首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary

The oral absorption and bioavailability of flumequine was studied in 1‐, 5‐ and 18‐week‐old calves following intravenous and oral administration of different formulations of flumequine (Flumix®, Flumix C® and pure flumequine). Increasing age had a negative influence on the Cmax after the administration of Flumix®, based on a larger VD in the older calves. The Cmax decreased from 5.02 ± 1.46 μg/ml in the first week to 3.28 ± 0.42 μg/ml in the 18th week. Adding colistin sulfate to the flumequine formulation and administring pure flumequine mixed with milk replacer had a negative effect on the Cmax of flumequine after oral administration of 5 and 10 mg/kg body weight. The bioavailability of the orally administered flumequine formulations was 100% in all cases except after the administration of Flumix C®, for which it was 75.9 ± 18.2%. The urinary recovery of flumequine after intravenous injection of a 10% solution varied from 35.2 ± 2.3% for Group B. to 41.2 ± 6.3% for Group C.

The dosage of 5 mg/kg body weight Flumix® twice daily in 1‐week‐old veal calves is sufficient to reach therapeutic plasma concentrations, based on a MIC value of 0.8 μg/ml of the target bacteria.

In older calves it is advisable to increase the dosage 7.5 or 10 mg/kg body weight every 12 hours. In combination with colistin sulfate it is also advisable to increase the dosage slightly because of the negative effect of the colistin sulfate on the Cmax of flumequine.  相似文献   

2.
The pharmacokinetics of flumequine was studied in 1-, 5- and 18-week-old veal calves. A two-compartment model was used to fit the plasma concentration-time curve of flumequine after the intravenous injection of 10 mg/kg of a 10% solution. The elimination half-life (t1/2 beta) of the drug ranged from 6 to 7 h. The Vd beta and ClB of 1-week-old calves (1.07 l/kg, 1.78 ml/min/kg) were significantly lower than those of 5-week-old (1.89 l/kg, 3.23 ml/min/kg) and 18-week-old calves (1.57 l/kg, 3.10 ml/min/kg). After the oral administration of 10 mg/kg of a 2% flumequine formulation mixed with milk replacer, the Cmax was highest in 1-week-old (9.27 micrograms/ml) and lowest in 18-week-old calves (4.47 micrograms/ml). The absorption was rapid (Tmax of approximately 3 h) and complete. When flumequine itself and a formulation containing 2% flumequine and 20 X 10(6) iu of colistin sulphate were mixed with milk replacer and administered at the same dose rate, absorption was incomplete and Cmax was lower. The main urinary metabolite of flumequine was the glucuronide conjugate (approximately 40% recovery within 48 h of intravenous injection) and the second most important metabolite was 7-hydroxy-flumequine (approximately 3% recovery within 12 h of intravenous injection). Only 3.2-6.5% was excreted in the urine unchanged. After oral administration a 'first-pass' effect was observed, with a significant increase in the excretion of conjugated drug. For 1-week-old calves it is recommended that the 2% formulation should be administered at a dose rate of 8 mg/kg every 24 h or 4 mg/kg every 12 h; for calves over 6 weeks old, the dose should be increased to 15 mg/kg every 24 h or 7.5 mg/kg every 12 h. The formulation containing colistin sulphate should be administered to 1-week-old calves at a flumequine dose of 12 mg/kg every 24 h or 6 mg/kg every 12 h.  相似文献   

3.
The in-vitro activity of flumequine against 157 strains of bacteria isolated from birds was determined. The minimum inhibitory concentration (MIC) of 96.3% of the Enterobacteriaceae, Proteus spp. and Yersinia pseudotuberculosis studied (n = 135) was less than or equal to 1 microgram/ml. Pharmacokinetics of flumequine in pigeons (Columba livia) was investigated after intravenous, intramuscular and oral administration. From the blood disappearance curves after i.v. bolus injection (10 mg/kg body weight) clearance rate, blood half-time and distribution volume were calculated. The recovery of unchanged flumequine from the droppings in 24 h was 37 +/- 10% of the administered dose. Flumequine was also given i.m. at two dose levels, 10 and 60 mg/kg body weight. The availability of flumequine as intact drug was 22 and 23%, respectively, in 24 h. Therapeutic blood levels were maintained for 4 and 10 h, respectively. After an oral dose of flumequine (60 mg/kg body weight) an availability of 6.7 +/- 2.5% and a peak blood concentration of 2.68 +/- 0.92 microgram/ml at 2 h after administration were found. The recovery of unchanged flumequine from the droppings in 24 h was 1.55 +/- 0.79% of the administered dose. With the exception of the i.m. dose of 10 mg/kg, all flumequine administrations made the pigeons vomit. It appears that blood concentrations below 3 micrograms/ml will not induce vomiting. On the basis of the present data, a dosage regimen for flumequine in pigeons of a priming dose of 30 mg/kg i.m., followed after 8 h by oral administration of 30 mg/kg, this dose being repeated every 8-12 h, would be expected to give blood concentrations between 1.44 and 2.88 micrograms/ml.  相似文献   

4.
The pharmacokinetics and the influence of food on the kinetic profile and bioavailability of doxycycline was studied after a single intravenous (i.v.) and oral dose of 10.0 mg/kg body weight in 7-week-old broiler chickens. Following i.v. administration the drug was rapidly distributed in the body with a distribution half-life of 0.21 +/- 0.01 h. The elimination half-life of 6.78 +/- 0.06 h was relatively long and resulted from both a low total body clearance of 0.139 +/- 0.007 L/h.kg and a large volume of distribution of 1.36 +/- 0.06 L/kg. After oral administration to fasted chickens, the absorption of doxycycline was quite fast and substantial as shown by the absorption half-life of 0.39 +/- 0.03 h, the maximal plasma concentration of 4.47 +/- 0.16 micrograms/mL and the time to reach the Cmax of 1.73 +/- 0.06 h. The distribution and the final elimination of the drug were slower than after i.v. administration. The absolute bioavailability was 73.4 +/- 2.5%. The presence of food in the intestinal tract reduced and extended the absorption (t1/2a = 1.23 +/- 0.21 h; Cmax = 3.07 +/- 0.23 micrograms/mL; tmax = 3.34 +/- 0.21 h). The absolute bioavailability was reduced to 61.1% +/- 4.4%.  相似文献   

5.
The minimal inhibitory concentration (MIC) of flumequine for 249 Salmonella, 126 Escherichia coli, and 22 Pasteurella multocida isolates recovered from clinical cases of neonatal calf diarrhoea, pneumonia and sudden death was less than or equal to 0.78 microgram/ml. The pharmacokinetics of flumequine in calves was investigated after intravenous (i.v.), intramuscular (i.m.) and oral administration. The two-compartment open model was used for the analysis of serum drug concentrations measured after rapid i.v. ('bolus') injection. The distribution half-life (t1/2 alpha) was 13 min, elimination half-life (t1/2 beta) was 2.25 h, the apparent area volume of distribution (Vd(area)), and the volume of distribution at steady state (Vd(ss)) were 1.48 and 1.43 l/kg, respectively. Flumequine was quickly and completely absorbed into the systemic circulation after i.m. administration of a soluble drug formulation; a mean peak serum drug concentration (Cmax) of 6.2 micrograms/ml was attained 30 min after treatment at 10 mg/kg and was similar to the concentration measured 30 min after an equal dose of the drug was injected i.v. On the other hand, the i.m. bioavailability of two injectable oily suspensions of the drug was 44%; both formulations failed to produce serum drug concentrations of potential clinical significance after administration at 20 mg/kg. The drug was rapidly absorbed after oral administration; the oral bioavailability ranged between 55.7% for the 5 mg/kg dose and 92.5% for the 20 mg/kg dose. Concomitant i.m. or oral administration of probenecid at 40 mg/kg did not change the Cmax of the flumequine but slightly decreased its elimination rate. Flumequine was 74.5% bound in serum. Kinetic data generated from single dose i.v., i.m. and oral drug administration were used to calculate practical dosage recommendations. Calculations showed that the soluble drug formulation should be administered i.m. at 25 mg/kg every 12 h, or alternatively at 50 mg/kg every 24 h. The drug should be administered orally at 30 and 60 mg/kg every 12 and 24 h, respectively. Very large, and in our opinion impractical, doses of flumequine formulated as oily suspension are required to produce serum drug concentrations of potential clinical value.  相似文献   

6.
Pharmacokinetics of amikacin in cats   总被引:1,自引:0,他引:1  
Six mixed-breed adult cats were given 5 mg of amikacin sulfate/kg of body weight by rapid IV, IM, and SC routes of administration. The serum concentration-vs-time data were analyzed, using a noncompartmental model. The harmonic mean +/- pseudo-SD of the effective half-life of amikacin was 78.8 +/- 19.3 minutes after IV administration, 118.7 +/- 14.4 minutes after IM administration, and 117.7 +/- 12.8 minutes after SC administration. The arithmetic mean +/- SD of mean residence time was 118.3 +/- 21.7 minutes, 173.4 +/- 19.9 minutes, and 171.7 +/- 19.1 minutes after IV, IM, and SC drug administration, respectively. The mean apparent volume of distribution at steady state was 0.17 +/- 0.02 L/kg, and the mean total body clearance was 1.46 +/- 0.26 ml/min/kg. Mean bioavailability was 95 +/- 20% after IM administration and 123 +/- 33% after SC drug administration. A recommended dosage of 10 mg/kg, q 8 h can be expected to provide a therapeutic serum concentration of amikacin with a mean steady-state concentration of 14 micrograms/ml. The SC route of administration is preferred, because of rapid absorption, good bioavailability, and ease of administration.  相似文献   

7.
We formulated a new colistin sulfate injectable solution and tested its effectiveness, toxicity and pharmacokinetics in vivo on mice, rabbits, and piglets. When intramuscularly injected (i.m.) into rabbits at 0.5 mL per site, the 2.5% colistin sulfate solution caused no reaction at the injection site, but the 5.0% solution caused the muscle circumference to appear erythematic. Tested LD50 in CD-1 mice were 38.72 mg/kg for i.m. and 431.95 mg/kg for oral administration, respectively. At 15.0 mg/kg/day (i.m.) for 5 days, colistin sulfate caused obvious neurotoxicity to piglets with moderate granular degenerations in the epithelial tissues from kidney and liver. These toxic responses were not seen when colistin sulfate was injected at 10.0 mg/kg/day for 5 days. Pharmacokinetic studies revealed Cmax of 3.73 +/- 0.28 and 6.40 +/- 0.18 microg/mL, Tmax of 32 +/- 1.5 and 34 +/- 1.8 min, t(1/2beta) of 256 +/- 14 and 264 +/- 29 min, and absolute bioavailability of 95.94 and 88.45% for colistin sulfate intramuscularly injected to piglets at 2.5 and 5.0 mg/kg, respectively. Serum colistin sulfate concentration followed a two-compartment open model showing first-order absorption. The high bioavailability and the long-lasting serum retention time indicated that the new solution is suitable for i.m. in piglets with a recommended dose of 2.5 mg/kg injected twice daily.  相似文献   

8.
The pharmacokinetics of flumequine, administered intravenously and intramuscularly at a single dose of 20 mg/kg, was investigated in healthy goats. After intravenous injection, flumequine distributed rapidly (t1/2alpha = 0.87+/-0.15 h) but was eliminated slowly (t1/2beta = 7.12+/-1.27 h); mean clearance (Cl) and volume of distribution (Vdss) were 0.32+/-0.03 (L/(h x kg) and 1.22+/-029 (L/kg), respectively. After intramuscular administration, the peakserum concentration (Cmax = 7.40+/-0.5 microg/ml) was reached in about 1.5 h (Tmax) and bioavailability was about 93%. Estimated flumequine serum levels following repeated intramuscular administration of the aqueous suspension used in the study (7.23+/-0.7 microg/ml and 4.82+/-0.47 microg/ml at intervals of 8 and 12 h, respectively) indicated that to maintain serum levels above MIC values for susceptible bacteria a dosage regimen of 20 mg/kg every 12 h is necessary by the intramuscular route.  相似文献   

9.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

10.
The bioavailability of orally given oxytetracycline in dependence on calcium (0.7% and 1.4% calcium, respectively) and citric acid content in feed was examined in piglets (9.9 +/- 0.9 kg body weight). In the first trial no citric acid was added to the two feeds, in the second trial 1.5% citric acid was added. In both trials each piglet received an i/v-injection of oxytetracycline (dosage 10 mg/kg body weight) and an oral dose of oxytetracycline (40 mg/kg body weight). The blood samples, taken in definite time intervals, were analysed by a microbiological assay. With these results the kinetic parameters and the bioavailability were calculated. The results of the i/v-trials were identical. The kinetic parameters C1 = 14.91 micrograms/ml, lambda 1 = 3.46 h-1, Cz = 7.49 micrograms/ml and lambda z = 0.19 h-1 describe the graph after i/v-application. The calcium content of the feed had no significant influence on the kinetic parameters after p/o-application, but the piglets receiving citric acid showed a significant higher maximum concentration (Cmax). The bioavailability of orally given oxytetracycline was significantly (26%) increased by the citric acid content. In spite of the citric acid the bioavailability only came to 4.9%.  相似文献   

11.
In a 4 x 4 crossover-design study, pharmacokinetic variables of 2 injectable formulations of netobimin (trisamine salt solution and zwitterion suspension) were compared after SC administration in calves at dosage of 12.5 mg/kg of body weight. Netobimin parent drug was rapidly absorbed, being detected between 0.25 and 12 hours after treatment, with maximal plasma drug concentration (Cmax) values of 2.20 +/- 1.03 micrograms/ml achieved at 0.75 +/- 0.19 hour (trisamine) and 1.37 +/- 0.59 micrograms/ml at 0.81 +/- 0.18 hour (zwitterion). Netobimin area under the plasma concentration-time curve (AUC) was 7.59 +/- 3.11 micrograms.h/ml (trisamine) and 6.98 +/- 1.60 micrograms.h/ml (zwitterion). Elimination half-life (t1/2 beta) was 2.59 +/- 0.63 hours (trisamine) and 3.57 +/- 1.45 hours (zwitterion). Albendazole was not detected at any time. Albendazole sulfoxide was detected from 4 hours up to 20 hours (trisamine) and from 6 hours up to 24 hours (zwitterion) after administration of the drug. The Cmax values were 0.48 +/- 0.16 micrograms/ml and 0.46 +/- 0.26 micrograms/ml for trisamine and zwitterion formulations, respectively, achieved at time to peak drug concentration (Tmax) values of 9.50 +/- 1.41 hours (trisamine) and 11.30 +/- 1.04 hours (zwitterion). Albendazole sulfoxide AUC was 3.86 +/- 1.04 micrograms.h/ml (trisamine) and 4.40 +/- 3.24 micrograms.h/ml (zwitterion); t1/2 beta was 3.05 +/- 0.75 hours (trisamine) and 3.90 +/- 1.44 hours (zwitterion). Albendazole sulfone was detected from 4 (trisamine) or 6 hours (zwitterion) to 24 hours after treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of experimental Pasteurella haemolytica infection on the intravenous and intramuscular pharmacokinetics of flumequine was studied in dairy calves. The plasma concentration-time curve of flumequine after intravenous injection of 5 mg/kg bodyweight flumequine of a 10% solution before and after experimental infection, was best described by a three-compartment open model. After intramuscular injection of the same dosage rate of a 3% flumequine suspension is was best described by the one-compartment open model with first-order absorption. The experimental infection by intratracheal administration of infectious bovine rhinotracheitis (IBR)-virus and 5 days later intrapulmonary administration of Pasteurella haemolytica produced a clear temperature rise and signs of disease expressed as Average Health Status. Subsequently, plasma Fe and Zn concentration decreased after infection. The distribution volumes Vc, Vd(area) and Vd(ss) after infection (0.07 +/- 0.04, 1.38 +/- 0.36 and 0.50 +/- 0.11 l/kg, respectively) were smaller than those before infection, but the differences were not significant (P less than or equal to 0.1). The intravenous AUC infinity was significantly increased (21.86 +/- 3.51 to 33.85 +/- 2.97 mg.h/l, P less than or equal to 0.01) and the total body clearance (ClB) significantly decreased (0.24 +/- 0.02 to 0.15 +/- 0.01, P less than or equal to 0.01) after infection. After intramuscular injection of flumequine at 5 mg/kg as a 3% suspension, only the bioavailability, F, was significantly decreased after infection (78.5 +/- 14.3 to 59.7 +/- 21.2%, P less than or equal to 0.02). However, this had no consequences for the dosage regimen used. The urine concentration ratio flumequine:7-hydroxy-flumequine:conjugated flumequine changed from 2:1:10 before infection to 6:1:15 after infection, which indicates that hydroxylation and glucuronidation as metabolic pathways for flumequine were decreased after Pasteurella sp. infection.  相似文献   

13.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Twenty-nine healthy 17- to 29-day-old unweaned Israeli-Friesian male calves were each given a single IV or IM injection of 10 or 20 mg of moxalactam disodium/kg of body weight. Serum concentrations were measured serially during a 12-hour period. Serum concentration vs time profiles were analyzed by use of linear least-squares regression analysis and the statistical moment theory. The elimination half-lives after IV administration were 143.7 +/- 30.2 minutes and 155.5 +/- 10.5 minutes (harmonic mean +/- SD) at dosages of 10 and 20 mg of moxalactam/kg of body weight, respectively. Corresponding mean residence time values were 153.1 +/- 26.8 minutes and 169.9 +/- 19.3 minutes (arithmetic mean +/- SD). Mean residence time values after IM administration were 200.4 +/- 17.5 minutes and 198.4 +/- 19.9 minutes at dosages of 10 and 20 mg/kg, respectively. The volumes of distribution at steady state were 0.285 +/- 0.073 L/kg and 0.313 +/- 0.020 L/kg and total body clearance values were 1.96 +/- 0.69 ml/min/kg and 1.86 +/- 0.18 ml/min/kg after administration of dosages of 10 and 20 mg/kg, respectively. Moxalactam was rapidly absorbed from the IM injection site and peak serum concentrations occurred at 1 hour. The estimated bioavailability ranged from 69.8 to 79.1%. The amount of serum protein binding was 53.4, 55.0, and 61.5% when a concentration of moxalactam was at 50, 10, and 2 micrograms/ml, respectively. The minimal inhibitory concentrations of moxalactam ranged from 0.01 to 0.2 micrograms/ml against Salmonella and Escherichia coli strains and from 0.005 to 6.25 micrograms/ml against Pasteurella multocida strains.  相似文献   

15.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

16.
Phenoxymethyl penicillin (penicillin V) was administered intravenously (i.v.) and orally to pre-ruminant calves and the distribution and elimination kinetics, as well as the oral bioavailability, were determined. After i.v. injection, the drug was distributed rapidly in the body, the elimination half-life (t1/2 beta) was 34 min and the apparent volume of distribution at steady-state (Vd ss) was 0.30 l/kg. Mean peak serum drug concentrations were directly related to the oral dose administered, i.e. 0.22 microgram/ml, 1.06 micrograms/ml and 2.14 micrograms/ml after dosing at 10, 20 and 40 mg/kg, respectively. The elimination t1/2 of the drug after oral dosing varied between 90 and 110 min, and the oral bioavailability was approximately 30% of the dose. The co-administration of phenoxymethyl penicillin and probenecid resulted in elevation and prolongation of serum drug concentration. The percentage of drug bound to serum proteins was 78.8% +/- 8.2%. Phenoxymethyl penicillin was probably inactivated and degraded in the gastrointestinal tract of 6-week-old calves fed exclusively hay, silage and concentrates as very low and erratic serum drug concentrations were measured after these calves were dosed orally with the drug at 40 mg/kg. In view of the narrow antibacterial spectrum of the drug and the relatively high dose required, it appears that phenoxymethyl penicillin can only be of limited practical value for the treatment of bacterial infections in preruminant calves.  相似文献   

17.
Ceftazidime pharmacokinetic values were studied in unweaned calves given the antibiotic alone or in combination with probenecid. Ceftazidime was administered IV to 9 calves at a dosage of 10 mg/kg of body weight and IM (10 mg/kg) to 8 calves, to 7 calves (10 mg/kg plus probenecid [40 mg/kg]), and to 9 calves (10 mg/kg plus probenecid [80 mg/kg]). Serum concentration-vs-time data were analyzed, using noncompartmental methods based on statistical moment theory. The data for IV ceftazidime administration also were fitted by use of a linear, open 2-compartment model. The mean (+/- SD) terminal half-life was 138.7 +/- 23.6 minutes and 126.3 +/- 10.5 minutes after IV and IM administrations, respectively. The mean residence time was 167.3 +/- 21.1 minutes and 201.4 +/- 16.8 minutes after IV and IM administrations, respectively. Coadministeration of probenecid did not affect the terminal half-life or mean residence time values. The total body clearance was 1.75 +/- 0.26 ml/min/kg, and the volume of distribution at steady state was 0.294 +/- 0.064 L/kg. The estimated mean absorption time was 34.1 minutes. There were no significant differences between the mean residence time calculated by statistical moment theory or by compartmental analysis, indicating central compartment output of ceftazidime. The 90% minimal inhibitory concentration values of ceftazidime determined for Escherichia coli, Salmonella spp, Pasteurella multocida, and P haemolytica isolates ranged from less than 0.01 to 0.1 micrograms/ml.  相似文献   

18.
The pharmacokinetics of spiramycin in pigs were investigated after intravenous and oral administration. The potential therapeutically effective blood level was established after a single administration and examined in a subsidiary five day study. The rapid intravenous injection of 25 mg spiramycin/kg bodyweight produced marked salivation in all the test animals. The elimination half-life (2.3 +/- 1.2 hours) was relatively short, in accordance with the total body clearance rate (27.3 +/- 10.1 ml/minute/kg). The high volume of distribution (5.2 +/- 2.2 litres/kg) was due to the accumulation of the drug in the body tissues. The maximum plasma concentration (4.1 +/- 1.7 micrograms/ml) after oral administration of 85 to 100 mg spiramycin/kg bodyweight was reached after 3.7 +/- 0.8 hours and the half-life of the elimination phase was 6.0 +/- 2.4 hours. The oral bioavailability was 45.4 +/- 23.4 per cent. Ad libitum feeding of a diet containing 2550 mg spiramycin/kg produced a steady state concentration of 0.96 +/- 0.27 micrograms/ml. This plasma concentration would provide a potentially therapeutically effective blood concentration against Mycoplasma species, Streptococcus species and Staphylococcus species.  相似文献   

19.
The pharmacokinetics of cefepime were studied following intravenous and intramuscular administration of 6.5 mg/kg in four female Friesian calves. Following single intravenous administration, the serum concentration-time curves of cefepime were best fitted using a two-compartment open model. The elimination half-life (t(1/2)beta) was 2.38+/-0.16 h, volume of distribution at steady state (Vdss) was 0.21 +/- 0.01 L/kg, and total body clearance (ClB) was 1.1 +/- 0.08 ml/min per kg. Following intramuscular administration, the drug was rapidly absorbed with an absorption half-life (t(1/2)ab) of 0.29+/-0.02 h; maximum serum concentration (Cmax) of 21.7 +/- 1.1 microg/ml was attained after (Tmax) 1.1 +/- 0.08 h; and the drug was eliminated with an elimination half-life (t(1/2)el) of 3.02 +/- 0.18 h. The systemic bioavailability (F) after intramuscular administration of cefepime in calves was 95.7% +/- 7.44%. The in vitro serum protein-binding tendency was 10.5-16.7%. Following administration by both routes, the drug was excreted in high concentrations in urine for 24 h post administration.  相似文献   

20.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号