首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

2.
In order to determine the effect of land use on forest floor and soil, two adjacent sites with different land use were investigated in Gallura (northern Sardinia, Italy). One site is a Quercus suber L. forest mainly used for cork production and the other is an open Quercus suber L. forest where livestock is put out to graze. In each site one soil profile was studied to characterize the mineral soil, and five humus profiles were opened along a vegetation transect, were studied to characterize the forest floor. Samples of L, F and H horizons of the forest floor and of the A mineral horizons were collected and analysed for each profile. In the site mainly used for cork production well‐developed ectorganic (L, F and H) horizons are always present, with a total thickness ranging from 5·2 to 9·5 cm. Humus profile is of the Moder type, while mineral soils have an A–C profile, generally 50 cm deep. Organic matter content in the forest floor ranges from 1·76–3·72 kg m−2 and nutrients content in the mineral soil is high. In the site used chiefly for grazing the ectorganic horizons are very poorly developed, with a total thickness ranging from 1–3 cm, except for some islands under the Quercus suber L. canopy where the total thickness may reach 5·3 cm. Humus profile is of the Mull type, but the used classification system seems not appropriate when the tree density is below a critical limit. Mineral soils have an A–C profile 20–25 cm deep. The organic matter content in the forest floor ranges from 0·45 to 1·84 kg m−2, while nutrient content in the mineral soil maintains at high level, even higher than in the former case for C, N and Ca, probably in relation with higher supply of cattle excreta. Sheet erosion is evident in the site. It is concluded that cork production will maintain a sustainable forest floor development in cork–oak forest ecosystem, whereas cattle grazing, fires and ploughing in cork–oak forests may be considered to trigger off severe soil degradation processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
《Geoderma》2006,130(1-2):35-46
Tropical soils are generally depleted in organic carbon (OC) due to environmental conditions favouring decomposition and mineralisation of soil organic matter (SOM). In Northern Laos, sloping soils are subjected to slash and burn agriculture, which leads to production of black carbon (BC), a stable SOM fraction. BC may directly influence the quantity and quality of SOM sequestered in tropical soils. The aim of this study was to quantify BC content and evaluate its impact on the chemical and stable isotope composition of SOM along a catena composed of Dystrochrepts at the bottom of the slope, Alfisols (midslope) and Inceptisols at the top of the slope for different burning frequencies. Six soil profiles, situated on a slope ranging from a river bank to the summit of a hill, were sampled. The stable isotope compositions (13C and 15N) of samples from both organo-mineral A and mineral B and C horizons were determined. The chemical composition of SOM analysed by 13C CPMAS NMR spectroscopy and the contribution of BC determined by dichromate oxidation were compared to OC and iron oxide content as well as land management including the burning cycle.The highest C contents were recorded at midslope positions. At any position on the slope, δ13C and δ15N ratios showed an enrichment in 13C and 15N with increasing soil depth. The OC content of soil horizons was related to their aryl C content, which is the component most likely driven by BC inputs. The BC contributions analysed by dichromate oxidation ranged from 3% to 7% of total OC. A positive correlation was obtained between aryl C and the BC content of SOM. Comparison of BC content and stable isotope composition of SOM showed that BC influenced the δ13C and the δ15N stable isotope ratios of these soils. BC was not associated with the mineral phase. The highest BC contents were measured under intensive slash and burn practice in the vicinity of the boundary of Alfisols at the top of the slope, where erosion was severe. Therefore, BC, a SOM component strongly influencing OC sequestration of these soils, is susceptible to translocation down the slope.  相似文献   

4.
The biochemical quality of soil organic matter (SOM) was studied in various profiles under Quercus rotundifolia Lam. stands on calcareous parent material. Special attention was paid to the question of how biochemical quality is affected by position within the soil profile (upper versus lower horizons). The following global SOM characteristics were investigated: (a) overall recalcitrance, using hydrolysis with either hydrochloric or sulphuric acid; (b) hydrolyzable carbohydrates and polyphenolics; (c) extractability by hot water and quality of the extract; and (d) abundance of inert forms of SOM: charcoal and soot-graphite. The recalcitrance of soil organic carbon (OC) decreases with depth, following the order: H horizons>A horizons>B horizons. In contrast, the recalcitrance of nitrogen is roughly maintained with depth. The ratio carbohydrate C to total OC increases from H to B horizons, due to the increasing importance of cellulosic polysaccharides in B horizons, whereas other carbohydrates are maintained throughout the soil profile at a relatively constant level, 12-15% of the total OC in the horizon. Whereas the quality of the hydrolyzable carbon (measured by the carbohydrate to polyphenolic C ratio) decreases with depth from H to B horizons, the quality of the hot-water extractable organic matter is much higher in B horizons than in A or H horizons. The relative importance of both charcoal and soot-graphitic C and N tends to increase with depth. The ratio black/total is usually higher for N than for C, a result that suggests that inert SOM may represent a relevant compartment in the nitrogen cycle. Overall, our data suggest that in Mediterranean forest soils the organic matter in B horizons could be less stable than often thought.  相似文献   

5.
We tested the hypothesis whether organic matter in subsoils is a large contributor to organic carbon (OC) in terrestrial ecosystems and if survival of organic matter in subsoils is the result of an association with the soil mineral matrix. We approached this by analyzing two forest soil profiles, a Haplic Podzol and a Dystric Cambisol, for the depth distribution of OC, its distribution among density and particle‐size fractions, and the extractability of OC after destruction of the mineral phase by treatment with hydrofluoric acid (HF). The results were related to indicators of the soil mineralogy and the specific surface area. Finally, scanning electron microscopy combined with energy dispersive X‐ray spectroscopy (SEM‐EDX) was used to visualize the location of OC at mineral surfaces and associations with elements of mineral phases. The subsoils (B and C horizons) contained 40—50% of the soil OC including the organic forest floor layers. With increasing depth of soil profiles (1) the radiocarbon ages increased, and (2) increasing portions of OC were either HF‐soluble, or located in the density fraction d >1.6 g cm—3, or in the clay fraction. The proportions of OC in the density fraction d >1.6 g cm—3 were closely correlated to the contents of oxalate and dithionite‐citrate‐bicarbonate‐extractable Fe (r2 = 0.93 and 0.88, P <0.001). SEM‐EDX analyses suggested associations of OC with aluminum whereas silicon‐enriched regions were poor in OC. The specific surface area and the microporosity of the soil mineral matrix after destruction of organic matter were less closely correlated to OC than the extractable iron fractions. This is possibly due to variable surface loadings, depending on different OC inputs with depth. Our results imply that subsoils are important for the storage of OC in terrestrial ecosystems because of intimate association of organic matter with secondary hydrous aluminum and iron phases leading to stabilization against biological degradation.  相似文献   

6.
Minerals with large specific surface areas promote the stabilization of soil organic matter (SOM). We analysed three acidic soils (dystric, skeletic Leptic Cambisol; dystric, laxic Leptic Cambisol; skeletic Leptic Entic Podzol) under Norway spruce (Picea abies) forest with different mineral compositions to determine the effects of soil type on carbon (C) stabilization in soil. The relationship between the amount and chemical composition of soil organic matter (SOM), clay content, oxalate‐extractable Fe and Al (Feo; Alo), and dithionite‐extractable Fe (Fed) before and after treatment with 10% hydrofluoric acid (HF) in topsoil and subsoil horizons was analysed. Radiocarbon age, 13C CPMAS NMR spectra, lignin phenol content and neutral sugar content in the soils before and after HF‐treatment were determined and compared for bulk soil samples and particle size separates. Changes in the chemical composition of SOM after HF‐treatment were small for the A‐horizons. In contrast, for B‐horizons, HF‐soluble (mineral‐associated) and HF‐resistant (non‐mineral‐associated) SOM showed systematic differences in functional C groups. The non‐mineral associated SOM in the B‐horizons was significantly depleted in microbially‐derived sugars, and the contribution of O/N‐alkyl C to total organic C was less after HF‐treatment. The radiocarbon age of the mineral‐associated SOM was younger than that of the HF‐resistant SOM in subsoil horizons with small amounts of oxalate‐extractable Al and Fe. However, in horizons with large amounts of oxalate‐extractable Al and Fe the HF‐soluble SOM was considerably older than the HF‐resistant SOM. In acid subsoils a specific fraction of the organic C pool (O/N‐alkyl C; microbially‐derived sugars) is preferentially stabilized by association with Fe and Al minerals. Stabilization of SOM with the mineral matrix in soils with large amounts of oxalate‐extractable Alo and Feo results in a particularly stable and relatively old C pool, which is potentially stable for thousands of years.  相似文献   

7.
The 14C age of soil organic matter is known to increase with soil depth. Therefore, the aim of this study was to examine the stabilization of carbon compounds in the entire soil profile using particle size fractionation to distinguish SOM pools with different turnover rates. Samples were taken from a Dystric Cambisol and a Haplic Podzol under forest, which are representative soil types under humid climate conditions. The conceptual approach included the analyses of particle size fractions of all mineral soil horizons for elemental composition and chemical structure of the organic matter by 13C cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. The contribution of phenols and hydroxyalkanoic acids, which represent recalcitrant plant litter compounds, was analyzed after CuO oxidation.In the Dystric Cambisol, the highest carbon concentration as well as the highest percentage of total organic carbon are found in the <6.3 μm fractions of the B and C horizons. In the Haplic Podzol, carbon distribution among the particle size fractions of the Bh and Bvs horizons is influenced by the adsorption of dissolved organic matter. A relationship between the carbon enrichment in fractions <6.3 μm and the 14C activity of the bulk soil indicates that stabilization of SOM occurs in fine particle size fractions of both soils. 13C CPMAS NMR spectroscopy shows that a high concentration of alkyl carbon is present in the fine particle size fractions of the B horizons of the Dystric Cambisol. Decreasing contribution of O-alkyl and aromatic carbon with particle size as well as soil depth indicates that these compounds are not stabilized in the Dystric Cambisol. These results are in accordance with data obtained by wet chemical analyses showing that cutin/suberin-derived hydroxyalkanoic acids are preserved in the fine particle size fractions of the B horizons. The organic matter composition in particle size fractions of the top- and subsoil horizons of the Haplic Podzol shows that this soil is acting like a chromatographic system preserving insoluble alkyl carbon in the fine particle size fractions of the A horizon. Small molecules, most probably organic acids, dominate in the fine particle size fractions of the C horizons, where they are stabilized in clay-sized fractions most likely due to the interaction with the mineral phase. The characterization of lignin-derived phenols indicated, in accordance with the NMR measurements, that these compounds are not stabilized in the mineral soil horizons.  相似文献   

8.
Historic alterations in land use from forest to grassland and cropland to forest were used to determine impacts on carbon (C) stocks and distribution and soil organic matter (SOM) characteristics on adjacent Cambisols in Eastern Germany. We investigated a continuous Norway spruce forest (F-F), a former cropland afforested in 1930 (C-F), and a grassland deforested in 1953 (F-G). For C and N stocks, we sampled the A and B horizons of nine soil pits per site. Additionally, we separated SOM fractions of A and B horizons by physical means from one central soil pit per pedon. To unravel differences of SOM composition, we analyzed SOM fractions by 13C-CPMAS NMR spectroscopy and radiocarbon analysis. For the mineral soils, differences in total C stocks between the sites were low (F-F = 8.3 kg m−2; C-F = 7.3 kg m−2; F-G = 8.2 kg m−2). Larger total C stocks (+25%) were found under continuous forest compared with grassland, due to the C stored within the organic horizons. Due to a faster turnover, the contents of free particulate organic matter (POM) were lower under grassland. High alkyl C/O/N-alkyl C ratios of free POM fractions indicated higher decomposition stages under forest (1.16) in relation to former cropland (0.48) and grassland (0.33). Historic management, such as burning of tree residues, was still identifiable in the subsoils by the composition and 14C activity of occluded POM fractions. The high potential of longer lasting C sequestration within fractions of slower turnover was indicated by the larger amounts of claybound C per square meter found under continuous forest in contrast to grassland.  相似文献   

9.
Soil organic matter (SOM) stabilisation in subsoil horizons received much attention in recent years, due to the presence of compounds with very long residence times. The reasons for enhanced organic carbon stabilisation in subsoil horizons are poorly understood. In this study, we characterised SOM in adjacent soil compartments with different pedological functioning. We sampled SOM in visually identifiable zones in form of tongues and the adjacent soil matrix from deep soil horizons (60-140 cm depth) of 3 profiles under agricultural land. The samples were analysed for elemental and isotopic composition, radiocarbon age, chemical composition and lignin signature. The objective of the study was to examine if the tongues are characterised by contrasting carbon amounts and composition with regards to the soil matrix.Our results indicate that tongues have two times higher carbon content and are depleted in 15N with regards to the adjacent soil matrix. SOM in the tongues is characterised by up to modern radiocarbon ages, whereas SOM in the adjacent soil matrix is several thousand years old. Twenty percent more HF soluble carbon in the soil matrix suggest that more mineral bound, highly mobile SOM is present compared to tongues. Differences in chemical composition concern the lignin component, which seems to be preserved in the soil matrix. These data may be explained by different functioning in the two parts of the soil profile. In tongues, fresh carbon input by preferential flow and/or roots may lead to higher SOM turnover compared to the soil matrix. This heterogeneous distribution of stabilised SOM must be taken into account, when studying carbon sequestration in deep soil horizons.  相似文献   

10.
The long-term storage of soil organic matter (SOM) in forest soils is still poorly understood. In this study, particle size fractionation in combination with accelerator mass spectroscopy (AMS) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy was applied to investigate organic carbon (OC) stabilisation in Cambisol and Luvisol profiles under spruce (Picea abies) and beech (Fagus sylvatica L.) forests. In most samples, OC was preferentially associated with <2 μm fractions. Throughout soil profiles the contribution of OC in the clay fraction to the total OC increased from 27%-53% in A horizons to 44-86% in E, B and EB horizons. The 200-2000 μm fractions from all sites and all depths showed a percentage of modern C (pmC)>100. They were enriched in 14C owing to high inputs of recent material from leaves and roots. Clearly less active material was associated with <2 and 2-20 μm fractions. This demonstrated that the particle size fractionation procedure applied to our study was capable to isolate a young OC fraction in all samples. The pmC values were strongly decreasing with depth but the decrease was much more pronounced in the fine fractions. The <2 and 2-20 μm fractions of B, E and EB horizons revealed radiocarbon ages between 512 and 4745 years before present which indicated that the SOM in those horizons was little affected by the recent vegetation. The major components of labile and stable SOM pools in topsoils and subsoils were always O/N-alkyl C (28-53%) and alkyl C (14-48%) compounds. NMR spectra of bulk soils and particle size fractions indicated that high alkyl C and O/N-alkyl C proportions throughout the soil profile are typical of Cambisols and Luvisols which were not subjected to regular burning. A relation between radiocarbon age and chemical composition throughout soil profiles was not observed. This suggests that the long-term stabilisation of SOM is mainly controlled by the existence of various mechanisms of protection offered by the soil matrix and soil minerals but not by the chemical structure of SOM itself.  相似文献   

11.
Abstract

Soil samples representing the O, A, B, and C soil horizons from soil organic matter (SOM) studies were selected to study the relative effectiveness of 0.1N sodium hydroxide (NaOH) and 0.1M sodium pyrophosphate (NaPyr) in extracting organic carbon (OC). Replicate samples were extracted with each extractant in a ratio of about 1:144 and successive extractions were performed for each soil. Results indicated the importance of successive extractions for more complete removal of extractable OC. A single extraction removed an average of only 68%, 78%, 86%, and 60% of the OC extracted with four successive extractions for the O, A, B, and C horizons, respectively. The C horizons were lowest in OC and the slowest to release OC in the extraction process. Organic C was solubilized from the B horizons most quickly with an average of 95% of the successively extractable OC removed with only two extractions. The extractability of the soil TOC was highest in the Bhs and then the Bw, C, A, and O horizons at 92% and 42%, 46%, 38%, and 3 6%, respectively. The NaOH and NaPyr were nearly equal in extracting OC from the Bhs horizons. The NaOH extracted more OC than the NaPyr at 53%, 55%, 29%, and 47% more in the O, A, Bw, and C horizon samples, respectively. These results stress the importance of considering the soil horizon type and the use of NaOH in successive extraction for maximum removal of OC in soil studies.  相似文献   

12.
A knowledge of the nutrient dynamics that occur with land use changes, e.g., in clearing forests for farmland, is useful in choosing the most efficient soil and fertilizer management practices. To determine net in situ P and N mineralization and nitrification rates of forest floor materials and their nutrient value for agricultural crops, plastic bags containing different materials (moss, O horizon, and A horizon) collected from a subarctic black spruce (Picea mariana Mill.) forest were incubated for 2 years in their respective forest horizons and at 7.5 cm depth in a nearby fallow field. Net amounts of P and N mineralized were highest in moss and were similar in forest and field when the temperature and moisture content were similar, but smaller in forest when the water content was higher. Net nitrification was negligible in O and A horizon material but significant in moss during the 2nd year, occurring sooner and producing higher NO inf3 sup- levels in the field (171 mg ha-1) than in the forest (13 mg ha-1). Moss P and N mineralization rates were correlated in the fallow field. Temperature, moisture content, and substrate quality were important factors controlling P and N dynamics of forest floor materials in a subarctic fallow field and native forest. In subarctic regions, incorporation and mineralization of forest floor materials could provide an early source of N and P (70 and 17 kg ha-1, respectively) for succeeding agricultural crops.  相似文献   

13.
Abstract

A new method for microsite assessment of soil nutrient supply in forest soil was developed. The method involves the use of ion exchange membranes to assess differences in soil nitrogen (N), phosphorus (P), and potassium (K) supply rates in‐field over small depth increments in the forest floor (i.e., the L, F, and H horizons). Ion exchange membranes were buried and retrieved from the forest floor in an aspen forest stand in Saskatchewan, Canada. Small (6 mm diameter) sections of the membrane were cut out and ion concentration on the sections measured to provide a nutrient supply rate at that location. Soil nutrient supply rates at the site ranged from 4.6–6.0, 7.3–8.5, 11.6–21.5, and 122–196μg 10 cm2#lb2 h‐1 for NH4 +‐N, NC3 ‐N, P, and K, respectively. On average, the highly humified H horizon had the highest N and P supply rates, followed by the F horizon, with the surface litter (L horizon) having the lowest N supply rates. The simplicity and sensitivity of the procedure make this method appropriate for in‐field assessment of differences in soil nutrient supply over small vertical and horizontal distance and was especially appropriate for the forest floor horizons in forest soils.  相似文献   

14.
土壤有机碳活性组分沿中国长白山海拔坡度的分布情况   总被引:4,自引:0,他引:4  
Understanding the responses of soil organic carbon(SOC) fractions to altitudinal gradient variation is important for understanding changes in the carbon balance of forest ecosystems.In our study the SOC and its fractions of readily oxidizable carbon(ROC),water-soluble carbon(WSC) and microbial biomass carbon(MBC) in the soil organic and mineral horizons were investigated for four typical forest types,including mixed coniferous broad-leaved forest(MCB),dark coniferous spruce-fir forest(DCSF),dark coniferous spruce forest(DCS),and Ermans birch forest(EB),along an altitudinal gradient in the Changbai Mountain Nature Reserve in Northeast China.The results showed that there was no obvious altitudinal pattern in the SOC.Similar variation trends of SOC with altitude were observed between the organic and mineral horizons.Significant differences in the contents of SOC,WSC,MBC and ROC were found among the four forest types and between horizons.The contents of ROC in the mineral horizon,WSC in the organic horizon and MBC in both horizons in the MCB and EB forests were significantly greater than those in either DCSF or DCS forest.The proportion of soil WSC to SOC was the lowest among the three main fractions.The contents of WSC,MBC and ROC were significantly correlated(P < 0.05) with SOC content.It can be concluded that vegetation types and climate were crucial factors in regulating the distribution of soil organic carbon fractions in Changbai Mountain.  相似文献   

15.
Organic matter composition is an important soil constituent with regard to function in soil ecosystems. In the recent paper litter and humic compound contents from about 100 mineral soil investigations are presented. The soil horizons are divided into four groups (Ah, Ap, M. Bh) in order to compare the SOM quality. Ap and Ah horizons showed a similar litter and humic compound distribution. Structural differences in the humic compound fractions were only visible with CPMAS 13C-NMR. SOM-containing non-spodic subsoil horizons had a similar SOM quality as the A horizons. In the Bh horizons the humic compounds dominated with about 75% in the SOM. Alkylic and O-alkylic carbon units are the main fractions. The combination of the solid-state 13C-NMR spectroscopy of whole soil samples and the wet chemical analysis of litter compounds allowed the estimation of the liner and chemically defined humic compound distribution in soil samples.  相似文献   

16.
Andosols are characterised by high organic matter (OM) content throughout the soil profile, which is mainly due to the stabilisation of soil organic matter (SOM) by mineral interactions. The aim of the study was to examine whether there were differences in the chemical composition of mineral-associated SOM and free OM in the top A horizon and in the subsoil (horizons below the A11 horizon). Our experimental approach included the replicated sampling of a fulvic and an umbic Andosol under pine and laurel forest located on the island of Tenerife with a Mediterranean sub-humid climate. We determined the extent of the organo-mineral interactions by comparing the sizes of the light (free) and heavy (dense) soil fractions obtained by physical separation through flotation in a liquid with a density of 1.9 g cm–3. We determined the elemental and isotopic composition of both fractions and analysed their chemical composition by analytical pyrolysis. The elemental and isotopic composition showed similar values with depth despite the different vegetation and climatic conditions prevailing at the two sites. Carbon (C) stabilised by mineral interactions increased with depth and represented 80–90% of the total C in the lowest horizons. The heavy fractions mainly released N-containing compounds upon analytical pyrolysis, whereas lignin-derived and alkyl compounds were the principal pyrolysis products released from the light fractions of the top- and subsoil horizons. Principal component analysis showed that the chemical composition of OM stabilised by mineral interaction differs in the different horizons of the soil profile. In the A horizons, the chemical composition of this OM was similar to those of the light fractions, i.e. litter input. There was a gradual change in the bulk molecular composition from a higher contribution of plant-derived molecules in the light and heavy fractions of the A horizon to more microbial-derived molecules as well as black C-derived molecules at depth. We conclude that transport processes in addition to decomposition and possibly in situ ageing affect the chemical composition of mineral-associated OM in subsoils.  相似文献   

17.
Organic layers of acid forest soils are highly dynamic carbon reservoirs. During forest succession the stored amount of organic carbon (OC) changes drastically. Because of feedback between OC storage in organic layers and in mineral soils and other compartments of the environment (plant, atmosphere, and groundwater), there is a strong need for applicable carbon balance models, particularly for organic layers. In this paper a simplified model for the carbon balance of organic layers (CABOLA model) of acid forest soils is presented. The model considers two horizons, the L and O horizon. Decomposition and transport processes are described by first order differential equations. C input into the organic layer is due to litter fall onto the L horizon. The governing equations are solved by integration. To demonstrate the model's capability of simulating the OC dynamics of organic layers, data on OC storage in organic layers of acid sandy forest soils with deep groundwater tables (Podzols) under pine stands were used. Together with literature data and some assumptions, these data were used for a first, rough estimation of the model parameters. Model calculations confirm that the CABOLA model is in principle able to simulate the dynamics of OC storage in organic layers during forest succession. Nevertheless, intensive research efforts will be necessary to independently parameterize the model for broad applications.  相似文献   

18.
Abstract

We measured the concentration and composition (sensu Leenheer, 1981) of dissolved organic carbon (DOC) in lysimeter solutions from the forest floor of a spruce stand in Maine and in laboratory extracts of organic (Oa horizon) and mineral soils collected from various forests in Maine, New Hampshire, and Vermont. All soils were acid Spodosols developed from glacial till. The effects of different storage, extraction and filtration methods were compared. Extracts from Oa horizons stored fresh at 3°C contained a larger fraction of hydrophobic neutrals than lysimeter forest floor solutions (31 and 4% of DOC in stored and lysimeter solutions, respectively), whereas extracts from Oa horizons which had been extracted, incubated at 10–15°C, and extracted again had DOC compositions similar to that in lysimeter solutions. Mechanical vacuum and batch extractions of Oa horizons yielded DOC similar in concentration and composition if the extracts were filtered through glass fiber filters. Nylon membrane filters, however, removed more hydrophobic acids from batch extracts. Dissolved organic carbon extracted from frozen, air‐dry, and oven‐dry Oa and Bh horizons was relatively rich in hydrophilic bases and neutrals and was similar to that released after chloroform fumigation, indicating that common soil‐storage methods disrupt microbial biomass.  相似文献   

19.
Relationships between soil lightness, soil organic matter (SOM) composition, content of organic C, CaCO3, and texture were studied using 42 top‐soil horizons from different soil types located in southern Germany. SOM composition was determined by CPMAS 13C NMR spectroscopy, soil color was measured by diffuse‐reflectance spectrophotometry and given in the CIE L*a*b* color coordination system (Commission Internationale de l'Eclairage, 1978). Multiple‐regression analysis showed, that soil lightness of top‐soil horizons is principally determined by OC concentration, but CaCO3 and soil texture are also major variables. Soil lightness decreased with increasing OC content. Carbonate content had an important effect on soil lightness even at low concentrations due to its lightening property. Regressions between soil lightness and organic C content were strongly linear, when the soils were differentiated according to texture and CaCO3 content. The aryl‐C content was the only SOM component which correlated significantly with soil lightness (rS = –0.87). In the linear regressions carried out on the different soil groups, soil aryl‐C content was a more significant predictor for soil lightness than total OC content.  相似文献   

20.
The aim of this study was to determine changes in the morphological, physical and chemical properties of Retisols caused by their agrogenic transformation. The study carried out on Retisols on relatively natural and agrogenically affected land in 2016. Soil samples taken from the genetic horizons of all profiles to measure soil organic carbon, pH, hydromorphic and physical properties. Due to long-term, deep ploughing, the sequence of soil horizons in the Retisol profile had changed from O–Ah–El–ElBt to Ahp–ElBt. Intensive soil liming changed chemical properties and morphological features of Retisol. The clay and silt particles leached out of from the Ah and El horizons to the deeper layers due to illuviation and podsolization. The content of SOC in the 0–30 cm layer of the Ah horizon of agrogenically affected Retisol was 1.0%, and in the forest Retisol – 1.7%; however, forest Retisol was more acidic. Ploughing and no tillage management caused a reduction in total porosity, water holding capacity and plant available water content compared with the other land-uses. We conclude that the use of ploughless tillage on Retisol is not identical to the conditions of natural soil formation and soil fertility maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号