首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hot massive stars represent only a small fraction of the stellar population of the galaxy, but their enormous luminosities make them visible over large distances. Therefore, they are ideal standard candles, used to determine distances of near galaxies. Their mass loss due to supersonic winds driven by radiation pressure contributes significantly to the interstellar medium and thus to the chemical evolution of galaxies. All hot stars are soft x-ray sources; in contrast to the sun with its highly variable x-ray flux, long time scale x-ray variability is not common among hot stars. An analysis is presented here of an unusual increase in x-ray flux observed with the roentgen observatory satellite during a period of 2 days for the hot supergiant zeta Orionis, the only episode of x-ray variability that has been found in a hot star. These observations provide the most direct evidence so far for the scenario of shock-heated gas in the winds of hot stars.  相似文献   

2.
Water deprivation in monkeys caused an acceleration of action potential firing of supraoptic neurons, but not of neurons located 2 to 3 millimeters above the hypothalamic supraoptic nucleus. Whereas in the normally hydrated animal only 12 percent of the neuroendocrine cells discharged periodically, the proportion of these periodic bursters increased markedly with increasing plasma osmolarity. This finding suggests that such periodically firing supraoptic neurons are those engaged in active neurohypophyseal hormone secretion.  相似文献   

3.
Detailed simulations are presented of the longest exposures on representative fields that will be obtained with the Hubble Space Telescope, as well as predictions for the numbers and types of objects that will be recorded with exposures of different durations. The Hubble Space Telescope will reveal the shapes, sizes, and content of faint, distant galaxies and could discover a new population of Galactic stars.  相似文献   

4.
Star dust     
Ney EP 《Science (New York, N.Y.)》1977,195(4278):541-546
Infrared astronomy has shown that certain classes of stars are abundant producers of refractory grains, which condense in their atmospheres and are blown into interstellar space by the radiation pressure of these stars. Metallic silicates of the kind that produce terrestrial planets are injected by the oxygen-rich stars and carbon and its refractories by carbon stars. Much of the interstellar dust may be produced by this mechanism. A number of "infrared stars" are completely surrounded by their own dust, and a few of these exhibit a unique morphology that suggests the formation of a planetary system or a stage in the evolution of a planetary nebula. Certain novae also condense grains, which are blown out in their shells. In our own solar system, comets are found to contain the same silicates that are present elsewhere in the galaxy, suggesting that these constituents were present in the primeval solar nebula.  相似文献   

5.
We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.  相似文献   

6.
The recent discovery of a hyper-metal-poor (HMP) star, with a metallicity Fe/H smaller than 1/100,000 of the solar ratio, together with one earlier HMP star, has raised a challenging question whether these HMP stars are the actual first-generation, low-mass stars of the universe. We argue that these HMP stars are second-generation stars formed from gases that were chemically enriched by the first-generation supernovae. The key to this solution is the very unusual abundance patterns of these HMP stars and the similarities and differences between them. We can reproduce these abundance features with core-collapse "faint" supernova models that include extensive matter mixing and fallback during explosions.  相似文献   

7.
Radio stars     
Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.  相似文献   

8.
Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.  相似文献   

9.
Stars with individual luminosities more than a million times that of the sun are now being studied in a variety of contexts. Observational and theoretical ideas about the most luminous stars have changed greatly in the past few years. They can be observed spectroscopically even in nearby galaxies. They are not very stable; some have had violent outbursts in which large amounts of mass were lost. Because of their instabilities, these stars do not evolve to become red superglants as less luminous stars do. Theoretical scenarios for the evolution of these most massive stars depend on the effects of turbulence and mixing combined with high radition densities.  相似文献   

10.
A long-debated issue concerning the nucleosynthesis of neutron-rich elements in asymptotic giant branch (AGB) stars is the identification of the neutron source. We report intermediate-mass (4 to 8 solar masses) AGB stars in our Galaxy that are rubidium-rich as a result of overproduction of the long-lived radioactive isotope (87)Rb, as predicted theoretically 40 years ago. This finding represents direct observational evidence that the (22)Ne(alpha,n)(25)Mg reaction must be the dominant neutron source in these stars. These stars challenge our understanding of the late stages of the evolution of intermediate-mass stars and would have promoted a highly variable Rb/Sr environment in the early solar nebula.  相似文献   

11.
The first stars fundamentally transformed the early universe by emitting the first light and by producing the first heavy elements. These effects were predetermined by the mass distribution of the first stars, which is thought to have been fixed by a complex interplay of gas accretion and protostellar radiation. We performed radiation-hydrodynamics simulations that followed the growth of a primordial protostar through to the early stages as a star with thermonuclear burning. The circumstellar accretion disk was evaporated by ultraviolet radiation from the star when its mass was 43 times that of the Sun. Such massive primordial stars, in contrast to the often-postulated extremely massive stars, may help explain the fact that there are no signatures of the pair-instability supernovae in abundance patterns of metal-poor stars in our galaxy.  相似文献   

12.
Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.  相似文献   

13.
Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.  相似文献   

14.
15.
Most of the matter in the Milky Way is invisible to astronomers. Precise numbers are elusive, but it appears that the dark component is 20 times as massive as the visible disk of stars and gas. This dark matter is distributed in space differently than the stars, forming a vast, diffuse halo, more spherical than disklike, which occupies more than 1000 times the volume of the disk of stars. The composition of this dark halo is unknown, but it may comprise a mixture of ancient, degenerate dwarf stars and exotic, hypothetical elementary particles.  相似文献   

16.
Yoon SJ  Lee YW 《Science (New York, N.Y.)》2002,297(5581):578-581
One of the long-standing problems in modern astronomy is the curious division of Galactic globular clusters, the "Oosterhoff dichotomy," according to the properties of their RR Lyrae stars. Here, we find that most of the lowest metallicity ([Fe/H] < -2.0) clusters, which are essential to an understanding of this phenomenon, display a planar alignment in the outer halo. This alignment, combined with evidence from kinematics and stellar population, indicates a captured origin from a satellite galaxy. We show that, together with the horizontal-branch evolutionary effect, the factor producing the dichotomy could be a small time gap between the cluster-formation epochs in the Milky Way and the satellite. The results oppose the traditional view that the metal-poorest clusters represent the indigenous and oldest population of the Galaxy.  相似文献   

17.
Understanding how cool stars produce magnetic fields within their interiors is crucial for predicting the impact of such fields, such as the activity cycle of the Sun. In this respect, studying fully convective stars enables us to investigate the role of convective zones in magnetic field generation. We produced a magnetic map of a rapidly rotating, very-low-mass, fully convective dwarf through tomographic imaging from time series of spectropolarimetric data. Our results, which demonstrate that fully convective stars are able to trigger axisymmetric large-scale poloidal fields without differential rotation, challenge existing theoretical models of field generation in cool stars.  相似文献   

18.
Radio waves from the sun were detected 50 years ago, but the microwave detection of other single solar-type stars has remained a challenge. Here, the discovery of four solar-type radio stars is reported. These "solar twin" G stars are radio sources up to 3000 times stronger than the quiet sun. The microwaves most likely originate from a large number of relativistic electrons, possibly produced along with coronal heating, a process that is not understood. Two of the stars are younger than the sun and rotate more rapidly; the dynamo process in the stellar interior is therefore presumably more vigorous, resulting in enhanced coronal activity. One of the detections, however, is an old, metal-deficient G dwarf.  相似文献   

19.
Wang ZR 《Science (New York, N.Y.)》1987,235(4795):1485-1486
On the basis of the fact that the youngest neutron stars such as the Crab pulsar and the Vela pulsar emit strong gamma-ray radiation, it is suggested that a few gamma-ray sources may be identified with young compact sources formed in the events of guest stars. Two such sources, 2CG 353+16 and 2CG 054+01, are identified with guest stars observed in the 14th century B.C. and A.D. 1230, respectively.  相似文献   

20.
Core-collapse supernovae (CC-SNe) are the explosions that announce the death of massive stars. Some CC-SNe are linked to long-duration gamma-ray bursts (GRBs) and are highly aspherical. One important question is to what extent asphericity is common to all CC-SNe. Here we present late-time spectra for a number of CC-SNe from stripped-envelope stars and use them to explore any asphericity generated in the inner part of the exploding star, near the site of collapse. A range of oxygen emission-line profiles is observed, including a high incidence of double-peaked profiles, a distinct signature of an aspherical explosion. Our results suggest that all CC-SNe from stripped-envelope stars are aspherical explosions and that SNe accompanied by GRBs exhibit the highest degree of asphericity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号