaining colonisation rate, suggesting that the pace of colonisation is critically constrained by the spatial configuration of the landscape and the local propagule availability of the colonising species. If the current colonisation trends continue, monospecific juniper woodlands will become very scarce by the end of the twenty-first century.  相似文献   

20.
We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by ecoregions. Such responses were quantified as species establishment coefficients. These coefficients were used to parameterize a spatially explicit landscape model, LANDIS. Species response to climate warming at the landscape scale was simulated with LANDIS, which integrates ecosystem dynamics with spatial processes including seed dispersal, fire disturbance, and forest harvesting. Under a 5 °C annual temperature increase predicted by global climate models (GCM), our simulation results suggest that significant change in species composition and abundance could occur in the two ecoregions in the study area. In the glacial lake plain (lakeshore) ecoregion under warming conditions, boreal and northern hardwood species such as red oak, sugar maple, white pine, balsam fir, paper birch, yellow birch, and aspen decline gradually during and after climate warming. Southern species such as white ash, hickory, bur oak, black oak, and white oak, which are present in minor amounts before the warming, increase in abundance on the landscape. The transition of the northern hardwood and boreal forest to one dominated by southern species occurs around year 200. In the sand barrens ecoregion under warming conditions, red pine initially benefits from the decline of other northern hardwood species, and its abundance quickly increases. However, red pine and jack pine as well as new southern species are unable to reproduce, and the ecoregion could transform into a region with only grass and shrub species around 250 years under warming climate. Increased fire frequency can accelerate the decline of shade-tolerant species such as balsam fir and sugar maple and accelerate the northward migration of southern species. Forest harvesting accelerated the decline of northern hardwood and boreal tree species. This is especially obvious on the barrens ecoregion, where the intensive cutting regime contributed to the decline of red pine and jack pine already under stressed environments. Forest managers may instead consider a conservative cutting plan or protective management scenarios with limited forest harvesting. This could prolong the transformation of the barrens into prairie from one-half to one tree life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号