首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Approaches are needed to broaden the genetic base and improve earliness and yield potential of large-seeded beans under sustainable cropping systems. The objective of this research was to develop adapted dwarf bean populations having a commercial seed quality and yield suitable for the production in the South of Europe. The original base populations were produced from crosses between genotypes within each Mesoamerica, Nueva Granada and Peru races, and between Peru and Nueva Granada, and Mesoamerica and Nueva Granada races. Visual mass selection for plant performance was practised in the F2 and F3 generations. In the F4 and F5, single plants were harvested under two cropping systems (sole cropping and intercropping with maize). From F4, selection was based on precocity, combined with seed yield and seed commercial type. The F4:7 selected lines from each original population were compared with their parents and five checks at four environments and two cropping systems. Differences among environments, populations, parents and checks were observed for all traits. Under intercropping with maize, there was a 50% reduction in seed yield. Yield of parents and checks belonging to Andean South American races, intraracial (Nueva Granada × Nueva Granada) and interracial (Nueva Granada × Peru) populations, was higher than that of those of Middle American origin. Intraracial crosses within large-seeded Andean South American (Peru race) and Middle American gene pools (Mesoamerica race) did not produce lines yielding more than the highest yielding parent. Only two large-seeded lines selected from crosses between small- and large-seeded gene pools out-yielded the best parent and check cultivar.  相似文献   

2.
Yields of large-seeded Andean (A) common bean (Phaseolus vulgaris L.) cultivars of Chile and Nueva Granada races are 40 to 60% lower compared to their Middle American (M) counterparts of small-seeded Mesoamerica and medium-seeded Durango races. Our objective was to use the concept of congruity backcrossing between Andean x Middle American inter-gene pool [AM 11833 = A 483 (A)///// A 686 (M) //// PVA 800A(A)/// ‘Carioca’ (M)// Carioca (M)/ G 19833 (A)] and between races within Andean gene pool [i.e., intra-gene pool Andean, AA 11834 = A483 (A)//// ‘Cardinal’(A) /// ‘Blanco Español’(A) // BlancoEspañol (A) / ‘Taylor’ (A)] to compare selection for seed yield improvement of large-seeded Andean beans. Seven hundred sixty seven F2-derived F3 (F2:3) families were produced for each population. Visual appraisal for total plant performance, combined with seed yield from non-replicated plots was used for selection of 551 families in F2:3, 182 families in F2:4, and 91 families in F2:5 in each population. Eight hundred twenty three F5:6 lines were developed from the 91 F2:5 families in each population. Visual selection, combined with seed yield in non-replicated plots was again used to select 294 lines in F5:6 in each population. Similarly, 44 highest yielding F5:7 lines were selected in AM 11833 and 39 F5:7 lines in AA 11834. Thus, single plant selections were made in the F2 and F5, and plants within each plot were harvested in bulk in F3, F4, F6, and F7. Thirty nine F5:8 lines from AA 11834 and 44 lines from AM 11833, parents, and checks were evaluated at Popayán and Quilichao, Colombia in 1998 and 1999. Selected lines in both populations, on average, out-yielded the mean of their large-seeded Andean parents. Mean yield of the lines selected from AM 11833 was 50% higher than AA 11834 lines. Twelve F5:8 lines out-yielded the highest yielding Andean parents G 19833 and A 483 in AM 11833, whereas only one line yielded significantly higher (p < 0.05) than the highest yielding parent A 483 in AA 11834. However, none of selected lines out-yielded small-seeded Middle American parents used in AM 11833 (A 686 and ‘Carioca’). The mean 100 seed-weight of AA 11834 was 36 g compared to 28 G for AM 11833 F5:8 lines. Selected lines had similar days to maturity as parents in AM 11833, and matured 3 d later in AA11834. Correlation coefficients between yield and 100 seed-weight were negative in both populations. Yield and days to maturity were positively correlated in AA 11834.  相似文献   

3.
Summary Five parents from each of four race groups of common bean (Phaseolus vulgaris L.) were hybridized to produce five crosses within each group. Also, five crosses were made for each of the six possible combinations among four groups. Parents, F1 and F2, and parents, F2 and F3 were evaluated for seed yield in 1990 and 1991, respecitively, at two locations in Colombia.Yield of parents belonging to Middle American races and crosses among them was higher than that of races of Andean origin. Positive correlations were found among the mid-parent value, F1, F2 and F3. Also, the mid-parent value predicted the mean seed yield of all possible lines that could be derived from the F-generation in 42 out of 47 crosses. Four crosses, all between common bean races of Andean and Middle American origin, indicated a possible loss of favorable epistatic parental alleles. On average, mean yield of interracial F1 hybrids was higher than that of intraracial ones.Positive heteroris (26.4%–123.8%) over the mid-parent in 31 crosses, and F1s yielding higher (23.7%–91.8%) than the high parent in 20 crosses and yielding higher (22.1%–53.2%) than the highest control among all parents (MAM 13) in 12 crosses, were found. Heritability, estimated by the parent-offspring regression, ranged from 0.42± 0.07 to 0.49±0.04. Expected and realized gains from selection (at 20% selection pressure) ranged from 10.3% to 21.0% over the mean of F1 hybrids and F2 and F3 population bulks.  相似文献   

4.
Common bean populations from crosses between lines of different races are thought to be more promising for selection of high yield potential than those from intra-racial crosses. Three distinct diallel crosses were made to test this hypothesis and to determine the possibility of substituting diallel crosses for multivariate techniques that estimate genetic divergence. The crosses were between races Mesoamerica × Mesoamerica, Mesoamerica × Durango and Jalisco, and Mesoamerica × Nueva Granada. The parents and the resulting F4 populations were evaluated at Lavras-MG, Lambari-MG and Patos de Minas-MG, Brazil. The diallel analysis of seed yield was done and the genetic divergence estimated by Mahalanobis distance. Estimates of general and specific combining ability indicated that some inter-racial populations were more promising for selection to increase seed yield than intra-racial populations. However, due to their undesirable seed color and size, and growth habit, especially in a short term breeding program, the chances of obtaining high yielding lines with an acceptable bean is reduced. Genetic divergence was not a good measure to choose the parents because usually, the most divergent groups included were not adapted lines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Summary Pedigree selection for seed yield, using early generation yield tests, was practiced from the F2 to F7 in two populations of common bean (Phaseolus vulgaris L.) in three plant densities: 66, 133, and 266 thousand plants ha-1 at CIAT-Palmira, Colombia. The six highest yielding lines selected from each plant-density, along with 13 parents, were evaluated in a 7×7 lattice design with three replications at the three densities utilized for selection, and at 399,000 plants ha-1 in 1988 and 1989.Based on the mean performance of selected lines and the mean of the parents, selection for seed yield was effective in all densities in both populations. However, none of the lines selected from the population within the race Mesoamerica (TC 4673) significantly outyielded their best parent under any plant density. The highest yielding lines selected from the interracial population (TR 4635) outyielded their best parent irrespective of the plant-density used for selection. The highest yielding line originated from the highest density used for selection. Low density was neither good for selection nor for evaluation and identification of high-yielding cultivars of common bean. There was no significant difference between the mean yield of lines selected at the intermediate and high population densities. The effects of plant density, year, and their interactions were significant for seed yield.  相似文献   

6.
Knowledge of patterns of genetic diversity among existing cultivars helps to broaden the genetic base of new cultivars and maximizes the use of available germplasm resources. This study examined the organization of diversity for morphological traits in 66 landraces of cultivated common bean (Phaseolus vulgaris) from Galicia and its relationship with phaseolin seed protein diversity. Data on growth habit, seed and pod traits obtained from field evaluations at two locations during the 1989—91 cropping seasons were subjected to multivariate statistical analysis. Cluster analysis based on 14 quantitative variables and five qualitative variables identified 11 groups. The landraces were also characterized by phaseolin electrophoresis. The results allowed separation of these landraces into Middle and Andean American groups, which could be further divided into at least eight groups within the Andean American cultivars and three within the Mesoamerican cultivars. These groups in turn corresponded to the previously described races Nueva Granada and Peru of South American origin, and races Durango, Jalisco and Mesoamerica from the Middle American domestication centre. These results confirm the existence of two major groups of germplasm in the cultivated common bean landraces from Galicia, Mesoamerican vs. Andean American.  相似文献   

7.
The genetic base of cultivars within market classes of common bean (Phaseolus vulgaris L.) is narrow. Moreover, small- and medium-seeded Middle American cultivars often possess higher yield and resistance to abiotic and biotic stresses than their large-seeded Andean counterparts. Thus, for broadening the genetic base and breeding for higher yielding multiple stress resistant Andean cultivars use of inter-gene pool populations is essential. Our objective was to determine the feasibility of introgressing resistance to Been common mosaic virus (BCMV, a potyvirus), and the common [caused by Xanthomonas campestris pv. phaseoli (Xcp) and X. campestris pv. phaseoli var. fuscans (Xcpf)] and halo [caused by Pseudomonas syringae pv. phaseolicola (Psp)] bacterial blights from the Middle American to Andean bean, using gamete selection. Also, we investigated the relative importance of the use of a landrace cultivar versus elite breeding line as the last parent making maximum genetic contribution in multiple-parent inter-gene pool crosses for breeding for resistance to diseases. Two multiple-parent crosses, namely ZARA I = Wilkinson 2 /// ‘ICA Tundama’ / ‘Edmund’ // VAX 3 / PVA 773 and ZARA II = ‘Moradillo’ /// ICA Tundama / Edmund // VAX 3 / PVA 773 were made. From the F1 to F5 single plant selection was practiced for resistance to the common and halo bacterial blights in both populations at Valladolid, Spain. The parents and F5-derived F6 breeding lines were evaluated separately for BCMV, and common and halo bacterial blights in the greenhouse at Filer and Kimberly, Idaho in 2001. They were also evaluated for the two bacterial blights, growth habit, seed color and 100-seed weight at Valladolid in 2002. All 20 F1 plants of ZARA I were resistant or intermediate to common and halo bacterial blights in the greenhouse, but their F2 and subsequent families segregated for both bacterial blights. Segregation for resistant, intermediate, and susceptible plants for common bacterial blight occurred in the F1 of ZARA II. Simple correlation coefficient for common bacterial blight between the F1 and F1-derived F2 families was positive (r = 0.54 P < 0.05) for ZARA II. From the F2 to F5 the number of families resistant to both bacterial blights decreased in both populations. Only four of 20 F1 plants in ZARA I resulted in seven F6 breeding lines, and only one of 32 F1 plants in ZARA II resulted in one F6 breeding line resistant to the three diseases. None of the selected breeding lines had seed size as large as the largest Andean parent. The use of elite breeding line or cultivar as the last parent making maximum genetic contribution to the multiple-parent inter-gene pool crosses, relatively large population size in the F1, and simultaneous selection for plant type, seed traits as well as resistance to diseases would be crucial for introgression and pyramiding of favorable alleles and quantitative trait loci (QTL) of interest between the Andean and Middle American beans.  相似文献   

8.
Forty accessions, forming a core collection of mainly bush type of the common bean (Phaseolus vulgaris L.) germplasm in the Netherlands, were evaluated for 14 qualitative and quantitative traits at the Agricultural University, Wageningen (WAU), the Netherlands in 1992. These and an additional 117 Dutch accessions, mainly collected in private home gardens, were also evaluated for phaseolin seed protein pattern, and morphological and agronomic traits at the International Center for Tropical Agriculture (CIAT, Spanish acronym), Cali, Columbia between 1987 and 1997. Multivariate and principal component analyses at both WAU and CIAT indicated existence of one large group with no discernable patterns among Dutch common bean collections of landraces, garden forms and cultivars. However, when phaseolin, an evolutionary, biochemical marker, was used as an initial classification criterion followed by use of morphological markers, the two major gene pools; Andean and Middle American with two races in each (Chile and Nueva Granada in Andean, and Durango and Mesoamerica in Middle American) were identified. The Andean gene pool was predominant (136 of 157 accessions), especially the race Nueva Granada (126 accessions) characterized by the bush determinate growth habit type I and T phaseolin. The new core collection comprised 31 accessions. Bean races Chile, Durango, and Mesoamerica were represented by 10, 7, and 14 accessions, respectively. Of the 9 French or snap bean accessions six possessed characteristics of race Mesoamerica and three belonged to Durango race. Occurrence of these and a large number of other recombinants strongly suggested considerable hybridization and gene exchange between Andean and Middle American gene pools, thus blurring the natural boundaries and forming a large single group of common bean germplasm in the Netherlands. The inter-gene-pool recombinants of both dry and French beans should be of special interest to breeders for use as bridging-parents for development of broad-based populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Ten F1's obtained from crosses among five common bean genotypes of Andean (WAF 15, Mineiro Precoce and Batatinha) and Middle American (BAT 304 and Ouro) gene pools were assessed for their combining abilities for root nodulation with Rhizobium tropici strain CIAT 899. The plants were grown under controlled conditions and evaluated for number of nodules per plant (NN), nodule dry weight (NDW), mean nodule weight (MNW) and plant fresh weight (PFW). The subdivision of the treatment effects on the general (GCA) and specific combining effects (SCA) were performed according to Griffing's diallel analysis method 2, model 1. The analyses of variance and estimates of quadratic components showed that non-additive gene effects were more important in the expression of NN and PFW, whereas additive gene effect was predominant for NDW and MNW. A close association was observed between high number of nodules and GCA. Generally, crosses involving parents of different gene pools yielded hybrids with high positive estimates of SCA for all assessed traits. The genotypes of Andean origin WAF 15 and Mineiro Precoce are the most promising parents for breeding programs to increase NN and NDW in common beans. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Common beans (Phaseolus vulgaris) are separated into two distinct groups: Andean and Middle American. We identified CAL 143 as the first Andean bean with resistance to angular leaf spot disease caused by Phaeoisariopsis griseola. Angular leaf spot is the most widespread and economically important bean disease in southern and eastern Africa, and it is especially severe on the extensively grown Andean beans. Cal 143 was resistant in Malawi, South Africa, Tanzania, and Zambia, but it was susceptible in Uganda. This was attributed to the presence of races of P. griseola in Uganda not present in the other countries. We identified two additional Andean bean lines, AND 277 and AND 279, with resistance to angular leaf spot in Malawi. We also characterized the virulence diversity of 15 isolates of P. griseola from southern and eastern Africa into nine different races. Five of six isolates from Malawi and two of seven from Uganda, obtained from large-seeded Andean beans, were characterized into four different races considered Andean. These were compatible only or mostly with large-seeded Andean cultivars. The other eight isolates from Uganda, Malawi, and the Democratic Republic of Congo, obtained from a small- or medium-seeded Middle American beans, were characterized into five different Middle American races. These were compatible with Middle American and Andean cultivars. CAL 143 was resistant or intermediate under greenhouse conditions to all but one of the same 15 isolates from southern and eastern Africa, but it was susceptible to an isolate from Uganda obtained from a medium-seeded Middle American bean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Summary Two common bean (Phaseolus vulgaris L.) cultivars were used for recurrent backcrossing (i.e., repeated backcrossing to one of the parents) to both parents independently and for congruity backcrossing (i.e., backcrossing alternately to both parents). One cultivar, ICA Pijao of race Mesoamerica, was late maturing, with erect type II growth habit and small seeds. The other was Pinto UI 114 of race Durango, an early maturing cultivar with prostrate type III growth habit and medium seeds. One to three recurrent backcrosses (RBC) to both parents, and two rounds of congruity backcrosses (CBC), were made. Thirty-two random lines from each method along with two parents were compared in a reps-in-set design at two locations (Popayán and Quilichao) in Colombia in 1992–1993.Differences between lines derived through different methods were found for seed yield, 100-seed weight, days to maturity, growth habit, and seed color pattern. The RBC to ICA Pijao produced lines with relatively higher seed yield, smaller seed size, and delayed maturity. Similarly, the RBC to Pinto UI 114 produced lines with reduced yield, medium seed size, and earlier maturity. All lines from one, two, and three RBC to Pinto UI 114 had type III growth habit. While most lines from the RBC to ICA Pijao had erect type II Growth habit, a few type III lines were also found in all the RBC. The lines derived from the CBC mostly possessed yield, maturity, and seed characteristics between those of the two parents and lines derived from RBC to both parents independently. They also had more variation for growth habit. To maximize recombination between and retention of desirable traits from distantly related parents used in interracial crosses, use of the CBC is suggested.  相似文献   

12.
Summary To satisfy farmer and consumer preferences, breeding efforts to increase yield potential in common bean must take into account the interrelated effects of growth habit, seed size, maturity, and gene pool on yield expression in segregating populations. To examine the relationships among these traits, a genetic study was conducted to determine the effect of growth habit on yield and seed size in crosses among five bean lines from diverse gene pools. Two parental bean lines had determinate, type I growth habits and large seed size typical of the Neuva Granada-Andean gene pool. Two other lines were tropical Mesoamerican types with type II growth habits and small seed size; and the fifth line, G13625, a landrace of the Jalisco gene pool from the Mexican highlands, had a type IV climbing growth habit and medium seed size. Individual F2 plants from each cross and parental lines were evaluated for growth habit and yield component traits under high input field conditions. The following season, the evaluations were repeated on random F3 plants. Of the five parental lines, only G13625 showed significant GCA effects for yield in both the F2 and F3 generations. Improved yielding ability of G13625 progeny was associated with an increased expression of climbing bean growth habit traits: guide length, climbing ability, node number on main stem, and plant height. Crosses between Andean x Mesoamerican and Andean x Jalisco genotypes, as well between growth habit type I (Andean x Andean) and between type II (Mesoamerican x Mesoamerican) had very low parent-offspring heritability values for yield. Yield heritability was only significant for crosses between Mesomerican x Jalisco gene pools. An apparent simple genetic control of growth habit modification towards semi-climbing and climbing types is proposed as the major reason for increased yields in these crosses. No genetic linkage between genes controlling growth habit and seed size was detected which might restrict the development of high yielding large-seeded type II lines.  相似文献   

13.
If we are to breed common bean (Phaseolus vulgaris L.) for durable resistance to diseases, we must understand pathogenic variation and find sources of resistance. Our first objective was to determine the patterns of pathogenic variation found among isolates of Phaeoisariopsis griseola (PG), the fungus that causes angular leaf spot (ALS) in common bean. We characterized 433 PG isolates from 11 Latin American and 10 African countries, using differential cultivars, isozymes, and/or random amplified polymorphic DNA (RAPD) markers. We also systematically screened, for ALS resistance, common bean accessions from the world collection held at CIAT, and assessed the progress so far made in breeding for resistance to ALS. Despite their great diversity within and between countries on both continents, the PG isolates were classified into two major groups: Andean, and Middle American. Although each group had internal differences for virulence, and biochemical and molecular characteristics, the ‘Andean’ PG isolates were more virulent on common beans of Andean origin, than on those of Middle American origin, thus, suggesting a host-pathogen co-evolution. The ‘Middle American’ PG isolates, although more virulent on common beans from Middle America, also attacked Andean beans, thus, exhibiting a much broader virulence spectrum. To find sources of resistance, we tested 22,832 common bean accessions against naturally occurring PG isolates in the field at CIAT's Experiment Station, Quilichao, Colombia, between 1985 and 1992. The resulting 123 intermediate (scores of 4 to 6) and resistant (scores of 1 to 3) accessions were then tested in the greenhouse against selected 14 PG isolates of diverse origins. Nineteen accessions were intermediate or resistant to at least 13 of 14 PG isolates. Similarly, of 13,219 bred lines tested in the field between 1978 and 1996, 89 were intermediate or resistant. Of these, 33 bred lines proved intermediate or resistant to at least eight of nine PG isolates to which they were challenged in the greenhouse. We suggest that, to breed for durable resistance to ALS, common bean populations should be developed from crosses between Andean and Middle American gene pools. The populations should then be systematically evaluated and selected against the broadest range of the most virulent PG isolates of diverse evolutionary origins. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Erskine  W. 《Euphytica》1985,34(1):105-112
Summary The genetic variation for seed yield losses and the response to selection for reduction of such losses was studied by a six-week delay in the timing of harvest in various segregating populations from four lentil crosses. The bulk segregating populations had previously been subjected to different numbers of selection by means of a delayed harvest. The loss in seed yield from a delayed harvest in the two seasons 1981/82 and 1982/83 accounted for 551 and 105 kg/ha seed, representing 34 and 11% of the yield from a correctly timed harvest respectively. Pod drop accounted for 65% of this loss, whereas dehiscence gave 35% of the loss in both seasons. The parents of cross 4 differed significantly for pod dehiscence, with genotype 74TA 550 showing relative indehiscence. Selection by means of a delayed harvest of bulk populations decreased pod dehiscence, mean seed weight and bulk mean yield.  相似文献   

15.
A. Riaz    G. Li    Z. Quresh    M. S. Swati  C. F. Quiros 《Plant Breeding》2001,120(5):411-415
Significant heterosis for seed yield in oilseed rape has created interest in the development of hybrid cultivars. The DNA‐based marker protocol, sequence‐related amplified polymorphism (SRAP) was used to determine genetic diversity among oilseed rape maintainer and restorer lines. This measure was used in an attempt to establish an association between genetic distance and heterosis in hybrids for various agronomic traits. A total of 118 polymorphic loci were generated by 18 SRAP primer combinations. Based on the polymorphism generated by the markers, calculated similarity index values ranged from 0.46 to 0.97. Cluster analysis grouped 10 maintainer and 12 restorer lines into three groups, with the exception of two maintainer lines, PM5 and PM9, which fell outside these groups. The grouping of the lines was largely in agreement with the available pedigree data on their origin and agronomic performance. Analysis of variance among inbred lines and their resulting F1 hybrids over two locations revealed significant differences for plant height, days to maturity and seed yield, but not for oil content. Substantial mid‐parent heterosis was observed only for seed yield, and ranged from 26% to 169%. All hybrids surpassed their respective inbred lines for this trait, except for a single cross combination of related lines. In general, crosses of lines located in different clusters yielded more than those from the same clusters. Regression analysis revealed a statistically significant relationship between the genetic distance of the parents and seed yield in their hybrid, and their derived mid‐parent and high‐parent heterosis. The correlation coefficient between genetic distance and yield (0.64) indicated a moderately strong relationship, so it is possible that some of the SRAP markers might be linked to quantitative trait loci for seed yield.  相似文献   

16.
Genetic variance, heritability, and expected response from selection arc useful in devising alternative methods and criteria of: selection. The objectives of this study were to estimate these for seed yield and its components from 200 F2: populations involving 80 cultivars and lines of mostly small-seeded dry bush bean (Phaseolus vulgaris L.) of habits growth I, II, and III of Middle-American origin. All cultivars and lines were crossed in eight sets of ten parents each in a Design II mating system. The F2 populations, without parents, were evaluated in the field in a replicates-in-sets design at two locations in Colombia in 1983. Estimates of additive genetic variance were significant for yield, pods/m2, seeds/pod, and seed weight. Interaction with environments was also significant. Values for nonadditive genetic variance were not significant for either yield or yield components. The estimates of narrow sense heritability, based on the F2 population mean and unbiased by genotype x environment interaction, were 0.21 ± 0.13 for yield. 20 ± 0.13 for pods/m2, 0.57 ± 0.13 for seeds/pod, and 0.74 ± 0.15 for seed weight. The expected direct response from selection of the top 20 % of F2 populations for yield per se would result in a 4.30 % increase in yield with a correlated response of 0.21 % in seed weight. In contrast, the expected gain from direct selection for seed weight would result in a 11.76 % increase in seed weight with a, correlated gain of 0.28 % for yield. Direct selection for pods/m2 would decrease yield, seeds/pod and seed weight, while direct selection for seeds/pod would reduce pods/m2 and seed weight but increase seed yield by 0.37 %. Data on yield from replicated trials in the early segregating generations could be utilized for identification and selection of promising crosses and families or lines with crosses for dry bean yield improvement.  相似文献   

17.
严宗卜 《作物学报》2004,30(9):872-877
1994年10月至1995年5月,在美国阿肯色大学水稻研究推广中心的温室,对5个美国水稻品种Katy、Lemont、L202、RA73和Bond、其F1、F2和部分组合的F3随机选系,用4个主要美国稻瘟病菌小种IE-1k、IB-33、IB-49和IC-17进行接种鉴定,通过完全双列杂交进行遗传分析的研究。结果表明:所有的亲本对IB-33感病;除RA73外,其他亲本对IE  相似文献   

18.
Successful identification of a desirable segregant depends partly on the parents chosen to make the crosses. This experiment was conducted to compare performance and genetic variability for seed yield, yield components, agronomic traits and harvest index of lines derived from low- and high-yielding flax (Linum usitatissimum L.) crosses, and to identify important yield components for flax seed yield improvement. The lines chosen as high yielding parents for this experiment were‘Linott’and 'Summit; and the low yielding parents were‘Grant’and Ci2395. The high-yielding lines produced significantly more seeds per boll and had a higher harvest index than the low-yielding lines. Evaluation of 161 F2:6 lines from four crosses among these lines showed that the greatest genetic variability, highest cross average, and highest F6 line seed yield occurred in the low x high cross,‘Grant’x‘Linott’. All low X high crosses exhibited higher genetic variances for seed yield than the high x high crosses. The high x high cross 'Summit’x‘Linott’had low genetic variance for seed yield. Number of bolls per area was determined by linear regression, path coefficient analysis, and stepwise multiple regression analysis to be the most important component of seed yield. This study showed that hybridization of low and high-yielding flax lines may be useful to increase genetic variability and obtain high-yielding flax lines.  相似文献   

19.
N. Thurling  M. Ratinam 《Euphytica》1987,36(3):913-926
Summary The mean aim of this study was to identify an effective method of predicting cross-potential in respect of yield improvement of the cowpea (Vigna unguiculata (L.) Walp.) through hybridization and subsequent selection.Three prediction tests based on data collected from experiments with ten cowpea lines and the F1 and F2 generations of all possible crosses between these lines were evaluated. The three prediction tests were based on: i Yields of prospective parents. ii. General combining abilities estimated from F1 and parental data iii. Frequencies of superior plants in F2 populationsEach of the three procedures was used to identify the crosses with the lowest or highest yield potential, i.e. those crosses most likely to produce the greatest number of lines with yields higher or lower than those of either parent. Crosses selected on the basis of these criteria were evaluated in the following growing season on the basis of biometrical analysis of F2 and backcross populations and the performance of the respective F3 and F4 generations.Six different crosses were selected from the 45 tested on the basis of the three prediction tests. Analyses of F2 and backeross populations from each cross provided estimates of [d] the difference in parental means and 1/2D the additive genetic component which, in turn, were used to predict the frequency of transgressive inbred lines obtained by single-seed descent from the F2. Both crosses selected on the basis of F2 data were expected to produce a much higher frequency of transgressive lines than those selected on the basis of parental yields. The high potential cross selected on the basis of general combining ability was expected to produce a higher frequency of transgressive lines than the corresponding low yield potential cross. Replicated trails of F3 bulks of the selected crosses showed that high yield potential crosses were significantly higher yielding than low yield potential crosses for all prediction criteria. In a trial with 22F4 lines of each of the two crosses selected on the basis of parental yields and frequency of high yielding F2 plants, the high yield potential cross in each case had a greater mean and variance for seed yield than the corresponding low yield potential cross.It was concluded that parental yields provide a sound basis for an initial screening of prospective parents. This screening should identify a high yielding line which can be crossed with a number of contrasting lines to produce F2 populations for the final screening phase.  相似文献   

20.
Summary F5 seeds from six highly heterotic F1 hybrids were produced to determine whether the superior performance of F1 hyrids could be fixed in pure-line derivatives of pea (Pisum sativum L.). For each cross, 24–31 F5 lines derived from single seed descent were compared with F1 hybrids and their parents in two environments. The F1 hybrids out-yielded the best parent by up to 11%. All crosses produced F5 lines which were as high in yield as the F1 hybrids indicating that pure-line derivatives equivalent in yield to the heterotic F1 hybrid could be developed by conventional breeding. Heterosis of the F1 hybrids over the best commercial cultivar was thus a useful indicator of the future performance of the pure-line derivatives. These results indicate that overdominance was not an important component of heterosis in peas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号