首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collection of Pseudomonas syringae and viridiflava isolates was established between 1993 and 2002 from diseased organs sampled from 36 pear, plum and cherry orchards in Belgium. Among the 356 isolates investigated in this study, phytotoxin, siderophore and classical microbiology tests, as well as the genetical methods REP-, ERIC- and BOX- (collectively, rep-) and IS50-PCR, enabled identification to be made of 280 isolates as P. syringae pv. syringae (Pss), 41 isolates as P. syringae pv. morsprunorum (Psm) race 1, 12 isolates as Psm race 2, three isolates as P. viridiflava and 20 isolates as unclassified P. syringae. The rep-PCR methods, particularly BOX-PCR, proved to be useful for identifying the Psm race 1 and Psm race 2 isolates. The latter race was frequent on sour cherry in Belgium. Combined genetic results confirmed homogeneities in the pvs avii, and morsprunorum race 1 and race 2 and high diversity in the pv. syringae. In the pv. syringae, homogeneous genetic groups consistently found on the same hosts (pear, cherry or plum) were observed. Pathogenicity on lilac was sometimes variable among Pss isolates from the same genetic group; also, some Psm race 2 and unclassified P. syringae isolates were pathogenic to lilac. In the BOX analyses, four patterns included 100% of the toxic lipodepsipeptide (TLP)-producing Pss isolates pathogenic to lilac. Many TLP-producing Pss isolates non-pathogenic to lilac and the TLP-non-producing Pss isolates were classified differently. Pseudomonas syringae isolates that differed from known fruit pathogens were observed in pear, sour cherry and plum orchards in Belgium.  相似文献   

2.
Of thirty fluorescent Pseudomonas isolates originating from symptomatic tissues of sweet (Prunus avium) and sour cherry (Prunus cerasus), plum (Prunus domestica), peach (Prunus persica) and apricot (Prunus armeniaca), 23 were identified as P. syringae using LOPAT tests. Further characterization of those isolates by GATTa and L-lactate utilization tests showed that 10 of them belonged to race 1, six to race 2 of P. syringae pv. morsprunorum (Psm) and six other isolates were identified as pathovar syringae (Pss). One isolate (791) was determined as atypical. Phenotypic determination and genetic analysis of studied isolates for toxin production revealed that isolates of Pss produced syringomycin, 3 Psm race 1 produced coronatine and 6 Psm race 2 produced yersiniabactin. Genetic diversity of all isolates was evaluated with the PCR melting profile (PCR MP) method. A dendrogram constructed with PCR MP patterns showed positive correlation with phenotypically distinguished pathovars. Isolates of Psm races 1 and 2 formed distinct, tight clusters, whereas Pss isolates were more heterogeneous. Isolate 791 was placed within Pss isolates. Bacteria identified as Pss caused more severe symptoms on immature cherry fruits compared to Psm, which corresponded to determined pathovars and races.  相似文献   

3.
Bacterial canker is one of the most important diseases of cherry (Prunus avium). This disease can be caused by two pathovars of Pseudomonas syringae: pv. morsprunorum and pv. syringae. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) was investigated as a method to distinguish pathovars, races and isolates of P. syringae from sweet and wild cherry. After amplification of total genomic DNA from 87 isolates using the REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX primers, followed by agarose gel electrophoresis, groups of isolates showed specific patterns of PCR products. Pseudomonas syringae pv. syringae isolates were highly variable. The differences amongst the fingerprints of P. syringae pv. morsprunorum race 1 isolates were small. The patterns of P. syringae pv. morsprunorum race 2 isolates were also very uniform, with one exception, and distinct from the race 1 isolates. rep-PCR is a rapid and simple method to identify isolates of the two races of P. syringae pv. morsprunorum; this method can also assist in the identification of P. syringae pv. syringae isolates, although it cannot replace inoculation on susceptible hosts such as cherry and lilac.  相似文献   

4.
Bacterial strains isolated from cankers of wild cherry trees (Prunus avium) in France were characterized using numerical taxonomy of biochemical tests, DNA–DNA hybridization, repeat sequence primed-PCR (rep-PCR) based on REP, ERIC and BOX sequences, heteroduplex mobility assay (HMA) of internal transcribed spacer (ITS) as well as pathogenicity on wild cherry trees and other species of Prunus. They were compared to reference strains of Pseudomonas syringae pathovars isolated from wild and sweet cherry and various host plants. Wild cherry strains were closely related to P. syringae (sensu lato) in LOPAT group Ia (+ - - - +). Wild cherry strains were pathogenic to wild cherry trees and produced symptoms similar to those observed in orchards. They were pathogenic also, but at a lesser extent, to sweet cherry trees (cv. Napoléon). The wild cherry strains were collected from five different areas in France and appeared to constitute a very homogeneous group. They showed an homogenous profile of a biochemical and physiological characteristics. They were closely related by DNA–DNA hybridization and belonged to genomospecies 3 `tomato'. Rep-PCR showed that wild cherry strains constitute a tight group distinct from P. s. pv. morsprunorum races 1 and 2 and from other P. syringae pathovars. HMA profiles indicated that the ITS of all wild cherry strains were identical but different from P. s. pv. persicae strains since the two heteroduplex bands with reduced mobility were generated by hybridization with the P. s. pv. persicae pathotype strain CFBP 1573. The 8 genomospecies of Gardan et al. (1999) have not been converted into formal species as they cannot be differentiated by biochemical tests. Therefore, the pathovar system within P. syringae was currently used. P. syringae pv. avii is proposed for this bacterium causing a wild cherry bacterial canker and strain CFBP 3846 (NCPPB 4290, ICMP 14479) is designated as the pathotype.  相似文献   

5.
The pathogenicity of 99 Belgian Pseudomonas syringae strains representative of the genetic diversity encountered in Belgian fruit orchards was evaluated by using 17 pathogenicity tests conducted on pear, cherry, plum, lilac, sugar beet and wheat. The P. syringae pv. morsprunorum strains were pathogenic to stone fruit species but the race 1 strains possessing the cfl gene involved in coronatine production were pathogenic in more tests than those lacking the gene. Also, sweet cherry twigs were a better material to detect pathogenic strains of race 1 and sour cherry twigs of race 2, which accorded with race 2 presence in sour cherry orchards in Belgium. Three groups were defined in the pv. syringae based on pathogenicity. One group pathogenic in 71.1% of the tests and to lilac included toxic lipodesipeptide-producing (TLP+) strains. The second group pathogenic in 26.8% of the tests and non-pathogenic to lilac included TLP+ strains. The thirth group pathogenic in 9.1% of the tests and almost specifically pathogenic to pear included TLP− strains. The three groups were genetically heterogeneous. Although strain-host relationships were noted within the pv. syringae, aptata and atrofaciens when considering the strain origins, such relationships were not found in the pathogenicity tests, suggesting that pathogenicity tests could probably not reproduce all the aspects of the host-pathogen interactions. None of the pathogenicity tests was able to provide all the information provided by the complete study. A test on pear buds indicated that strains different from the pv. syringae were pathogenic to pear.  相似文献   

6.
A bacterial strain, CFBP 3388, isolated from Vetch (Vicia sativa, L.) was identified asP. s. pv.syringae on the basis of nutritional and biochemical patterns which were obtained with classical tests and the Biolog system. It caused necrotic symptoms typical ofP. s. pv.syringae on bean leaves and pods after artificial inoculation. However, the isolate caused a citrulline-reversible inhibition ofE. coli in phaseolotoxin bioassay. Furthermore, with CFBP 3388 DNA as template a 1900 bp DNA fragment, specific for the phaseolotoxin DNA cluster ofP. s. pv.phaseolicola, was amplified by PCR. This is the first demonstration that an isolate ofP. syringae that is not pv.phaseolicola can produce phaseolotoxinAbbreviations bp base pair - kb kilobase - OCT Ornithine Carbamoyl Transferase  相似文献   

7.
The pathogenicity and virulence of ten GreekPseudomonas syringae pv.syringae strains from different hosts (citrus, pear, apple, peach and cherry) were evaluated using three different laboratory methods, which produced results in good agreement. All ten strains were virulent on apple, pear, cherry and peach trees. The extent of tissue colonized varied considerably among strains and cultivars. On excised shoots and twigs of apple and pear, strains BPI 176, BPI 203, PI 2 and PI 14 were the most virulent and strains BPI 689, BPI 992, BPI 4, BPI 20, PI 18 and PI 19 were the least virulent. On excised shoots and twigs of peach and cherry, strains BPI 176, BPI 203, PI 2, PI 14, PI 18 and PI 19 were the most virulent and strains BPI 4 and BPI 20 were the least virulent. Moderate virulence was evinced by strains BPI 689 and BPI 992. These pathogenicity assays are proposed as rapid and reproducible screening systems to evaluate the susceptibility of apple, pear, cherry and peach cultivars to this bacterial pathogen.  相似文献   

8.
During the period 2006–2011, Pseudomonas syringae pv. syringae caused a bacterial inflorescence rot (BIR) epidemic in an Australian cool climate viticultural region. Molecular multilocus sequence typing of ‘housekeeping’ genes (MLST), biochemical testing and analysis of molecular variance (AMOVA) were used to characterize the genotypes and phenotypes of P. syringae pv. syringae grapevine isolates. Comparison of the MLST data with exemplars of phylogroups available at PAMDB demonstrated that the BIR isolates formed a new clade within P. syringae pv. syringae phylogroup 2 (PG02): putatively designated PG02f. Analysis of the MLST and phenotypic data by AMOVA demonstrated some genetic differences between the BIR isolates and the general vineyard P. syringae pv. syringae population. Isolates positive for syringopeptin, syringomycin and tyrosinase, tobacco leaf hypersensitivity reaction (HR), ampicillin resistance and grapevine leaf pathogenicity were genetically distinct from those negative for these factors. This study has shown that, generally, the core genome of P. syringae pv. syringae is only weakly associated with the virulence-associated traits. As the new phylogroup PG02f consists of the epidemic BIR isolates and nonpathogenic grapevine isolates, these genetically similar isolates differ greatly in pathogenicity and most of the other tested phenotypic traits. However, within the PG02f group, tobacco leaf HR and presence of sylC (the gene for phytotoxin syringolin A) are associated with the BIR and bacterial leaf spot (BLS) isolates, and negative for the nonpathogens, indicating that these two virulence factors may be associated with vineyard pathogenicity within the new Australian phylogroup.  相似文献   

9.
The development of a rapid detection method for Xanthomonas campestris pv. campestris (Xcc) in crucifer seeds and plants is essential for high-throughput certification purposes. Here we describe a diagnostic protocol for the identification/detection of Xcc by PCR amplification of fragments from the pathogenicity-associated gene hrcC. Under stringent conditions of amplification, a PCR product of 519 bp from hrcC was obtained from a collection of 46 isolates of Xcc, with the exception of two isolates from radish. No amplicons were obtained from 39 pure cultures of the phytopathogenic bacteria Xanthomonas campestris pv. cerealicola, X. campestris pv. juglandis, X. campestris pv. pelargonii, X. campestris pv. vitians, X. arboricola pv. pruni, X. axonopodis pv. phaseoli, X. axonopodis pv. vesicatoria, X. vesicatoria, Pseudomonas syringae pv. phaseolicola, P. syringae pv. syringae, P. syringae pv. tomato, P. fluorescens, P. marginalis, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum. In addition, PCR reactions were negative for fifty unidentified environmental isolates purified from the surface of crucifers. The PCR fragment was obtained from four strains previously classified as X. campestris pv. aberrans, X. campestris pv. armorociae, X. campestris pv. barbarae and X. campestris pv. incanae using pathogenicity assays. Our PCR protocol specifically detected Xcc in inoculated leaves, seeds and naturally infected leaves of crucifers.  相似文献   

10.
Bacterial canker is a major disease of Prunus avium (cherry), Prunus domestica (plum) and other stone fruits. It is caused by pathovars within the Pseudomonas syringae species complex including P. syringae pv. morsprunorum (Psm) race 1 (R1), Psm race 2 (R2) and P. syringae pv. syringae (Pss). Psm R1 and Psm R2 were originally designated as the same pathovar; however, phylogenetic analysis revealed them to be distantly related, falling into phylogroups 3 and 1, respectively. This study characterized the pathogenicity of 18 newly genome‐sequenced P. syringae strains on cherry and plum, in the field and laboratory. The field experiment confirmed that the cherry cultivar Merton Glory exhibited a broad resistance to all clades. Psm R1 contained strains with differential specificity on cherry and plum. The ability of tractable laboratory‐based assays to reproduce assessments on whole trees was examined. Good correlations were achieved with assays using cut shoots or leaves, although only the cut shoot assay was able to reliably discriminate cultivar differences seen in the field. Measuring bacterial multiplication in detached leaves differentiated pathogens from nonpathogens and was therefore suitable for routine testing. In cherry leaves, symptom appearance discriminated Psm races from nonpathogens, which triggered a hypersensitive reaction. Pathogenic strains of Pss rapidly induced disease lesions in all tissues and exhibited a more necrotrophic lifestyle than hemibiotrophic Psm. This in‐depth study of pathogenic interactions, identification of host resistance and optimization of laboratory assays provides a framework for future genetic dissection of host–pathogen interactions in the canker disease.  相似文献   

11.
A rapid detection method based on PCR amplification of Pseudomonas syringae pv. tomato chromosomal sequences was developed. Primer design was based on the P. syringae DC3000 hrpZPst gene, which maps on a pathogenicity-associated operon of the hrp/hrc pathogenicity island.A 532 bp product corresponding to an internal fragment of hrpZPst was amplified from 50 isolates of P. syringae pv. tomato belonging to a geographically representative collection. The amplification product was also obtained from three coronatine-deficient strains of P. syringae pv. tomato.On the other hand, PCR did not produce any such products from 100 pathogenic and symbiotic bacterial strains of the genera Pseudomonas, Xanthomonas, Erwinia, and Rhizobium and 75 unidentified bacterial saprophytes isolated from tomato plants. The method was tested using leaf and fruit spots from naturally-infected tomato plants and asymptomatic nursery plants and artificially contaminated tomato seeds. The results confirmed the high specificity observed using pure cultures.  相似文献   

12.
Forty-four bacterial isolates were obtained from infected wheat, barley and various grasses from different regions of Iran. All isolates were bacteriologically similar toXanthomonas campestris and some of their physiological and biochemical features can be useful for a primary differentiation between them. Depending on their pathogenicity, the isolates were split into two groups; the wheat group isolated from wheat, barley and grasses could infect artificially wheat, barley, rye,Agropyron elongatum, Bromus inermis, andLolium multiflorum but not oat, whereas the barley group obtained from cultivated or wild barley was pathogenic to barley only. From their bacteriological characteristics and host range, the barley and the wheat group isolated were identified asX. campestris pvs.hordei andcerealis, respectively.Aegilops sp.,Sclerochloa dura, andHeteranthelium sp. were, for the first time, shown to be hosts ofX. c. pv.cerealis.  相似文献   

13.
Flagellar antigen specificity was studied for the speciesPseudomonas syringae, P. viridiflava andP. cichorii. After checking their motility, bacteria were reacted against six polyclonal antisera containing anti-O (LPS) and anti-H (flagellar) antibodies by indirect immunofluorescent staining. Two distinct flagellar serotypes (H1 and H2) were described. The distribution of H1 and H2 serotypes was then determined for a collection of 88 phytopathogenicPseudomonas strains. Serotype H1 was possessed byP. syringae pv.aptata (12 strains),P. s. pv.helianthi (2),P. s. pv.pisi (11), andP. s. pv.syringae (13). Serotype H2 was possessed byP. cichorii (2),P. s. pv.delphinii (1),P. s. pv.glycinea (4),P. s. pv.lacrymans (1),P. s. pv.mori (1),P. s. pv.morsprunorum (10),P. s. pv.persicae (1),P. s. pv.phaseolicola (8),P. s. pv.tabaci (10) andP. s. pv.tomato (1).P. viridiflava (5) revealed HI, H2 and untyped flagella. The following isolates were untypable by the H1/H2 system:P. corrugata (3),P. fluorescens (2),P. tolaasii (1). H1/H2 serotypes distribution is not linked toP. syringae O-serogroups. On the other hand, H1/H2 distribution seems remarkably linked to the new genospecies of theP. syringae group.Abbreviations CFBP French Collection of Phytopathogenic Bacteria, Angers, France - ICMP International Collection of Micro-organisms from Plants, Auckland, New-Zealand - NCPPB National Collection of Plant Pathogenic Bacteria, Harpenden, Great Britain  相似文献   

14.
Pseudomonas syringae pv. aptata is the causal agent of bacterial leaf spot disease of sugar beet (Beta vulgaris). During 2013, 250 samples were collected from leaf lesions with typical symptoms of bacterial leaf spot in commercial fields of sugar beet in Serbia, and 104 isolates of Psyringae pv. aptata were obtained. Identification and characterization was performed using biochemical, molecular and pathogenicity tests. Identification included LOPAT tests and positive reactions using primers Papt2F and Papt1R specific for Psyringae pv. aptata. Repetitive (rep) sequence‐based PCR typing with ERIC, REP and BOX primers revealed high genetic variability among isolates and distinguished 25 groups of different fingerprinting profiles. Pulse‐field gel electrophoresis (PFGE) and multilocus sequence analysis (MLSA) of representative isolates showed higher genetic variability than in rep‐PCR analysis and distinguished three and four major genetic clusters, respectively. A pathogenicity test performed with 25 representative isolates on four cultivars of sugar beet confirmed the occurrence of leaf spot disease and showed correlation between the most aggressive isolates and the genetic clusters obtained in MLSA. All these findings point to the existence of several lines of Psyringae pv. aptata infection in Serbia that are genetically and pathologically different.  相似文献   

15.
A total of 298 bacterial isolates were collected from pea cultivars, landraces and breeding lines in North-Central Spain over several years. On the basis of biochemical-physiological characteristics and molecular markers, 225 of the isolates were identified as Pseudomonas syringae, either pv. pisi (110 isolates) or pv. syringae (112), indicating that pv. syringae is as frequent as pv. pisi as causal agent of bacterial diseases in pea. Most strains (222) were pathogenic on pea. Further race analyses of P. syringae pv. pisi strains identified race 4 (59.1% of the isolates of this pathovar), race 2 (20.0%), race 6 (11.8%), race 5 (3.6%) and race 3 (0.9%). Five isolates (4.6%) showed a not-previously described response pattern on tester pea genotypes, which suggests that an additional race 8 could be present in P. syringae pv. pisi. All the isolates of P. syringae pv. syringae were highly pathogenic when inoculated in the tester pea genotypes, and no significant pathogenic differences were observed. Simultaneous infections with P. syringae pv. pisi and pv. syringae in the same fields were observed, suggesting the importance of resistance to both pathovars in future commercial cultivars. The search for resistance among pea genotypes suitable for production in this part of Spain or as breeding material identified the presence of resistance genes for all P. syringae pv. pisi races except for race 6. The pea cultivars Kelvendon Wonder, Cherokee, Isard, Iceberg, Messire and Attika were found suitable sources of resistance to P. syringae pv. syringae.  相似文献   

16.
Bacterial blight of cantaloupe (Cucumis melo) caused by Pseudomonas syringae pv. aptata was first observed in south-western France and has since spread to all cantaloupe-growing areas of this country. Use of pesticides registered for this disease has proved ineffective and no commercial cultivars of cantaloupe are resistant to this blight. To develop control strategies for this disease, the principal sources of inoculum were investigated. Among the different sources of inoculum studied, we report the isolation of P. syringae pv. aptata from irrigation water retention basins in south-western France using the immunofluorescence colony-staining (IFC) method. In this study, the pathogen was detected at a low concentration (12 and 70cful–1) in two different retention basins. These results suggest that P. syringae pv. aptata can survive in water used to irrigate cantaloupe crops and could be a source of inoculum for epidemics of bacterial blight. To develop control strategies for this bacterial disease, the importance of water retention basins as sources of inoculum for bacterial blight of cantaloupe needs to be evaluated relative to other potential sources such as seeds, plants from nurseries and plant debris in the soil.  相似文献   

17.
Resistance to pea bacterial blight (Pseudomonas syringae pv. pisi) in different plant parts was assessed in 19 Pisum sativum cultivars and landraces, carrying race-specific resistance genes (R-genes) and two Pisum abyssinicum accessions carrying race-nonspecific resistance. Stems, leaves and pods were inoculated with seven races of P. s. pv. pisi under glasshouse conditions. For both race-specific and nonspecific resistance, a resistant response in the stem was not always associated with resistance in leaf and pod. Race-specific genes conferred stem resistance consistently, however, there was variability in the responses of leaves and pods which depended on the matching R-gene and A-gene (avirulence gene in the pathogen) combination. R2 generally conferred resistance in all plant parts. R3 or R4 singly did not confer complete resistance in leaf and pod, however, R3 in combination with R2 or R4 enhanced leaf and pod resistance. Race-nonspecific resistance conferred stem resistance to all races, leaf and pod resistance to races 2, 5 and 7 and variable reactions in leaves and pods to races 1, 3, 4 and 6.Disease expression was also studied in the field under autumn/winter conditions. P. sativum cultivar, Kelvedon Wonder (with no R genes), and two P. abyssinicum accessions, were inoculated with the most frequent races in Europe under field conditions (2, 4 and 6). Kelvedon Wonder was very susceptible to all three races, whereas P. abyssinicum was much less affected. The combination of disease resistance with frost tolerance in P. abyssinicum enabled plants to survive through the winter. A breeding strategy combining race-nonspecific resistance derived from P. abyssinicum with race-specific R-genes should provide durable resistance under severe disease pressure.  相似文献   

18.
An early event correlated with the gene-for-gene hypersensitive response (HR) is the accumulation of active oxygen species (AOS), also known as the oxidative burst. We present data that genetically demonstrates that the oxidative burst is a downstream component of the RPS2- avrRpt2gene-for-gene signal cascade. An in planta AOS assay using the fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) was modified for use with the Arabidopsis thaliana / Pseudomonas syringae pv.tomato (P. syringae pv. tomato) model system. An oxidative burst occurred between 8 and 15 hpi with avirulent P. syringae pv. tomato(avrRpt2), but not with virulent P. syringae pv. tomato. This burst preceded cell death and was not observed in the RPS2 Arabidopsis mutantsrps2-101C and rps2-201 inoculated with avirulent P. syringae pv. tomato. An HR-like response has been observed when plants undergoing a systemic acquired resistance (SAR) response are challenged with a normally virulent pathogen (manifestation stage of SAR), however an HR-like oxidative burst was not detected by the in planta AOS assay during this stage of SAR.  相似文献   

19.
Twenty-eight Pyricularia isolates from two wild foxtails—green foxtail (Setaria viridis) and giant foxtail (S. faberii)—in Japan were taxonomically characterized by DNA analyses, mating tests, and pathogenicity assays. Although most of the isolates failed to produce perithecia in mating tests with Magnaporthe oryzae, a diagnostic polymerase chain reaction-restriction fragment length polymorphism phenotype of M. oryzae was detected in the beta-tubulin genomic region in all isolates. The pathogenicity assays revealed that host ranges of the isolates were similar to those of isolates from foxtail millet (S. italica), which were exclusively pathogenic on foxtail millet. In addition to the 28 isolates from wild foxtails, 22 Pyricularia isolates from 11 other grasses were analyzed by RFLP using single-copy sequences as probes. In a dendrogram constructed from the RFLP data, isolates that were previously identified as M. oryzae formed a single cluster. All the wild foxtail isolates formed a subcluster with foxtail millet isolates within the M. oryzae cluster. From these results, we conclude that Pyricularia isolates from the wild foxtails are closely related to isolates from foxtail millet and should be classified into the Setaria pathotype of M. oryzae.  相似文献   

20.
Bacterial speck caused byPseudomonas syringae pv.tomato is an emerging disease of tomato in Tanzania. Following reports of outbreaks of the disease in many locations in Tanzania, 56 isolates ofP. syringae pv.tomato were collected from four tomato- producing areas and characterized using pathogenicity assays on tomato, carbon source utilization by the Biolog Microplate system, polymerase chain reaction and restriction fragment length polymorphism (RFLP) analysis. All theP. syringae pv.tomato isolates produced bacterial speck symptoms on susceptible tomato (cv. ‘Tanya’) seedlings. Metabolic fingerprinting profiles revealed diversity among the isolates, forming several clusters. Some geographic differentiation was observed in principal component analysis, with isolates from Arusha region being more diverse than those from Iringa and Morogoro regions. The Biolog system was efficient in the identification of the isolates to the species level, as 53 of the 56 (94.6%) isolates ofP. syringae pv.tomato were identified asPseudomonas syringae. However, only 23 isolates out of the 56 (41.1%) were identified asPseudomonas syringae pv.tomato. The results of this work indicate the existence ofP. syringae pv.tomato isolates in Tanzania that differ significantly from those used to create the Biolog database. RFLP analysis showed that the isolates were highly conserved in theirhrpZ gene. The low level of genomic diversity within the pathogen in Tanzania shows that there is a possibility to use resistant tomato varieties as part of an effective integrated bacterial speck management plan. http://www.phytoparasitica.org posting August 8, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号