首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Acetylene blockage was evaluated as a method for measuring losses of N2O + N2 from two Denchworth series clay soils. The denitrification potential in anaerobic, dark incubations at 20°C with nitrate (equivalent to 100 kg N ha?1 0–20 cm depth), maximum water holding capacity, and acetylene (1%), was equivalent to 32 ± 11 and 39 ± 6 kg N ha?1 per day for the two 0–20 cm soils and was positively correlated with carbon content (r= 0.98). After 4 days N2O was reduced to N2 in the presence of C2H2. In April 1980 following irrigation (24 mm) and applications of ammonium nitrate (70 kg N ha?1) and acetylene, the mean nitrous oxide flux from soil under permanent grass was 0.05 ± 0.01 kg N2O-N ha?1 per day for 8 days. In June 1980, the losses of nitrogen from cultivated soils under winter wheat after irrigation (36 mm) and acetylene treatment were 0.006 ± 0.002 and 0.04–0.07 ± 0.01 kg N ha?1 per day respectively before and after fertilizer application (70 kg N ha?1). The nitrous oxide flux in the presence of acetylene decreased briefly, indicating that nitrification was rate determining in drying soil.  相似文献   

2.
Denitrification loss from a loam under a cut ryegrass sward receiving 0, 250 and 500 kg N ha?1 a?1 in four equal amounts was measured during 14 months using the acetylene-inhibition technique. The rate of denitrification responded rapidly to changes in soil water content as affected by rain. Mean rates of denitrification exceeded 0.2 kg N ha?1 day?1 only when the soil water content was >20% (w/w) and nitrate was >5μ N g?1 in the upper 20 cm of the profile and when soil temperature at 2 cm was >5–8°C. When the soil dried to a water content <20%, denitrification decreased to <0.05 kg N ha?1 day?1. Highest rates (up to 2.0 kg N ha?1 day?1) were observed following application of fertilizer to soil at a water content of about 30% (w/w) in early spring. Denitrification in the control plot during this period was generally about a hundredth of that in plots treated with ammonium nitrate. High rates of N2O loss (up to 0.30 kg N ha?1 day-1) were invariably associated with high rates of denitrification (> 0.2 kg N ha?1 day?1). However, within 2–3 weeks following application of fertilizer to the plot receiving 250 kg N ha?1 a?1 the soil acted as a sink for atmospheric N2O when its water content was >20% and its temperature >5–8°C. Annual N losses arising from denitrification were 1.6, 11.1 and 29.1 kg N ha?1 for the plots receiving 0, 250 and 500 kg N ha?1 a?1, respectively. More than 60% of the annual loss occurred during a period of 8 weeks when fertilizer was applied to soil with a water content >20%.  相似文献   

3.
Abstract

The study was carried out to investigate the water balance and runoff and infiltration losses of nutrients in a paddy field plot located in southern Korea. Field monitoring was carried out during the cropping season from May 1, 1999 to September 30, 2000. The soil of the experimental paddy field belonged to the Jisan series (SiL; fine loam, mixed, mesic Fluventic Haplaquepts) covering on area of 5,000 m2 (100 m × 50 m). The measured input quantities of N and P into the paddy field were as follows: 122 and 140 kg N ha?1 and 29 and 30 kg P2O5 kg ha?1 from chemical fertilizer, 20 and 28 kg N ha?1 and 0.35 and 0.36 kg P ha?1 from precipitation, and 26 and 35 kg N ha?1 and 0.57 and 0.72 kg P ha?1 from irrigation water, respectively. The measured outputs of N and P during the study period were as follows: 48 and 52 kg N ha?1 and 1.1 and 1.6 kg P ha?1 from runoff water, and 9 and 12 kg N ha?1 and 0.04 and 0.05 kg P ha?1 from infiltration. The runoff loading was the highest in June, presumably because of the higher concentrations of chemical components associated with chemical fertilizer application. The runoff losses of nutrients were compared to the amounts of nutrients supplied by chemical fertilizers. It was found that the losses of N accounted for 34.3 and 42.6% of the chemical fertilizer applied, while those of P accounted for 3.8 and 5.3%. The ratio between nutrient losses by infiltration and the chemical fertilizer applied was 6.4 and 9.8% for N and 0.1 and 0.2% for P, respectively.  相似文献   

4.
A soil lysimeter field study assessed the efficacy of different pasture species to reduce nitrogen (N) leaching loss from cow urine deposited in different seasons. A single application of cow urine (15N‐labelled; equivalent to 622 kg N ha?1) was applied in three different seasons (summer, autumn or winter) to three pasture species monocultures (perennial ryegrass, plantain or lucerne) on a free‐draining volcanic soil and monitored over 362 days. Leachate analyses revealed consistently large leaching losses of inorganic‐N from lucerne (>200 kg N ha?1) across different urine application times due to the relatively low plant growth rates during winter (<15 kg DM ha?1 day?1) that led to low total recovery of urine‐N by lucerne plants (<20% of the applied urine‐15N). Conversely, plant uptake of the urine‐N was higher by plantain (ranging from 30% to 45% of that applied) driven by moderately higher winter plant growth rates (30 to 60 kg DM ha?1 day?1). Plantain exhibited large seasonal variation in its efficacy to reduce urine‐N leaching relative to ryegrass (ranging from 15% to 50% reduction for summer or winter urine applications, respectively) with an overall reduction of 39% in the total amount of inorganic‐N leached across the three seasons (53 vs. 87 kg N ha?1 leached relative to ryegrass). This study has demonstrated the potential benefit of using plantain to reduce N leaching losses from urine deposited in the summer to winter grazing period. However, further research is required to quantify the effects of plantain on annual N leaching losses from grazed pastoral systems.  相似文献   

5.
Abstract

A field study with maize (Zea mays L.) was conducted in the 1988/89 cropping season to investigate the fate of 15NO3-N-labelled NH4 15NO3 applied at 40, 80 and 120 kg N ha?1 (unlabelled N applied at 0, 80, 160 and 240 N ha?1) with and without lime. The investigations were conducted in northern Zambia at Misamfu Regional Research Centre, Kasama on a Misamfu red sandy loam soil. The experimental design was a split plot arrangement with four replications with main plots receiving 0 and 2 Mg ha?1 dolomitic limestone, while subplots received fertilizer N at various rates. Significant (p < 0.001) grain and DM yield responses to applied N up to 160 kg ha?1 were observed. At higher rates little or no crop responses were observed and fertilizer use efficiency declined. Partitioning of amounts of total N and 15N in plants was in the order of seed = tassel > leaf> cob = earleaf> stem. Fertilizer N rates showed a highly significant (p < 0.001) effect on plant uptake of labelled N. Lime and its interaction with N rates had no effect on all measured parameters. Leaching of NO3-N fertilizer to lower soil depths was in proportion to the rate of N applied, with highly significant (p < 0.001) differences among soil depths. Although higher concentrations of fertilizer-15N were recovered in the 0–20 cm depth the recovered portion at lower soil depths was still significant. Total recovery of labelled N by plant and by soil after crop harvest averaged 75, 55 and 54% of originally applied fertilizer-15N at 40, 80 and 120 kg N ha?1, respectively. Corresponding unaccounted for 15N was 25, 45 and 46%. The most probable loss mechanism could have been by leaching to depths greater than 60 cm, gaseous losses to the atmosphere and root assimilation.  相似文献   

6.
On acid sandy soils of Niger (West Africa) fertilizer N recovery by pearl millet (Pennisetum glaucum L.) is often more than 100 per cent in years with normal or above average rainfall. Biological nitrogen fixation (BNF) by N2-fixing bacteria may contribute to the N supply in pearl millet cropping systems. For a long-term field experiment comprising treatments with and without mineral fertilizer (F) and with and without crop residue application (CR) a N balance sheet was calculated over a period of six years (1983-1988). After six years of successive millet cropping total N uptake (36-77 kg N ha?1 yr?1) was distinctly higher than the amount of fertilizer N applied (30 kg N ha?1 yr?1). The atmospheric input of NH4-N and NO3-N in the rainwater was about 2 kg N ha?1 yr?1, 70 % in the form of NH4-N. Gaseous NH3 losses from urea (broadcast, incorporated) were estimated from other experiments to amount to 36 % of the fertilizer N applied. Nitrogen losses by leaching (15 to > 25 kg N ha?1 yr?1) were dependent on the treatment and on the quantity and distribution of single rainfall events (>50 mm). Decline in total soil N content (0-60 cm) ranged from 15 to 48 kg N ha?1 yr?1. The long-term N balance (1983-1988) indicated an annual net gain between 6 (+CR-F) and 13 (+CR+F) kg N ha?1 yr?1. For the control (-CR-F) the long-term N balance was negative (10 kg N ha?1 yr?1). In the treatment with crop residues only, the N balance was mainly determined by leaching losses, whereas in treatments with mineral fertilizer application the N balance depended primarily on N removal by the millet crop. The annual net gain in the N balance increased from 7 kg ha?1 with mineral fertilizer to 13 kg ha?1 in the combination mineral fertilizer plus crop residues. In both the rhizosphere and the bulk soil (0-15 cm), between 9 and 45% of the total bacterial population were N2-fixing (diazotrophic) bacteria. The increased N gain upon crop residue application was positively correlated with an increase in the number of diazotrophic and total bacteria. The data on bacterial numbers suggest that the gain of N in the longterm N balance is most likely due to an N input by biological nitrogen fixation. In addition, evidence exists from related studies that the proliferation of diazotrophs and total bacteria in the rhizosphere due to crop residue application stimulated root growth of pearl millet, and thus improved the phosphorus (P) acquisition in the P deficient soil.  相似文献   

7.
We studied the fate of 222 kg N ha?1 applied in spring as K15NO3 to winter wheat test crops which followed either continuous arable cropping (Arable) or a rotation in which a 3-year grass/clover ley preceded the wheat (Ley). Denitrification losses (measured by an acetylene-inhibition method) of over 1 kg N ha?1 d?1 were measured for short periods following heavy rain in mid-May. However the generally dry and cool weather resulted in accumulated losses by denitrification between fertilizer application and anthesis equivalent to only 5.3% and 3.6% (±2%) of the applied N for the arable and ley treatments respectively. The smaller loss from the ley was despite this treatment containing more inorganic N and available carbon. 15N balance indicated that, at anthesis, 1.5% and 11.5% (± 7%) of the labelled N was lost from the arable and ley treatments respectively. Given the precision of the 15N and the acetylene-inhibition methods, the results are not significantly different. However, the larger difference between methods for losses from the ley treatment may be an underestimate because 15N balance does not measure losses of unlabelled N. These were probably very small on the arable treatment but could have increased total N loss by 25% to c. 32 kg ha?1 on the ley treatment compared with the 8 kg ha-1 measured as denitrified. Such a large difference is unlikely to be an error but was probably due to ammonia volatilization from this crop which was severely infected by mildew. The results were thus a poor test of the acetylene-inhibition method, but revealed another loss process which could be significant in some situations.  相似文献   

8.
Significance of microbial biomass and mineral fixed ammonium with respect to the nitrogen transformations in loess soils of Niedersachsen during the growing season of winter wheat. II. 15N-turnover Field experiments 1988/89 on a fallow plot of the southern Niedersachsen loess area with straw application (δ 10 t · ha?1, homogeneously incorporated by hand) yielded an increase in microbial biomass-N (Nmic) by 60 kg N · ha?1 · 30 cm?1 until March 1989 and further 40 kg N · ha?1, till May which was almost completely remobilized until harvest. For a cropped plot (with winter wheat and 10 t · ha?1 straw incorporation), N immobilization was of similar magnitude. Up to 18% of the applied 15N-fertilizer (185 kgN · ha?1) were microbially immobilized. In contrast to 1988/89, no significant mass change of Nmic occurred in 1991 due to straw application (δ 10t · ha?1). Variations in the amount of Nmic were nearly independent on the treatment (crop, with 140 kg fertilizer-N · ha?1 or without N-fertilizer, respectively; fallow plot without fertilizer-N) within a range of 225-400 kg N · ha?1 · 30 cm?1. Directly after N-application (each 70 kg N · ha?1 in March and in May), up to 100% of the fertilizer-N were assimilated by the microbes. Subsequently, remobilization of the immobilized nitrogen occurred within 2 (in March) or 6 weeks (in May), respectively. Simultaneously, organic soil-N was mineralized after each N-application and minerally fixed for us biggest part. Between March and June, the fixed NH4+ decreased by about 112 kg · ha?1 · 30 cm?1.  相似文献   

9.
Nitrous oxide emission (N2O) from applied fertilizer across the different agricultural landscapes especially those of rainfed area is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modelers, and policy makers to accurately predict N2O emissions. Nitrous oxide emissions from a rainfed, maize-planted, black soil (Udic Mollisols) were monitored in the Harbin State Key Agroecological Experimental Station (Harbin, Heilongjiang Province, China). The four treatments were: a bare soil amended with no N (C0) or with 225?kg?N ha?1 (CN), and maize (Zea mays L.)-planted soils fertilized with no N (P0) or with 225?kg?N ha?1 (PN). Nitrous oxide emissions significantly (P?<?0.05) increased from 141?±?5?g N2O-N?ha?1 (C0) to 570?±?33?g N2O-N?ha?1 (CN) in unplanted soil, and from 209?±?29?g N2O-N?ha?1 (P0) to 884?±?45?g N2O-N?ha?1 (PN) in planted soil. Approximately 75?% of N2O emissions were from fertilizer N applied and the emission factor (EF) of applied fertilizer N as N2O in unplanted and planted soils was 0.19 and 0.30?%, respectively. The presence of maize crop significantly (P?<?0.05) increased the N2O emission by 55?% in the N-fertilized soil but not in the N-unfertilized soil. There was a significant (P?<?0.05) interaction effect of fertilization?×?maize on N2O emissions. Nitrous oxide fluxes were significantly affected by soil moisture and soil temperature (P?<?0.05), with the temperature sensitivity of 1.73–2.24, which together explained 62–76?% of seasonal variation in N2O fluxes. Our results demonstrated that N2O emissions from rainfed arable black soils in Northeast China primarily depended on the application of fertilizer N; however, the EF of fertilizer N as N2O was low, probably due to low precipitation and soil moisture.  相似文献   

10.
A gas lysimeter has been designed and used to measure directly the evolution of N2and N2O in a soil profile under field conditions. Concentrations of N2 in the soil atmosphere within the lysimeter as low as 2000–5000 p.p.m. have been achieved by flushing with N-free gas. A flow of gas into the base of the lysimeter forms a barrier against diffusion of soil air into the lysimeter during measurements. After reducing the N2 concentration in the soil core, a low concentration of N2enriched in N-15 is introduced. By monitoring changes in the 8 N value using a high-precision isotope mass spectrometer, rates of N2 evolution down to 6 kg N2-N ha?1 a?1 can be detected. N2O evolution was determined at the same time using the mass spectrometer in the single-beam mode.  相似文献   

11.
Intensification of homegardens in the Nuba Mountains may lead to increases in C and nutrient losses from these small‐scale land‐use systems and potentially threaten their sustainability. This study, therefore, aimed at determining gaseous C and N fluxes from homegarden soils of different soil moisture, temperature, and C and N status. Emissions of CO2, NH3, and N2O from soils of two traditional and two intensified homegardens and an uncultivated control were recorded bi‐weekly during the rainy season in 2010. Flux rates were determined with a portable dynamic closed chamber system consisting of a photo‐acoustic multi‐gas field monitor connected to a PTFE coated chamber. Topsoil moisture and temperature were recorded simultaneously to the gas measurements. Across all homegardens emissions averaged 4,527 kg CO2‐C ha?1, 22 kg NH3‐N ha?1, and 11 kg N2O‐N ha?1 for the observation period from June to December. Flux rates were largely positively correlated with soil moisture and predominantly negatively with soil temperature. Significant positive, but weak (rs < 0.34) correlations between increasing management intensity and emissions were noted for CO2‐C. Similarly, morning emissions of NH3 and increasing management intensity were weakly correlated (rs = 0.17). The relatively high gaseous C and N losses in the studied homegardens call for effective management practices to secure the soil organic C status of these traditional land‐use systems.  相似文献   

12.
Abstract

Nine biennial field experiments, 2000–2004, in south Sweden, 55–56°N, with winter wheat following winter oilseed rape, peas, and oats, were used to estimate the impact of a future milder climate on winter wheat production in central Sweden, 58–60°N. The trials included studies 1) on losses during winter of soil mineral nitrogen (Nmin, 0–90 cm soil), accumulated after the preceding crops in late autumn, 2) on soil N mineralisation (Nnet) during the growing season of the wheat (early spring to ripeness) and 3) on grain yield and optimum N fertilisation (Opt-N rate) of the wheat. Average Nmin in late autumn following winter oilseed rape, peas, and oats was 68, 64, and 45 kg ha?1, respectively, but decreased until early spring. Increased future losses of Nmin during the winter in central Sweden due to no or very short periods with soil frost should enhance the demand for fertiliser N and reduce the better residual N effect of winter oilseed rape and peas, compared with oats. Their better N effect will then mainly depend on larger Nnet (from March to maturity during the winter wheat year). Owing to more plant-available soil N (mainly as Nnet) Opt-N rates were lower after oilseed rape and peas than after oats despite increased wheat yields (700 kg ha?1) at optimum N fertilisation. In addition to these break crop effects, a milder climate should increase winter wheat yields in central Sweden by 2000–3000 kg ha?1 and require about 30–45 kg ha?1 more fertiliser N at optimum N fertilisation than the present yield levels. Increased losses and higher N fertilisation to the subsequent winter wheat in future indicates a need for an estimation of the residual N effect at the individual sites, rather than using mean values as at present, to increase N efficiency.  相似文献   

13.
Fate of fertilizer nitrogen.   总被引:3,自引:0,他引:3  
Results are presented from a three year lysimeter investigation, employing single (15NH4NO3) and double (15NH415NO3) labelled ammonium nitrate to study the uptake of soil and fertilizer nitrogen by cut ryegrass at 250, 500 and 900 kg N ha?1 a?1. Average annual recoveries of nitrogen were equivalent to 99,76 and 50% of the nitrogen added at 250, 500 and 900 kg N ha?1, respectively. At 250 kg N ha?1 the difference between the overall nitrogen recovery and the fertilizer recovery was almost entirely attributable to pool substitution resulting from mineralization/immobilization turnover (MIT). At 900 kg N ha?1 both the low overall recovery of nitrogen and the low fertilizer recovery reflected the large excess of available nitrogen over crop requirements. No evidence of ‘priming’ was obtained. Analysis of the results from single and double labelled lysimeters using simultaneous equations indicated that at 250 kg N ha?1,~70% of the nitrogen in the crop was derived from the ammonium pool. At 500 kg N ha?1 this dropped to 64%, while at 900 kg N ha?1 the figure was 59%. There was a suggestion that at the lower application rates, preferential uptake of ammonium was occurring but that as N supply exceeded crop requirements, nitrate was the major N source. Despite the preferential exploitation of the ammonium pool, at 250 and 500 kg N ha?1 pool substitution resulting from MIT resulted in lower recoveries of fertilizer ammonium compared with fertilizer nitrate.  相似文献   

14.
Agricultural peat soils are important sources of nitrous oxide (N2O). Emissions of N2O were measured from field plots of grass, barley, potatoes and fallow on a peat field in northern Finland during 2000–2002 and in southern Finland in 1999–2002. In the north the mean annual fluxes of N2O (with their standard errors) during 2 years were 4.0 (±1.2), 13 (±3.0) and 4.4 (±0.8) kg N ha?1 from the plots of grass, barley and fallow, respectively. In the north there were no significant thaw periods in the middle of winter. As a result, the thawing in the spring did not induce especially large N2O emissions. Emissions of N2O were larger in the south than in the north. In the southern peat field the mean annual fluxes during 3 years were 7.3 (±1.2), 15 (±2.6), 10 (±1.9) and 25 (±6.9) kg N2O‐N ha?1 for grass, barley, potato and fallow plots, respectively. Here, the largest single episodes of emission occurred during the spring thaw each year, following winter thaw events. An emission factor of 10.4 kg N2O‐N ha?1 year?1 for the N2O emission from the decomposition of the peat results from these data if the effect of fertilization according to the IPCC default emission factor is omitted. The direct effect of adding N as fertilizer on N2O emissions was of minor importance. On average, 52% of the annual N2O flux entered the atmosphere outside the cropping season (October–April) in the north and 55% in the south. The larger N2O fluxes from the peat soil in the south might be due to the more humified status of the peat, more rapid mineralization and weather with more cycles of freezing and thawing in the winter.  相似文献   

15.
Denitrification losses from a horticultural soil as affected by mineral N-fertilization To investigate denitrification in the Ap-horizon from a horticultural cambisol as affected by mineral N-fertilization, measurements of N2O-release from the soil surface and N2O-production in the upper 10 cm soil layer were carried out. The acetylene inhibition technique was used. The loamy sand was amended with 86 and 186 kg N·ha?1 (ammonium nitratecalcium carbonate mixture). The field was cropped with celeriac (Apium graveolens L. var. rapaceum). Denitrification rates as well as soil temperature, moisture, nitrate and watersoluble carbon were measured from mid July until the end of October. In both N treatments denitrification rates were low, but higher rates could be measured in the higher N-treatment. They reached amounts of 0.6 to 134.3 g N2O-N·ha?1day?1. Estimated N-loss by denitrification totalled about 3.5 in the low and 4.9 kg N·ha?1 in the high N-treatment for the whole sampling period (107 days). Spatial variability of denitrification rates was high (39–283%). The relationship between soil temperature, moisture, nitrate content as well as watersoluble carbon and denitrification rate was shown by regression analysis.  相似文献   

16.
To determine nitrogen (N) fate and environmental impact of applying anaerobic digestion slurry (ADS) to rice paddy (Oryza sativa L.), a field experiment was established using three treatments based on contrasting N application rate. The ADS (with ammonium-N accounting for >80 % of total N) treatment at a conventional application rate of 270 kg N?ha?1 was compared to a negative control (no N fertilizer) and a positive control of urea applied at 270 kg N?ha?1. The N budget showed the following distribution of applied N from ADS and urea: 41.3?±?5.1 % for ADS and 36.6?±?4.4 % for urea recovered by the rice plant (including straw, grain, and root), 16.4?±?3.7 % for ADS and 7.4?±?1.8 % for urea lost via ammonia volatilization, 0.26?±?0.15 % for ADS and 0.15?±?0.12 % for urea lost by direct N2O emission, 1.9?±?0.5 % for ADS and 2.3?±?0.8 % for urea leached downward, 0.70?±?0.15 % for ADS and 0.67?±?0.12 % for urea discharged with floodwater drainage, and 39.4?±?8.4 % for ADS and 53.0?±?9.1 % for urea retained by soil or lost by N2 emission. Compared to urea application, ADS application impacts the environment mainly through gaseous N losses rather than water N losses. ADS application had a positive impact on rice grain yield and reduced chemical fertilizer use. Considering the wide distribution of paddy fields and the ever-increasing quantities of ADS, ADS may serve as a valuable N source for rice cultivation, although mitigating ammonia and N2O losses should be further investigated.  相似文献   

17.
The transformations of applied (100 kg N ha-1)15 N labelled NO3 and NH4 in Mississippi River deltaic plain swamp forest soil which receives agriculture run-off from adjacent sugarcane fields were determined. Using an isotopic dilution technique, the rates of NO3 production (nitrification) and reduction in the 15NO3 treated soil-water-columns were approximately 240 and 2,320 g N ha-1 d-1, whereas NH4 production (mineralization) and removal rates in the 15NH4 treated soil-water-columns were 270 and 2160 g N ha-1 d-1, respectively. It was shown that if nitrification and NH4 assimilation were the primary processes responsible for NH4 removal, average NH4 assimilation would be 145 g N ha-1 d-1. Based on labelled N2-emission, denitrification was 3 fold greater in the NO3 treatment compared to the NH4 treated soil water-columns with rates of 818 and 266 g N ha-1 d-1 respectively. Even though the rate was lower in the NH4 treatment, results show that nitrification-denitrification of NH4 is a significant process. Nitrogen losses determined by15 N2 emissions were 20.4 and 6.4% and N2O emissions were 0.10 and 0.03% of the applied NO3-N and NH4-N, respectively, over 32 days of incubation. Fertilizer loss through N2O emission was only of minor significance compared to the fertilizer loss through N2 evolution. Nitrous oxide fluxes from the control soil-water-columns averaged 9.4 g N ha-1 d-1. Addition of NO3-N to the columns increased N2O production 56% as compared to a 15% increase from the NH4-N addition. Results show that this wetland soil has a large capacity to process inorganic nitrogen entering the system as a result of agriculture run-off.  相似文献   

18.
The contribution of biological N2 fixation to the N nutrition of nodulated soybean was estimated using the 15N isotope dilution technique and a non-nodulating soybean isoline as a non-fixing control plant. The plants were grown in the field in concrete cylinders (60 cm dia) and harvested at seven stages of plant growth. Labelled N was added to the soil either as labelled organic matter before planting or in seven small additions (2kg N ha?1) of (NH4)2SO4 during the growing period.There was good agreement between isotope dilution estimates of nitrogen fixation for the two labelling methods. Acetylene reduction assays on intact root systems greatly underestimated N2 fixing activity. The difference in total N between nodulated and non-nodulated plants generally gave higher estimates compared with the isotope technique. The data indicate that this was because nodulated plants recovered more N from the soil than the non-nodulated plants. After 92 days of growth, the soybean derived approximately 250kg N ha?1 from biological N2 fixation.  相似文献   

19.
Reactive (RP) and organic phosphorus (OP) losses from grazed paddocks were determined on a volcanic soil during 2004 and 2005. Paddocks were grazed by Holstein Friesian steers (3.5 steers ha?1) and received N (67.5 kg ha?1) and P fertilizer (30 kg P ha?1). Total losses ranged between 4 and 15 g P ha?1 year?1 and were greatly affected by incidental P losses associated with spring P fertilizer application. Reactive P constituted 90% of the total losses on average. Due to the high water infiltration capacity of the soil, run‐off was <1% of total drainage, therefore, phosphorus losses in run‐off were small.  相似文献   

20.
Increasing nitrogen deposition due to human activity might have a serious impact on ecosystem functions such as the nitrogen transformations conducted by microbes. We therefore focused on nitrous oxide (N2O) production as an indicator of soil microbial activity. The rates of N2O emission from the forest floor were measured every two weeks in two forest stands in the central part of Japan: a red pine stand at Kannondai and a deciduous stand at Yasato. Nitrogen deposition rates by throughfall were 30.6 kg N ha?1 y?1 at Kannondai and 15.7 at Yasato. The rates of N2O emission ranged from 0.5 to 14.2 µg N m?2 h?1 (mean 4.5) at Kannondai and from 0.2 to 7.0 µg N m?2 h?1 (mean 2.3) at Yasato. The N2O emission rate showed significant positive relationships with soil temperature and nitrogen deposition during the preceding two weeks. The annual emission rates of N2O were 0.38 kg N ha?1 y?1 at Kannondai and 0.20 at Yasato. As a the annual nitrogen deposition, these rates were 1.23% at Kannondai and 1.27% at Yasato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号