首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In the early summer of 1987 an untimely needle loss was observed in Scots pine (Pinus sylvestris L.) of different ages growing on oliogotrophic mineral soils in Cladina and Calluna-type heath forests in northern Finland. The first symptoms were observed at the beginning of July when current shoot growth was ending and the young needles were flushing. The older needles first yellowed then later turned brown before falling. Needle loss proceeded from the oldest to the younger needle age classes. The trees lost between one and four age classes of needles from earlier growth and retained only the most recent 1 to 3 yr needles. Foliar analysis indicated nutrient stress as revealed by retranslocation of mobile nutrients such as N and insufficient uptake of immobile nutrients such as Ca. The soil nutrient concentration, however, was normal at poor sites and therefore it appears the primary reason for needle Loss is a nutrient stress due to root damage. This damage was caused by unusual weather in the winter of 1986 to 1987, rather than by soluble Al.  相似文献   

2.
Initial analysis of needle nutrient status and visible symptoms suggested that a declining Norway spruce (Picea abies L. Karst.) stand in south Sweden was suffering from B and Cu deficiency. Effects of addition of 1000 kg ha-1 of a commercial N-free fertilizer containing macro nutrients plus B, Cu, and Zn were investigated. B concentrations and B/N ratios were increased significantly in needles from fertilized trees compared to the control, to levels well above critical levels of deficiency and optimum nutrient ratios. In contrast, the treatment did not change the low needle Cu status and there was no effect on growth measured as needle mass after one growing season. Graphical vector analysis together with the absence of change in needle mass suggested a luxury uptake of B. Application of the concepts for critical levels of deficiency and optimum nutrient ratios in relation to N suggested B and Cu deficiency were contributing factors to the observed forest damage in the area. Graphical vector analysis requires a rapid response in needle mass, in combination with improved needle nutrient status in order to identify nutrient deficiencies. The applicability of the technique appears to be limited to primarily growth-promoting nutrients.  相似文献   

3.
Many studies have dealt with the links between nutrient supply and tree growth. High N availability usually leads to increased growth but it may also be a stress factor and may affect the ability of the tree to take up both water and nutrients. We measured the nutritional status of the trees and estimated their tolerance to drought by examining the flushing of new shoots and needle loss. The studies were carried out on trees grown under different N and water supply in a field experiment using a 25–30 year old Norway spruce (Picea abies) in SW Sweden. The treatments included in this study were ammonium sulphate (NS) where 100 kg N ha?1 was applied yearly, N-free fertiliser (V) where P, K, Ca, Mg and S but no N was applied, and also the combinations of ammonium sulphate and drought (ND) and N-free fertiliser and drought (VD). The NS treatment caused increased N but decreasing P/N, K/N and Mg/N ratios in the needles whereas the N-free fertiliser resulted in increased P/N and Ca/N ratios. In ND and VD, nutrient ratios remained relatively unchanged compared with NS and V. Thus, trees keep a stable internal nutrient balance. However, as a response to the drought, ND seemed to stop the flushing of new shoots to a higher degree than VD. In conclusion, this study showed that nutrient status did affect drought resistance which could be seen as differences in the flushing of new shoots rather than changes in nutrient ratios in the needles.  相似文献   

4.
Bäck  Jaana  Turunen  Minna  Ferm  Ari  Huttunen  Satu 《Water, air, and soil pollution》1997,100(1-2):119-132
Scots pine (Pinus sylvestris) needles from forest sites differing in distance from big fur farms emitting large amounts of ammonia and ammonium (=NHy) were examined by scanning and transmission electron microscopy. Specific features indicating an ammonium-nitrogen overload, such as an abundance of needle surface organisms and modifications in cellular and wax structures, were classified. Throughout the study area (up to 1000 m from the farms), mesophyll cells had thin cytoplasm and folding plasmalemma indicating frost damage. Phloem damage attributable to a possible nutrient imbalance was also observed. Chloroplast membranes were undulating and the occurrence of leaf surface organisms (e.g. aerophilic algae) was more abundant at the closest sites. The changes were related both to the direct effects of dry NHy deposition on the needles, and to the effects operating via soil acidification. The needle epicuticular waxes proved to be structurally rather inert against the influence of ammonium compounds, since no significant changes due to NHy were observed.  相似文献   

5.
Heavy metal- and nutrient contents of plants and soil samples from metalliferous waste dumps in Bleiberg (Carinthia, Austria). II. Woody plants Needles, stem- and root-samples from coniferous trees (Norway spruce and Scots pine), taken from a waste dump habitat and an offmine-site in Bleiberg (Carinthia) were analysed on their macronutrient-and heavy metal-contents. No significant age dependent differences in N-and P-content of the two species were observed. The highest potassium levels occured in the youngest needle age group. The needles of the trees from the mining dump site show increasing Ca- and Fe- concentrations with increasing needle age. The Mn-contents of needles collected in offmine-sites were higher than those from the waste dump. The Mg-levels in the needles from both sites are remarkably low, a symptom of undersupplement. High Pb- and Zn-concentrations were determined in older needles of waste-dump-trees. Because of rather high Pb- and Zn-levels in the roots of the trees from this site a physiological transport barrier is assumed, which partly inhibits the upward lead transport; on the other hand lead is partly deposited in stem-wood of the two species. The heavy metal contents of roots from mining dump site are interpreted as an effect of high metal stress in the fine fraction of soil material.  相似文献   

6.
Mineral nutrients in grains act as a source of nutrients in human diets, in which deficiencies of key minerals including calcium, magnesium, copper, iron, and zinc have prompted efforts to increase their concentrations in the edible portions of staple grain crops. Wheat (Triticum aestivum L.) crops in many regions often suffer abiotic stresses such as drought, extreme heat or frost during grain filling, which affect mineral source–sink relationships. We hypothesized that these stresses would have nutrient‐specific impacts on grain nutrient concentrations due to differences among nutrients in phloem mobility, post‐anthesis uptake and grain loading patterns. Nutrient loading patterns into wheat grains were investigated in two wheat cultivars in the field by sequentially harvesting tagged ears and analyzing tissues for key nutrients. In addition, the impact of perturbed source–sink relations during grain filling on nutrient loading was investigated by inducing post‐anthesis drought /floret abortion in a glasshouse study. Over 90% of Ca and around 70% of Na, K, and Mg accumulated in both wheat cultivars in the field during the first 14 d of grain development. The concentrations of micronutrients (Mn, Fe, Cu and Zn), Mg and P in grains generally increased when florets were aborted, and were unchanged under drought stress, while concentrations of Ca and K were highest under drought stress and lowest under the 66% floret abortion treatment. The observed changes in grain nutrient concentrations from post‐anthesis drought/floret abortion could not be fully explained by nutrient‐specific differences in phloem mobility, post‐anthesis uptake and grain loading patterns. This study will inform future research to define the precise roles of individual nutrients within developing grains and to fully understand the observed variations in grain nutrient concentrations due to source/sink modifications.  相似文献   

7.
A microcosm experiment was conducted to understand the impacts of mixing radiata pine (Pinus radiata D. Don) needle litter and understory (gorse—Ulex europaeus L., broom—Cytisus scoparius L., bracken—Pteridium aquilinum L., and lotus—Lotus pedunculatus L.) litter materials on decomposition and nutrient release dynamics. Mixing of pine needle litter with understory litter material had significant impacts on both the rate of decomposition and nutrient release patterns of pine litter as well as that of the understory species. Incubation in microcosms over 10 months resulted in significantly lower mass loss of radiata pine needle litter mixed with broom and lotus litters (35.8±8.4 and 41.3±0.8%, respectively) than pure pine needle litter (63.5±2.3%). Mixing with pine needle litter significantly increased the mass loss of broom (53.1±6.1%) compared to that of pure broom (30.2±1.0%). Significant transfers of nutrients, especially of magnesium and potassium, were observed in litter mixture treatments. Concentration of K in litter materials was found to be the most limiting factor for the decomposing microorganisms in the present study. The findings of this study suggest that management of understory litter composition via weed control could be used to manipulate carbon turnover and nutrient release in the forest floor. Also, initial selection of understory species will be important and could be managed.  相似文献   

8.
Wood ants (Formica rufa group) are dominating ecosystem elements of the boreal region due to their wide and abundant occurrence. They collect and concentrate organic material from the surrounding forest floor by building large above-ground mounds. These mounds have higher temperature and lower water content than the surrounding forest floor. We studied how these peculiar environmental conditions affected mass loss and carbon (C), nitrogen (N), phosphorus (P) and potassium (K) mineralisation of organic matter in boreal Norway spruce (Picea abies L. Karst.)-dominated mixed forest stands of four different age classes (5-, 30-, 60-, and 100-year-old) situated in eastern Finland using the litter bag technique. Norway spruce needle litter was incubated in inhabited and abandoned wood ant mounds as well as on the surrounding forest floor. We expected decomposition to be extremely slow due to the dryness of the mounds. Mass losses inside inhabited mounds were lower compared to the surrounding forest floor (on average 30 vs 50% after 2 years) but not as low as we expected, which might be a result of ant and microbial activity in the mounds. Decomposition in the abandoned mounds proceeded similarly as on the forest floor. Nutrient mineralisation proceeded more slowly in the ant mounds than on the surrounding forest floor. Mineralisation occurred for all studied nutrients in the ant mounds, except for N, which net amount remained stable during the years of the experiment. When wood ant mounds are abandoned and their porous and dry structure is no longer maintained by the ants, their decomposition is accelerated, and nutrients may be available for uptake by plants, although the nutrient mineralisation seems still to remain lower compared to the surrounding forest floor. However, eventually the mound material will be decomposed and nutrients mineralised, thus providing a nutrient hot spot increasing the heterogeneity of forest floor nutrient availability.  相似文献   

9.
The Si concentration in 1 year old needles from Norway spruce (P. abies) was determined at 39 sites within an area of 150 km2. The sites had uniform elevation, precipitation and immission characteristics. The mean value was 1423 μg Si g?1, and the coefficient of variation between sites was 29 %. There was no correlation of Si concentration in needles with soil pH in the range of pH 3.5 to 7.6, but significant negative correlations with soil organic matter concentration and with the effective cation exchange capacity were found. Silicon in needles correlated positively with Al, La, and Fe in needles, but showed no correlation with 20 other elements. The seasonal variation of Si concentration in needles showed a nonuniform increase with time. The seasonal changes of Si were similar to those of Ca. The investigation of 4 successive needle age classes, however, showed a strictly linear increase of the Si concentrations.  相似文献   

10.
Leaching of nutrients out of young intact spruce (Picea abies) by acid fog The effect of acid fog on the leaching of minerals and carbohydrates out of needles of five year old spruce trees (Picea abies) was studied. The fogs were prepared from H2SO4 and HNO3 (2:1) with a pH of 2.75 (acid treatment) and 5 (control treatment). The acid fog leached significantly higher amounts of K, Ca, Mg, Mn, and Zn as well as carbohydrates as compared with the control fog. The absolute quantities of minerals leached, however, were low and amounted to only some percent of the minerals generally present in needles. Except Zn, of which the quantity leached was about as high as the Zn needle content. Nevertheless the Zn concentration in the needles treated with acid fog was not lower than the Zn concentration in the control needles suggesting that the lost Zn was quickly compensated by Zn uptake. In the treatments with acid fog damage symptoms appeared at the end of the experimental period. In the older needles a weak chlorosis occurred; from the needles of the 1st year some turned redish brown. In the acid fog treatments all needles lacked brightness while the control needles looked bright. These symptoms were similar to those under field conditions of older spruce trees with the ?lametta syndrom”?. Electron microscopic investigation revealed that the wax layer of the needles treated with acid fog was badly damaged.  相似文献   

11.
The influence of alkaline dust pollution (pH of water solution12.3–12.6) from a cement plant (Kunda, Estonia) and alkalizedgrowth substrate on lignin and mineral composition of the needles of 75–90-yr-old Norway spruce was studied on sample plots established at different distances from the emission source. Disbalanced content of nutrients and an increase in thelignin content were found under the high level of air pollution.The contents of K, Ca, S and B in needles were higher, while those of Mn and N were lower in heavily polluted plots. A strongcorrelation was found between lignin and K, N and B concentrations as well as Ca/K in needles and shoots. Stimulation of lignification of needles correlated with the pollution load. Reduction of needle growth was observed and a negative correlation was established between the lignin concentration in tissues and the length of needles under the impact of dust pollution.  相似文献   

12.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

13.
A decrease in soil water content during droughts may increase aluminum (Al) to concentrations that are toxic to the growth of trees. The effects of water stress (WS) on the response of ectomycorrhizal pitch pine (Pinus rigida Mill.) seedlings to aluminum was determined by growing seedlings in sand irrigated with nutrient solution (pH 3.8) containing 0, 5, or 10 mg L‐1 Al. Water stress was imposed for 41 days by withholding nutrient solution for five consecutive days each week. At harvest time, seedlings at high WS had 72% of mean gravimetric water contents of seedlings at low WS. Aluminum decreased growth of seedlings at high WS, but had no effect on growth of seedlings at low WS. Aluminum toxicity symptoms in roots (e.g., dark thickened tips) were observed at lower Al levels at high WS than at low WS. Stem dry weight was the only plant part decreased by water stress alone. Across Al levels, Al concentration in roots was higher at low WS than at high WS. Water stress alone reduced root [phosphorus (P), potassium (K), and calcium (Ca)] and foliar [P, K, and magnesium (Mg)] concentrations of mineral nutrients. Decreases of nutrients in roots with increasing Al was greater at low than at high WS. Calcium was the only foliar nutrient decreased by Al treatment.  相似文献   

14.
The influence of Mg- and Ca-deficiency on the micromorphology of epicuticular waxes and on the wettability of spruce needles The influence of Mg- and Ca-deficiency in nutrient solution on epicuticular waxes of needles of Norway spruce (Picea abies [L.] Karst.) was investigated in greenhouse experiments. Spruce clones were cultivated in sand and supplied with nutrient solution. For two vegetation periods, plants of the treatment groups -Mg, -Ca and -Mg/-Ca were provided with only 15 % of the respective mineral element of the control. At the end of the second vegetation period, the nutrient deficiency was documented by reduced Mg- and/or Ca-content of the needles and changes in chlorophyll fluorescence. No effect on micromorphology of epicuticular waxes and wettability of needles of any age was observed following deficient Mg and/or Ca supply.  相似文献   

15.
A field plot experiment on fertilization with N, Mg and P in Scots pine forest was established. The experiment had a factorial design with three levels of N (0, 30 and 90 kg ha?1), two levels of Mg (0 and 1.5 kg ha?1) and two levels of P (0 and 5.3 kg ha?1). The application was done annually. There was a significant growth increase for the two N treatments. During a period of 5-years the mean increase in volume increment was 2.3 and 4.5 m3 ha?1 for the 30 N and 90 N kg ha?1 yr?1 treatments, respectively. This represents a percentage increase in volume increment of 53 and 102% compared to the untreated control plots. No significant growth effect of P and Mg application was detected, either alone or in combination with N. The needle nutrient concentrations have been followed along with the annual measurements. An increase in N-concentration was detected after the first growing season in the N treated trees. After five years the Mg concentrations in the needles are lower in these treatments. The one year old needles have concentrations as low as 0.05% Mg. No visible deficiency symptoms have been observed. The field experiment effects demonstrates that N is still the most limiting nutrient under these conditions and that there is a relative large potential for N accumulation in these forest types without negative effects.  相似文献   

16.
Nutrient requirements o£ plants during their various phases of growth are affected by several internal and external factors. The changes in rate of uptake by root with age are an important factor to meet the increasing plant demand for nutrients. Nutrient culture experiments were carried out under controlled greenhouse conditions with corn (Zea Mays L.) and alfalfa (Medicago sativa L.) to investigate the relationship of stage of growth to changes in plant parameters and nutrient uptake properties. With advancement of age. both plant species increased their ambient growth medium pH towards neutrality. With increasing age in alfalfa there was very little change in observed S:R ratio and root growth rate. On the other hand in corn plants the S:R ratio increased and growth rate for root and shoot decreased with age. Alfalfa contained higher concentrations of N, K, Na, and Ca than corn; while ion concentrations in both crops decreased with plant age. At all stages of growth, alfalfa absorbed less nutrients than corn. The rates of nutrient influx, In in both the crops showed various degrees of correlation with age and rate of shoot growth. In corn. In for ions reached a maximum at 25 days growth; whereas, in alfalfa, In reached maximum at 30 days of growth. The differences in influx rates for different ions in the two species are probably due to the difference in development of shoot and root parameters and shoot demand for the ions.  相似文献   

17.
黄土区裸露坡地径流养分流失模型的建立与验证   总被引:1,自引:1,他引:0  
在自然降雨条件下,黄土区坡耕地土壤表层中的养分会随地表径流流失,从而加剧了土壤质量和生产力的下降并造成严重的农业面源污染,使得准确预测黄土区养分随地表径流的流失过程尤为重要。现有的养分流失模型着重于估算长时段的养分流失总量,且未考虑开始产流前入渗水对交换层养分的稀释作用。根据不同降雨时段的养分迁移特性,将整个降雨过程划分为三个阶段:(1)从降雨开始(t_0)至交换层土壤完全饱和(t_(sa)),(2)从交换层土壤完全饱和(t_(sa))至开始产流(t_p),(3)从开始产流(t_p)至降雨结束。在运动波模型近似解析解的基础上建立了综合雨滴击溅、扩散和入渗作用的养分流失近似解析模型;并进行了降雨试验,以率定模型参数和验证模型的可靠性。结果表明:径流及养分的模拟值可与实测值精确匹配(R~2 0.8,纳什效率系数NSE 0.347)。养分流失模型中的雨滴诱导水分转移速率e_r取值在0.006~0.023 cm·min~(–1)之间,交换层深度d_e取值在0.68~1.32 cm之间;雨滴诱导水分转移速率e_r可显著影响硝态氮和铵态氮的峰值流失速率,e_r的增大使得养分流失过程中流失速率减小阶段的衰减速率更快;而交换层深度d_e可显著影响硝态氮和铵态氮损失率的总体变化范围,即随交换层深度的增大,养分的峰值流失速率和流失总量也随之增大。因此,应采取植被覆盖或深层施肥等措施,减弱雨滴动能、降低交换层养分含量以达到减少养分流失的目的。  相似文献   

18.
Abstract

The seasonal patterns of foliage nutrient concentrations and contents were monitored for two growing seasons in an 11‐year—old Pinus el1iottii stand. In the first growing season after needle initiation, N, P, K, Mg, and Zn concentrations decreased, but this was followed by an increase in the fall and winter months. Another drop in concentration of all elements, except P, occurred in the second growing season. Decreases in total contents indicated that this drop was a result of translocation to other tissues. In contrast to the mobile elements, the concentration and fascicle contents of Ca, Mn, and Al increased with aging of the needles.

Between‐tree variability was least for N, P, and Zn and the N, K, Mg, Mn, and Zn in the current foliage had consistently lower variation than that in the 1‐year‐old foliage. Between‐tree variation for K was lower in the winter than the spring.

For pine foliage, recommended sampling period for N, P, Mg, and Zn is mid to late summer and for the other elements it is late fall to late winter.

There are several sources of variation that influence the level of nutrients in tree foliage. The most important of these, apart from the tree nutrient status, are seasonal fluctuations, variation between trees, and age of needles . Smaller sources of variation are associated with position of the needles within the crown, diurnal changes, year to year variation, and analytical errors1,2. These variables must be studied in order to develop suitable sampling techniques and in Pinus this has been undertaken for P. banksiana 1, P. taeda 3, P. strobus 4, P. resinosa 4, P. sylvestris 5, and P. radiata 6,7. However, foliage sampling has not been studied in detail for slash pine (Pinus elliottii Englem var. elliottii) and earlier studies with other pines have been largely confined to temperate or cool climates.

This study reports the variation in elemental concentrations with season, age of foliage, and between slash pine trees growing in a subtropical climate in Florida.  相似文献   

19.
Effect of different manures and pine needles application on soil biological properties and phosphorus availability was evaluated in sandy loam soils. Fertilizers nitrogen, phosphorus, and potassium (NPK); Sesbania aculeata green manure (GM); farm yard manure (FYM); and vermicompost (VC) were applied alone or in combination with pine needles. Microbial biomass carbon, dehydrogenase, and alkaline phosphatase activity increased significantly due to manures and NPK. Pine needles reduced the microbial biomass carbon (MBC) and dehydrogenase activity in FYM and VC but increased in NPK and GM. Acid phosphatase activities were found to be significantly increased by pine needles application in NPK, FYM, VC, and GM as compared to without pine needles counterparts. No significant differences were found in soil solution phosphorus in manure treated soil due to pine needle application, but phosphorus uptake was reduced significantly in these treatments. Pine needles application clearly influenced the soil biological properties without any perceptible effect on nutrient release from the manures.  相似文献   

20.
Literature reports both positive and negative effects of N‐fixing alders on conifer growth in alder‐conifer stands. Such divergent effects probably result from poorly understood species interactions. The aim of this work was to examine how varying alder‐to‐pine ratios (APRs) and N fertilization affect pine nutrient status. A pseudo‐experiment was installed in each of two areas of regeneration (AR) with different amounts of radiation reaching alder. The experimental approach consisted of a series of pseudoreplicated plots with five APRs within each AR. Half of each plot received 200 kg N ha–1. Data were interpreted by vector analysis. Alders in the AR 1987 induced needle‐biomass reductions, K deficiency, and P accumulation in pine needles. However, nutrient availability increased with the proportion of alders in the AR 1989, where alders received high sunlight due to a less dense pine stand. Nitrogen fertilization increased needle biomass and N in three out of five alder proportions where alders were sunlight‐limited. In the other stand, with the exception of the no‐alder and A4 plots, positive effects of N fertilization increased with decreasing alder density. We conclude that sunlight‐limited alders may not positively affect associated‐species growth even in N‐limited sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号