首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
微生物降解磺酰脲类除草剂的研究进展   总被引:2,自引:0,他引:2  
磺酰脲类除草剂具有高效和高选择性等优点,但其微量残留在土壤环境中就会对敏感作物会产生药害。因此,解决其残留问题便成为当今的研究热点。其中微生物降解是磺酰脲类除草剂降解的最有效方法之一。本文综述了降解磺酰脲类除草剂微生物种类、降解机理及研究现状,并展望了微生物降解磺酰脲类除草剂修复污染土壤的前景。  相似文献   

2.
三种磺酰脲类除草剂的光解和水解作用   总被引:8,自引:0,他引:8  
磺酰脲类除草剂属高效除草剂,即用量少,除草活性高。其残留期因药剂而异,据报道,它们的主要降解方式是水解、微生物降解及水溶性光分解作用,在田间土壤含水量与药剂的降解速度成正比。作者研究了氯磺隆(Chlorsulfuron)、氯嘧磺隆(Chlorimuronethyl)、吡嘧磺隆(Pyrarosulfuron-ethyl)3种磺酰脲类除草剂水溶液的水溶性光分解作用和水解作用,对了解该类除草剂的降解作用有重要意义。  相似文献   

3.
磺酰脲类除草剂的降解机制及代谢产物的研究进展   总被引:6,自引:0,他引:6  
磺酰脲类除草剂是一类高效,低毒和高选择性的除草剂,该类除草剂能有效防除阔叶杂草,其中有些品种对禾本科杂草也有一定的抑制作用。但同时因其用量低、对哺乳动物低毒以及独特的除草活性等特点而得到广泛应用。因此,了解磺酰脲类除草剂在土壤中的环境行为及归趋对于其科学合理使用、防止作物药害和保护农业生态环境具有非常重要的意义。根据笔者对磺酰脲类除草剂的深入研究,并总结归纳国内外的相关文献报道,对磺酰脲类除草剂的降解机制及其代谢产物的研究进行了综述,最后展望了磺酰脲类除草剂未来的发展趋势。  相似文献   

4.
三唑并嘧啶磺酰胺类除草剂的研究概况   总被引:3,自引:0,他引:3  
赵青山  付颖  叶非 《植物保护》2011,37(2):14-19
三唑并嘧啶磺酰胺类除草剂是将磺酰脲类除草剂通过脲桥的结构改造和修饰而得,它既保持了磺酰脲类除草剂的超高效性,又克服了一些磺酰脲类除草剂品种在土壤中残留期较长、易对后茬作物造成伤害等缺点。本文综述了三唑并嘧啶磺酰胺类除草剂的结构、主要品种、作用机理、应用研究和发展前景。  相似文献   

5.
综述了磺酰脲类除草剂在土壤中的吸附与解吸、降解、迁移等物理化学行为与土壤p H、有机质含量、黏粒含量等因素的关系,以及除草剂残留对后茬作物的影响。  相似文献   

6.
磺酰脲类除草剂在不同土壤中淋溶行为的生物测定技术   总被引:2,自引:0,他引:2  
磺酰脲类除草剂在不同土壤中淋溶行为的生物测定技术P,GUNTHER.W,PESTEMERA.RAHMAN.H.NORDMEYER前言生物测定是对土壤或水中除草剂进行定量分析的有效工具。早期开发的磺酰脲类除草剂(如绿磺隆、甲磺隆)在土壤中残留期长,特别...  相似文献   

7.
磺酰脲类除草剂与杂草对其抗性的研究进展   总被引:2,自引:0,他引:2  
1磺酰脲类除草剂的概况1.1磺酰脲类除草剂的发展20世纪70年代末,美国杜邦公司Levitt等首次开发和报道了磺酰脲类除草剂绿磺隆的除草活性[1]。80年代初,这一除草剂开始进行大规模商品化生产,此后,又不断研制和开发了许多磺酰脲类除草剂新品种。此类除草剂问世以后,以其活性高、选择性强、杀草谱广及对动物安全等特性在世界各地得到广泛应用。目前有关磺酰脲类除草剂的专利有400多项,已商品化的有30多种。这类除草剂有很高的除草效率,用量一般为2~100 g/hm2,比传统除草剂的除草效率高100~1 000倍[2]。磺酰脲类除草剂对动物低毒,在非靶标生物…  相似文献   

8.
研究了提取浓缩和毛细管电泳相结合测定稻田土壤中低剂量多个磺酰脲类除草剂混合残留的分析方法。结果表明: 毛细管电泳可有效分离和定量测定稻田土壤中甲磺隆、氯磺隆和氯嘧磺隆混合残留。通过定量补偿甲磺隆、氯磺隆和氯嘧磺隆可使残留检测限达到ng/kg级,回收率>87%。表明毛细管电泳具有定量测定土壤中ng/kg级磺酰脲类除草剂残留的能力。  相似文献   

9.
磺酰脲类除草剂开发的新进展   总被引:15,自引:3,他引:12  
本文对近期开发的磺酰脲类除草剂按用途分类进行了简要的介绍。文中涉及磺酰脲类除草剂的化学结构、生物活性等。  相似文献   

10.
磺酰脲类除草剂与其抗药性的研究进展   总被引:4,自引:0,他引:4  
本文简述了磺酰脲类除草剂的概况及其抗性和延缓其抗性的研究进展,展望了磺酰脲类除草剂制成混配制剂对延缓抗性发展的前景。  相似文献   

11.
The sulfonylurea herbicides are characterized by broad-spectrum weed control at very low use rates (c. 2–75 g ha?1), good crop selectivity, and very low acute and chronic animal toxicity. This class of herbicides acts through inhibition of acetolactate synthase (EC 4.1.3.18; also known as acetohydroxyacid synthase), thereby blocking the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. This inhibition leads to the rapid cessation of plant cell division and growth. Crop-selective sulfonylurea herbicides have been commercialized for use in wheat, barley, rice, corn, soybeans and oilseed rape, with additional crop-selective compounds in cotton, potatoes, and sugarbeet having been noted. Crop selectivity results from rapid metabolic inactivation of the herbicide in the tolerant crop. Under growth-room conditions, metabolic half-lives in tolerant crop plants range from 1–5 h, while sensitive plant species metabolize these herbicides much more slowly, with half-lives > 20 h. Pathways by which sulfonylurea herbicides are inactivated among these plants include aryl and aliphatic hydroxylation followed by glucose conjugation, sulfonylurea bridge hydrolysis and sulfonamide bond cleavage, oxidative O-demethylation and direct conjugation with (homo)glutathione. Sulfonylurea herbicides degrade in soil through a combination of bridge hydrolysis and microbial degradation. Hydrolysis is significantly faster under acidic (pH 5) than alkaline (pH 8) conditions, allowing the use of soil pH as a predictor of soil residual activity. Chemical and microbial processes combine to give typical field dissipation half-lives of 1–6 weeks, depending on the soil type, location and compound. Very short residual sulfonylurea herbicides with enhanced susceptibility to hydrolysis (DPX-L5300) and microbial degradation (thifensulfuron-methyl) have been developed.  相似文献   

12.
综述了细胞色素P450s酶系催化的单加氧反应机理,细胞色素P450s酶系在酰胺类、三氮苯类、磺酰脲类、脲类、苯氧羧酸类等除草剂的活性或降解代谢中的催化反应。讨论了研究细胞色素P450s酶系代谢作用在除草剂选择性、抗药性机理,抗除草剂作物的培育以及除草剂安全剂的解毒机理等方面的意义。  相似文献   

13.
Itoh  Wang  & Ohba 《Weed Research》1999,39(5):413-423
Resistance to sulfonylurea herbicides, including bensulfuron-methyl, pyrazosulfuron-ethyl, imazosulfuron and ethoxysulfuron, was discovered in naturally occurring populations of Lindernia micrantha D. Don in rice fields that had been treated with sulfonylurea-based herbicides for 3–7 consecutive years. The resistant biotype was approximately 80≈300 times more resistant than the susceptible one to the above four sulfonylurea herbicides. This is the second confirmed occurrence of herbicide resistance resulting from the use of sulfonylurea herbicides in Japan. Several herbicides with different modes of action, including pretilachlor, cafenstrole, bifenox, naproanilide, thiobencarb + simetryn + MCPB, MCPA-thioethyl + simetryn and cyhalofop-butyl + bentazone, effectively controlled the resistant biotype in pot trials.  相似文献   

14.
BACKGROUND: Papaver rhoeas (L.) has evolved resistance to tribenuron in winter wheat fields in northern Greece owing to multiple Pro197 substitutions. Therefore, the cross‐resistance pattern to other sulfonylurea and non‐sulfonylurea ALS‐inhibiting herbicides of the tribenuron resistant (R) and susceptible (S) corn poppy populations was studied by using whole‐plant trials and in vitro ALS catalytic activity assays. RESULTS: The whole‐plant trials revealed that tribenuron R populations were also cross‐resistant to sulfonylureas mesosulfuron + iodosulfuron, chlorsulfuron and triasulfuron. The whole‐plant resistance factors (RFs) calculated for pyrithiobac, imazamox and florasulam ranged from 12.4 to > 88, from 1.5 to 28.3 and from 5.6 to 25.4, respectively, and were lower than the respective tribenuron RF values (137 to > 2400). The ALS activity assay showed higher resistance of the ALS enzyme to sulfonylurea herbicides (tribenuron > chlorsulfuron) and lower resistance to non‐sulfonylurea ALS‐inhibiting herbicides (pyrithiobac > florasulam ≈ imazamox). CONCLUSION: These findings indicate that Pro197 substitution by Ala, Ser, Arg or Thr in corn poppy results in a less sensitive ALS enzyme to sulfonylurea herbicides than to other ALS‐inhibiting herbicides. The continued use of sulfonylurea herbicides led to cross‐resistance to all ALS‐inhibiting herbicides, making their use impossible in corn poppy resistance management programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Summary Two Sonchus asper (spiny annual sow-thistle) biotypes, suspected of being resistant to the sulfonylurea herbicide metsulfuron-methyl, were collected in 1996 from two barley ( Hordeum vulgare ) fields in central Alberta, Canada. Both fields had received at least six applications of acetolactate synthase (ALS)-inhibiting herbicide(s). The responses of the two resistant (R) biotypes and two susceptible (S) biotypes to several sulfonylurea herbicides, and to herbicides and herbicide mixtures with other mechanisms of action, were compared. Both R biotypes were highly resistant to all sulfonylurea herbicides, but their control with other herbicides and mixtures was effective and comparable to that of the S biotypes. ALS extracted from an R biotype was about 440 times more resistant to metsulfuron-methyl than that of an S biotype, indicating that resistance was conferred by an ALS enzyme that was less sensitive to inhibition by the herbicide. Competitiveness and seed production of S. asper varied among biotypes, but the differences were probably the result of ecotype differences rather than resistance or susceptibility to sulfonylurea herbicides. This is the first reported occurrence of target site-based S. asper resistance to ALS-inhibiting herbicides.  相似文献   

16.
A Cyperus difformis L accession from Chonnam province, Korea was tested for resistance to the sulfonylurea herbicide, imazosulfuron. The accession was confirmed to be resistant (R) and was cross-resistant to other sulfonylurea herbicides, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, the pyrimidinyl thiobenzoate herbicide, bispyribac-sodium, and the imidazolinone herbicide imazapyr, but not to imazaquin. Multiple resistance was tested using twelve herbicides with target sites other than acetolactate synthase (ALS). The R biotype could be controlled by other herbicides with different modes of action such as butachlor, carfentrazone-ethyl, clomeprop, dithiopyr, esprocarb, mefenacet, oxadiazon, pretilachlor, pyrazolate and thiobencarb, applied to soil at recommended rates. Several sulfonylurea herbicide-based mixtures can control both the R and S biotypes of C difformis, except sulfonylurea plus dimepiperate, molinate or pyriftalid, and pyrazolate plus butachlor. Although mixtures of sulfonylurea herbicides might be more effective, they should be avoided and used only in special cases. In terms of in vitro ALS activity, the R biotype was 1139-, 3583-, 1482-, 416-, 5- and 9-fold more resistant to bensulfuron-methyl, cyclosulfamuron, imazosulfuron, pyrazosulfuron-ethyl, bispyribac-sodium and imazapyr, respectively, than the S biotype. The in vivo ALS activity of the R biotype was also less affected by the sulfonylurea herbicides, imazosulfuron and pyrazosulfuron-ethyl, than the S biotype. Results of in vitro and in vivo ALS assays indicated that the resistance mechanism of C difformis to ALS inhibitor herbicides was primarily due to an alteration in the target enzyme, ALS. Greenhouse experiments showed delayed flowering and reduced seed production of the R biotype, which could possibly result in reduced fitness. This unusual observation needs to be confirmed in field situations.  相似文献   

17.
Degradation of primisulfuron-methyl and metsulfuron-methyl in soil   总被引:6,自引:0,他引:6  
A newly developed chemical assay was used to determine the degradation in soil of two sulfonylurea herbicides, primisulfuron-methyl and metsulfuron-methyl, under both controlled and field conditions. The results from the chemical assay were compared with those from traditional bio-assays for determination of persistence in the field. Phytotoxic effects of these herbicides were not observed after 6 weeks following application to an acidic (pH 5.7) soil with high organic matter content (7.3% o.c). Half-lives of 13 to 29 days were measured for primisulfuron-methyl at different soil-water contents and temperatures while those for metsulfuron-methyl ranged from 8 to 36 days. The rate of degradation of metsulfuron-methyl was more sensitive to temperature than that of primisulfuron-methyl. Persistence in the field was shorter than expected considering the results from the controlled environment studies. However, determination of the persistence by both chemical assay and bioassay methods produced very similar results.  相似文献   

18.
Nine Monochoria vaginalis Pres1 accessions from Chonnam province, Korea were tested for resistance to the sulfonylurea herbicide, imazosulfuron, in whole-plant response bioassay. All accessions were confirmed resistant (R) to imazosulfuron. The GR50 (imazosulfuron concentration that reduced shoot dry weight by 50%) values of R accessions were 1112-3172 (accession #9) times higher than that of the standard susceptible (S) accession. Accession #9 exhibited cross-resistance to other sulfonylurea herbicides, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, but not to the imidazolinone herbicides, imazapyr and imazaquin. The R biotype could be controlled by other herbicides with different modes of action, such as mefenacet and pyrazolate, applied to soil at recommended rates. Foliar-applied herbicides, 2,4-D and bentazone, also controlled both the R and S biotypes. Sulfonylurea-based mixtures, except ethoxysulfuron plus fentrazamide, did not control resistant M. vaginalis. Rice yield was reduced 70% by resistant M. vaginalis that escaped pyrazosulfuron-ethyl plus molinate, compared with hand weeding in direct-seeded rice culture. In contrast, rice yield was reduced 44% by resistant M. vaginalis that survived the pyrazosulfuron-ethyl plus molinate treatment, compared with pyrazolate plus butachlor in transplanted rice culture. In vitro acetolactate synthase (ALS) activity of the R biotype was 183, 35, 130 and 31 times more resistant to imazosulfuron, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, respectively, than the S biotype. Imidazolinone herbicides, imazapyr and imazaquin had similar effect on in vitro ALS activity of the R and S biotypes. The in vivo ALS activity of the R biotype was also less affected than the S biotype by the sulfonylurea herbicides imazosulfuron and pyrazosulfuron-ethyl. Results of in vitro and in vivo ALS assays indicate that the resistance mechanism of M. vaginalis to sulfonylurea herbicides may be due, in part, to an alteration in the target enzyme, ALS. Since the level of resistance in the enzyme assay was much lower than that in the whole-plant assay, other mechanisms of resistance, such as herbicide metabolism, may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号