首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo determine the effects of propofol or thiopental induction on intraocular pressures (IOP) in normal dogs.Study designProspective randomized experimental study.AnimalsTwenty-two random-source dogs weighing 19.5 ± 5.3 kg.MethodsDogs were randomly assigned to receive propofol 8 mg kg−1 IV (group P) or thiopental 18 mg kg−1 IV (group T) until loss of jaw tone. Direct arterial blood pressure, arterial blood gasses, and IOP were measured at baseline, after pre-oxygenation but before induction, before endotracheal intubation, and after intubation.ResultsThere were no significant differences between groups with regard to weight, body condition score, breed group, or baseline or before-induction IOP, arterial blood pressure, or blood gases. The baseline IOP was 12.9 mmHg. Before endotracheal intubation, IOP was significantly higher compared to baseline and before induction in dogs receiving propofol. After intubation with propofol, IOP was significantly higher compared to thiopental and was significantly higher compared to before induction. After intubation, IOP was significantly lower compared to before intubation in dogs receiving thiopental. Propofol increased IOP before intubation by 26% over the before-induction score and thiopental increased IOP by 6% at the same interval. The IOP in group P remained 24% over the before induction score whereas thiopental ultimately decreased IOP 9% below baseline after intubation. There was no significant relationship between any cardiovascular or blood gas parameter and IOP at any time. There was no significant relationship between the changes in any cardiovascular or blood gas parameter and the changes in IOP between time points.Conclusions and clinical relevancePropofol caused a significant increase in IOP compared to baseline and thiopental. Thiopental caused an insignificant increase in IOP which decreased after intubation. Propofol should be avoided when possible in induction of anesthesia in animals where a moderate increase in IOP could be harmful.  相似文献   

2.
The purpose of this study was to evaluate the effects on the intraocular pressure (IOP) of lidocaine or diazepam administered intravenously (IV) before induction of anesthesia with propofol-atracurium and orotracheal intubation in normal dogs, as well as the effects on the IOP of lidocaine applied topically to the larynx after induction with propofol-atracurium. We randomly assigned 32 random-source dogs, obtained from municipal pounds, to receive the following: lidocaine, 2 mg/kg IV, with saline, 0.1 mL/kg topically applied to the larynx (LIDOsal); saline, 0.1 mL/kg IV, with lidocaine, 2 mg/kg topically applied to the larynx (SALlido); diazepam (Valium), 0.25 mg/kg IV, with saline, 0.1 mL/kg topically applied to the larynx (VALsal); or saline, 0.1 mL/kg IV, with saline, 0.1 mL/kg topically applied to the larynx (SALsal). We measured arterial pressure directly, by means of an indwelling catheter placed in a peripheral artery. Anesthesia was induced with propofol, 8 mg/kg IV, until loss of jaw tone, followed by atracurium, 0.3 mg/kg IV. We measured the IOP in triplicate in each eye before premedication, before induction, before intubation, and after intubation. After induction, the IOP was significantly increased except in the VALsal group, in which the IOP was significantly lower than in the negative-control group before intubation. After intubation, the IOP was significantly elevated in all the groups compared with the values before induction. Cardiovascular parameters were essentially similar in all the groups, except for a significant increase in blood pressure after intubation in the SALlido group. Thus, propofol-atracurium anesthesia causes an increase in IOP that is blunted by diazepam. However, diazepam does not blunt the increase in IOP observed with intubation.  相似文献   

3.
ObjectiveTo assess the effects of varying the sequence of midazolam and propofol administration on the quality of induction, cardiorespiratory parameters and propofol requirements in dogs.Study designRandomized, controlled, clinical study.AnimalsThirty‐three client owned dogs (ASA I‐III, 0.5–10 years, 5–30 kg).MethodsDogs were premedicated with acepromazine (0.02 mg kg?1) and morphine (0.4 mg kg?1) intramuscularly. After 30 minutes, group midazolam‐propofol (MP) received midazolam (0.25 mg kg?1) intravenously (IV) before propofol (1 mg kg?1) IV, group propofol‐midazolam (PM) received propofol before midazolam IV at the same doses, and control group (CP) received saline IV, instead of midazolam, before propofol. Supplementary boluses of propofol (0.5 mg kg?1) were administered to effect to all groups until orotracheal intubation was completed. Behaviour after midazolam administration, quality of sedation and induction, and ease of intubation were scored. Heart rate (HR), respiratory rate, and systolic arterial blood pressure were recorded before premedication, post‐premedication, after midazolam or saline administration, and at 0, 2, 5, and 10 minutes post‐intubation. End‐tidal CO2 and arterial oxygen haemoglobin saturation were recorded at 2, 5 and 10 minutes post‐intubation.ResultsQuality of sedation and induction, and ease of intubation were similar in all groups. Incidence of excitement was higher in the MP compared to CP (p = 0.014) and PM (p = 0.026) groups. Propofol requirements were decreased in MP and PM groups with respect to CP (p < 0.001), and in PM compared to MP (p = 0.022). The HR decreased after premedication in all groups, and increased after midazolam and subsequent times in MP (p = 0.019) and PM (p = 0.001) groups. Incidence of apnoea and paddling was higher in CP (p = 0.005) and MP (p = 0.031) groups than in PM.Conclusions and clinical relevanceAdministration of midazolam before propofol reduced propofol requirements although caused mild excitement in some dogs. Administration of propofol before midazolam resulted in less excitatory phenomena and greater reduction of propofol requirements.  相似文献   

4.
ObjectiveTo assess the cardiorespiratory and hypnotic-sparing effects of ketamine co-induction with target-controlled infusion of propofol in dogs.Study designProspective, randomized, blinded clinical study.AnimalsNinety healthy dogs (ASA grades I/II). Mean body mass 30.5 ± SD 8.6 kg and mean age 4.2 ± 2.6 years.MethodsAll dogs received pre-anaesthetic medication with acepromazine (0.03 mg kg?1) and morphine (0.2 mg kg?1) administered intramuscularly 30 minutes prior to induction of anaesthesia. Heart rate and respiratory rate were recorded prior to pre-medication. Animals were allocated into three different groups: Group 1 (control) received 0.9% NaCl, group 2, 0.25 mg kg?1 ketamine and group 3, 0.5 mg kg?1 ketamine, intravenously 1 minute prior to induction of anaesthesia, which was accomplished using a propofol target-controlled infusion system. The target propofol concentration was gradually increased until endotracheal intubation was possible and the target concentration at intubation was recorded. Heart rate, respiratory rate and noninvasive blood pressure were recorded immediately prior to induction, at successful intubation and at 3 and 5 minutes post-intubation. The quality of induction was graded according to the amount of muscle twitching and paddling observed. Data were analysed using a combination of chi-squared tests, Fisher's exact tests, Kruskal–Wallis, and anova with significance assumed at p< 0.05.ResultsThere were no significant differences between groups in the blood propofol targets required to achieve endotracheal intubation, nor with respect to heart rate, noninvasive blood pressure or quality of induction. Compared with the other groups, the incidence of post-induction apnoea was significantly higher in group 3, but despite this dogs in this group had higher respiratory rates overall.Conclusions and clinical relevanceUnder the conditions of this study, ketamine does not seem to be a useful agent for co-induction of anaesthesia with propofol in dogs.  相似文献   

5.
ObjectiveTo determine the dose and cardiopulmonary effects of propofol alone or with midazolam for induction of anesthesia in American Society of Anesthesiologists status ≥III dogs requiring emergency abdominal surgery.Study designProspective, randomized, blinded, clinical trial.AnimalsA total of 19 client-owned dogs.MethodsDogs were sedated with fentanyl (2 μg kg–1) intravenously (IV) for instrumentation for measurement of heart rate, arterial blood pressure, cardiac index, systemic vascular resistance index, arterial blood gases, respiratory rate and rectal temperature. After additional IV fentanyl (3 μg kg–1), the quality of sedation was scored and cardiopulmonary variables recorded. Induction of anesthesia was with IV propofol (1 mg kg–1) and saline (0.06 mL kg–1; group PS; nine dogs) or midazolam (0.3 mg kg–1; group PM; 10 dogs), with additional propofol (0.25 mg kg–1) IV every 6 seconds until endotracheal intubation. Induction/intubation quality was scored, and anesthesia was maintained with isoflurane. Variables were recorded for 5 minutes with the dog in lateral recumbency, breathing spontaneously, and then in dorsal recumbency with mechanical ventilation for the next 15 minutes. A general linear mixed model was used with post hoc analysis for multiple comparisons between groups (p < 0.05).ResultsThere were no differences in group demographics, temperature and cardiopulmonary variables between groups or within groups before or after induction. The propofol doses for induction of anesthesia were significantly different between groups, 1.9 ± 0.5 and 1.1 ± 0.5 mg kg–1 for groups PS and PM, respectively, and the induction/intubation score was significantly better for group PM.Conclusions and clinical relevanceMidazolam co-induction reduced the propofol induction dose and improved the quality of induction in critically ill dogs without an improvement in cardiopulmonary variables, when compared with a higher dose of propofol alone.  相似文献   

6.
ObjectiveTo evaluate quality of anaesthetic induction and cardiorespiratory effects following rapid intravenous (IV) injection of propofol or alfaxalone.Study designProspective, randomised, blinded clinical study.AnimalsSixty healthy dogs (ASA I/II) anaesthetized for elective surgery or diagnostic procedures.MethodsPremedication was intramuscular acepromazine (0.03 mg kg?1) and meperidine (pethidine) (3 mg kg?1). For anaesthetic induction dogs received either 3 mg kg?1 propofol (Group P) or 1.5 mg kg?1 alfaxalone (Group A) by rapid IV injection. Heart rate (HR), respiratory rate (fR) and oscillometric arterial pressures were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. The occurrence of post-induction apnoea or hypotension was recorded. Pre-induction sedation and aspects of induction quality were scored using 4 point scales. Data were analysed using Chi-squared tests, two sample t-tests and general linear model mixed effect anova (p < 0.05).ResultsThere were no significant differences between groups with respect to sex, age, body weight, fR, post-induction apnoea, arterial pressures, hypotension, SpO2, sedation score or quality of induction scores. Groups behaved differently over time with respect to HR. On induction HR decreased in Group P (?2 ± 28 beats minute?1) but increased in Group A (14 ± 33 beats minute?1) the difference being significant (p = 0.047). However HR change following premedication also differed between groups (p = 0.006). Arterial pressures decreased significantly over time in both groups and transient hypotension occurred in eight dogs (five in Group P, three in Group A). Post-induction apnoea occurred in 31 dogs (17 in Group P, 14 in Group A). Additional drug was required to achieve endotracheal intubation in two dogs.Conclusions and Clinical relevanceRapid IV injection of propofol or alfaxalone provided suitable conditions for endotracheal intubation in healthy dogs but post-induction apnoea was observed commonly.  相似文献   

7.
8.
ObjectiveTo evaluate the heart rate (HR) and systemic arterial pressure (sAP) effects, and propofol induction dose requirements in healthy dogs administered propofol with or without guaifenesin for the induction of anesthesia.Study designProspective blinded crossover experimental study.AnimalsA total of 10 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.4 mg kg–1) and administered guaifenesin 5% at 50 mg kg–1 (treatment G50), 100 mg kg–1 (treatment G100) or saline (treatment saline) IV prior to anesthetic induction with propofol. HR, invasive sAP and respiratory rate (fR) were recorded after butorphanol administration, after guaifenesin administration and after propofol and endotracheal intubation. Propofol doses for intubation were recorded. Repeated measures analysis of variance (anova) was used to determine differences in propofol dose requirements among treatments, and differences in cardiopulmonary values over time and among treatments with p < 0.05 considered statistically significant.ResultsPropofol doses (mean ± standard deviation) for treatments saline, G50 and G100 were 3.3 ± 1.0, 2.7 ± 0.7 and 2.1 ± 0.8 mg kg–1, respectively. Propofol administered was significantly lower in treatment G100 than in treatment saline (p = 0.04). In treatments G50 and G100, HR increased following induction of anesthesia and intubation compared with baseline measurements. HR was higher in treatment G100 than in treatments G50 and saline following induction of anesthesia. In all treatments, sAP decreased following intubation compared with baseline values. There were no significant differences in sAP among treatments. fR was lower following intubation than baseline and post co-induction values and did not differ significantly among treatments.Conclusions and clinical relevanceWhen administered as a co-induction agent in dogs, guaifenesin reduced propofol requirements for tracheal intubation. HR increased and sAP and fR decreased, but mean values remained clinically acceptable.  相似文献   

9.
ObjectiveTo compare the dose, cardiopulmonary effects and quality of anaesthetic induction in dogs using propofol (10 mg mL–1) and diluted propofol (5 mg mL–1).Study designRandomized, blinded, clinical study.AnimalsA total of 28 client-owned dogs (12 males/16 females).MethodsFollowing intramuscular acepromazine (0.02 mg kg–1) and methadone (0.2 mg kg–1), propofol (UP, 10 mg mL–1) or diluted propofol (DP, 5 mg mL–1) was administered intravenously (0.2 mL kg–1 minute–1) by an anaesthetist unaware of the allocated group to achieve tracheal intubation. Sedation, intubation and induction quality were scored from 0 to 3. Pre- and post-induction pulse rate (PR), respiratory rate (fR) and systolic (SAP), mean (MAP) and diastolic (DAP) arterial blood pressure were compared. Time to first breath and induction dose were recorded. Data were analysed for normality and Mann–Whitney U or Student t tests were performed where appropriate. Significance was set at p < 0.05. Data are presented as mean ± standard deviation or median (range).ResultsThe propofol dose administered to achieve induction was lower in the DP group (2.62 ± 0.48 mg kg–1) than in the UP group (3.48 ± 1.17 mg kg–1) (p = 0.021). No difference was observed in pre- and post-induction PR, SAP, MAP, DAP and fR between groups. The differences between post-induction and pre-induction values of these variables were also similar between groups. Time to first breath did not differ between groups. Sedation scores were similar between groups. Quality of tracheal intubation was marginally better with UP 0 (0–1) than with DP 1 (0–2) (p = 0.036), but overall quality of induction was similar between groups [UP 0 (0–1) and DP 0 (0–1), p = 0.549].Conclusion and clinical relevanceDiluting propofol reduced the dose to induce anaesthesia without significantly altering the cardiopulmonary variables.  相似文献   

10.
ObjectiveTo compare the effect of alfaxalone and propofol on heart rate (HR) and blood pressure (BP) after fentanyl administration in healthy dogs.Study designProspective, randomised clinical study.AnimalsFifty healthy client owned dogs (ASA I/II) requiring general anaesthesia for elective magnetic resonance imaging for neurological conditions.MethodsAll dogs received fentanyl 7 μg kg−1 IV and were allocated randomly to receive either alfaxalone (n = 25) or propofol (n = 25) to effect until endotracheal (ET) intubation was possible. Heart rate and oscillometric BP were measured before fentanyl (baseline), after fentanyl (Time F) and after ET intubation (Time GA). Post-induction apnoea were recorded. Data were analysed using Fisher’s exact test, Mann Whitney U test and one-way anova for repeated measures as appropriate; p value <0.05 was considered significant.ResultsDogs receiving propofol showed a greater decrease in HR (-14 beat minute−1, range -47 to 10) compared to alfaxalone (1 beat minute−1, range -33 to 26) (p = 0.0116). Blood pressure decreased over the three time periods with no difference between groups. Incidence of post-induction apnoea was not different between groups.ConclusionFollowing fentanyl administration, anaesthetic induction with propofol resulted in a greater negative chronotropic effect while alfaxalone preserved or increased HR.Clinical relevanceFollowing fentanyl administration, HR decreases more frequently when propofol rather than alfaxalone is used as induction agent. However, given the high individual variability and the small change in predicted HR (-7.7 beats per minute after propofol), the clinical impact arising from choosing propofol or alfaxalone is likely to be small in healthy animals. Further studies in dogs with myocardial disease and altered haemodynamics are warranted.  相似文献   

11.
ObjectiveTo determine if body condition score (BCS) influences the sedative effect of intramuscular (IM) premedication or the dose of intravenous (IV) propofol required to achieve endotracheal intubation in dogs.Study designProspective clinical study.AnimalsForty–six client–owned dogs undergoing general anaesthesia.MethodsDogs were allocated to groups according to their BCS (BCS, 1 [emaciated] to 9 [obese]): Normal–weight Group (NG, n = 25) if BCS 4–5 or Over–weight Group (OG, n = 21) if BCS over 6. Dogs were scored for sedation prior to IM injection of medetomidine (5 μg kg?1) and butorphanol (0.2 mg kg?1) and twenty minutes later anaesthesia was induced by a slow infusion of propofol at 1.5 mg kg?1 minute?1 until endotracheal intubation could be achieved. The total dose of propofol administered was recorded. Data were tested for normality then analyzed using Student t–tests, Mann–Whitney U tests, chi–square tests or linear regression as appropriate.ResultsMean ( ± SD) propofol requirement in NG was 2.24 ± 0.53 mg kg?1 and in OG was 1.83 ± 0.36 mg kg?1. The difference between the groups was statistically significant (p = 0.005). The degree of sedation was not different between the groups (p = 0.7). Post–induction apnoea occurred in 11 of 25 animals in the NG and three of 21 in OG (p = 0.052).ConclusionsOverweight dogs required a lower IV propofol dose per kg of total body mass to allow tracheal intubation than did normal body condition score animals suggesting that IV anaesthetic doses should be calculated according to lean body mass. The lower dose per kg of total body mass may have resulted in less post–induction apnoea in overweight/obese dogs. The effect of IM premedication was not significantly affected by the BCS.Clinical relevanceInduction of general anaesthesia with propofol in overweight dogs may be expected at lower doses than normal–weight animals.  相似文献   

12.
ObjectiveTo determine the effects of propofol or etomidate on induction quality, arterial blood pressure, blood gases, and recovery quality in normal dogs.Study designRandomized, blinded trial.AnimalsEighteen purpose-bred adult Beagles.MethodsDogs were randomly assigned to receive propofol at 8 mg kg−1 or etomidate at 4 mg kg−1 intravenously (IV) administered to effect. Midazolam was administered at 0.3 mg kg−1 IV as pre-medication at least 1 minute prior to induction. Direct arterial blood pressure, arterial blood gases, and heart rate were obtained at baseline, before induction, after induction, and for every 5 minutes afterwards until the dog began to swallow and the trachea was extubated. The dogs were allowed to breathe room air with the endotracheal tube in place.ResultsThe systolic arterial pressure (SAP) was higher in the etomidate group compared with the propofol group after induction. The SAP and mean arterial pressure (MAP) were higher in the etomidate group compared with the propofol group at 5 minutes. The recovery quality and ataxia score were worse in the etomidate group compared with the propofol group. Time from extubation to sternal recumbency and sternal recumbency to standing was longer in the etomidate group compared with the propofol group. The heart rate, PaCO2, and HCO3 were higher in the propofol group compared with the etomidate group after induction. The PaO2 and SaO2 were lower in the propofol group compared with the etomidate group after induction. The SAP and MAP were lower in the propofol group at 5 minutes compared with baseline.Conclusion and clinical relevancePropofol caused a decrease in SAP and MAP which was not observed with etomidate. Etomidate caused longer and poorer recoveries than propofol.  相似文献   

13.
ObjectiveTo evaluate the effects of the co-administration of midazolam on the dose requirement for propofol anesthesia induction, heart rate (HR), systolic arterial pressure (SAP) and the incidence of excitement.Study designProspective, randomized, controlled and blinded clinical study, with owner consent.AnimalsSeventeen healthy, client owned dogs weighing 28 ± 18 kg and aged 4.9 ± 3.9 years old.MethodsDogs were sedated with acepromazine 0.025 mg kg?1 and morphine 0.25 mg kg?1 intramuscularly (IM), 30 minutes prior to induction of anesthesia. Patients were randomly allocated to receive midazolam (MP; 0.2 mg kg?1) or sterile normal saline (CP; 0.04 mL kg?1) intravenously (IV) over 15 seconds. Propofol was administered IV immediately following test drug and delivered at 3 mg kg?1 minute?1 until intubation was possible. Scoring of pre-induction sedation, ease of intubation, quality of induction, and presence or absence of excitement following co-induction agent, was recorded. HR, SAP and respiratory rate (fR) were obtained immediately prior to, immediately following, and 5 minutes following induction of anesthesia.ResultsThere were no significant differences between groups with regard to weight, age, gender, or sedation. Excitement occurred in 5/9 dogs following midazolam administration, with none noted in the control group. The dose of propofol administered to the midazolam group was significantly less than in the control group. Differences in HR were not significant between groups. SAP was significantly lower in the midazolam group compared with baseline values 5 minutes after its administration. However, values remained clinically acceptable.Conclusions and clinical relevanceThe co-administration of midazolam with propofol decreased the total dose of propofol needed for induction of anesthesia in sedated healthy dogs, caused some excitement and a clinically unimportant decrease in SAP.  相似文献   

14.
The effects of diazepam or lidocaine on the propofol induction dose and certain cardiovascular parameters were documented in this randomized, blinded study. Dogs received 0.9% saline (0.1 mL/kg intravenously [i.v.]), lidocaine (2 mg/kg i.v.), or diazepam (0.25 mg/kg i.v.) prior to propofol i.v. until loss of jaw tone was achieved (up to a maximum of 8 mg/kg). Propofol was followed by 0.3 mg/kg atracurium i.v. Direct arterial blood pressures and heart rates were recorded before premedication, induction, and intubation. No statistically significant differences were found among the groups for cardiovascular measurements or for the propofol dose required for intubation.  相似文献   

15.
ObjectiveTo compare the effect of propofol, alfaxalone and ketamine on intraocular pressure (IOP) in cats.Study designProspective, masked, randomized clinical trial.AnimalsA total of 43 ophthalmologically normal cats scheduled to undergo general anesthesia for various procedures.MethodsFollowing baseline IOP measurements using applanation tonometry, anesthesia was induced with propofol (n = 15), alfaxalone (n = 14) or ketamine (n = 14) administered intravenously to effect. Then, midazolam (0.3 mg kg?1) was administered intravenously and endotracheal intubation was performed without application of topical anesthesia. The IOP was measured following each intervention. Data was analyzed using one-way anova and repeated-measures mixed design with post hoc analysis. A p-value <0.05 was considered significant.ResultsMean ± standard error IOP at baseline was not different among groups (propofol, 18 ± 0.6; alfaxalone, 18 ± 0.7; ketamine, 17 ± 0.5 mmHg). Following induction of anesthesia, IOP increased significantly compared with baseline in the propofol (20 ± 0.7 mmHg), but not in the alfaxalone (19 ± 0.8 mmHg) or ketamine (16 ± 0.7 mmHg) groups. Midazolam administration resulted in significant decrease from the previous measurement in the alfaxalone group (16 ± 0.7 mmHg), but not in the propofol group (19 ± 0.7 mmHg) or the ketamine (16 ± 0.8 mmHg) group. A further decrease was measured after intubation in the alfaxalone group (15 ± 0.9 mmHg).Conclusions and clinical relevancePropofol should be used with caution in cats predisposed to perforation or glaucoma, as any increase in IOP should be avoided.  相似文献   

16.
Propofol by infusion was administered to 6 adult beagle dogs on 2 separate occasions. The dogs received either no premedication or 20 μg/kg im medetomidine 15 min before induction of anaesthesia, with propofol given at 7 mg/kg/min to permit tracheal intubation. After tracheal intubation the infusion rate was maintained for 120 min at 0.4 mg/kg/min in the non-premedicated, and 0.2 mg/kg/min in the premedicated dogs. The latter group received atipamezole 50 μg/kg im immediately at the end of the infusion. After induction of anaesthesia, a 7F balloon catheter designed for thermal dilution measurement of cardiac output was inserted via the right jugular vein. Blood propofol concentrations were measured by HPLC with fluorescence detection and kinetic variables calculated using non-compartmental moment analysis. The induction dose of propofol was 7.00 (sem 0.55) mg/kg in non-premedicated compared with 3.09 (0.25) mg/kg in premedicated dogs. There were differences in systemic clearance and mean residence time (MRTiv); 47.5 (6.2) ml/kg/min vs 29.0 (4.4) ml/kg/min (non-premedicated vs premedicated) and 132.3 (5.2) min vs 152.4 (3.1) min (P < 0.02 and P < 0.001, respectively). Cardiorespiratory effects were similar in the 2 groups although heart rate was lower in the premedicated dogs. Venous admixture was high (20–45%) but similar in the 2 groups.  相似文献   

17.
ObjectiveTo compare induction targets, and the haemodynamic and respiratory effects, of propofol, or as an admixture with two different concentrations of alfentanil, delivered via a propofol target-controlled infusion (TCI) system.Study designProspective blinded randomized clinical study.Animals Sixty client-owned dogs scheduled for elective surgery under general anaesthesia. Mean body mass (SD) 28.5 kg (8.7) and mean age (SD) 3.5 years (2.4).MethodsDogs received pre-anaesthetic medication of acepromazine (0.03 mg kg−1) and morphine (0.2 mg kg−1) administered intramuscularly. Animals were randomly assigned to receive one of three induction protocols: propofol alone (group 1), a propofol/alfentanil (11.9 μg mL−1) admixture (group 2), or a propofol/alfentanil (23.8 μg mL−1) admixture (group 3), via a TCI system. Blood target concentrations were increased until endotracheal intubation was achieved, and induction targets were recorded. Heart rate (HR), respiratory rate (fr) and non-invasive arterial blood pressure were recorded pre-induction, at endotracheal intubation (time 0) and at 3 and 5 minutes post-intubation (times 3 and 5, respectively). Data were analysed using anova for normally distributed data or Kruskal–Wallis test, with significance assumed at p < 0.05.ResultsThere were no significant differences between groups with respect to age, body mass, HR, fr, systolic and diastolic blood pressure. The blood propofol targets to achieve endotracheal intubation were significantly higher in group 1 compared with groups 2 and 3. Mean arterial blood pressure (MAP) was significantly higher in group 1 at time 0 when compared with groups 2 and 3.Conclusions and clinical relevanceInduction of anaesthesia with a TCI system can be achieved at lower blood propofol targets when using a propofol/alfentanil admixture compared with using propofol alone. However, despite reduced targets with both propofol/alfentanil admixture groups, MAP was lower immediately following endotracheal intubation than when using propofol alone.  相似文献   

18.
ObjectiveTo assess the effect of a benzodiazepine co–induction on propofol dose requirement for induction of anaesthesia in healthy dogs, to describe any differences between midazolam and diazepam and to determine an optimal benzodiazepine dose for co–induction.Study designProspective, randomised, blinded placebo controlled clinical trial.AnimalsNinety client owned dogs (ASA I–III, median body mass 21.5kg (IQR 10–33)) presented for anaesthesia for a variety of procedures.MethodsDogs were randomised to receive saline 0.1 mL kg?1, midazolam or diazepam at 0.2, 0.3, 0.4 or 0.5 mg kg?1. All dogs received 0.01 mg kg?1 acepromazine and 0.2 mg kg?1 methadone intravenously (IV). Fifteen minutes later, sedation was assessed and scored prior to anaesthetic induction. Propofol, 1 mg kg?1, was administered IV, followed by the treatment drug. Further propofol was administered until endotracheal intubation was possible. Recorded data included patient signalment, sedation score, propofol dosage and any adverse reactions.ResultsMidazolam (all groups combined) significantly reduced propofol dose requirement compared to saline (p < 0.001) and diazepam (p = 0.008). Midazolam (0.4 mg kg?1) significantly reduced propofol dose requirement (p = 0.014) compared to saline, however other doses failed to reach statistical significance. Diazepam did not significantly reduce propofol dose requirement compared to saline (p = 0.089). Dogs weighing <5 kg, regardless of treatment group, required a greater propofol dose than those weighing 5–40 kg (p = 0.002) and those >40 kg (p = 0.008). Dogs which were profoundly sedated required less propofol than those which were mildly sedated (p < 0.001) and adequately sedated (p = 0.003).Conclusions and clinical relevanceMidazolam (0.4 mg kg?1) given IV after 1 mg kg?1 of propofol significantly reduced the further propofol dose required for intubation compared to saline. At the investigated doses, diazepam did not have significant propofol dose sparing effects.  相似文献   

19.
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol.  相似文献   

20.
O bjectives : To compare reaction to injection, sedation and propofol induction dose in dogs receiving acepromazine–buprenorphine pre-anaesthetic medication by the intramuscular or subcutaneous routes.
M ethods : Fifty-two client owned dogs of American Society of Anesthesiologists grade I or II anaesthetised for diagnostic imaging. Dogs were randomly assigned to receive acepromazine 0·03 mg/kg and buprenorphine 0·02 mg/kg either intramuscular or subcutaneous. Reaction to injection was scored. Sedation was compared before and one hour after pre-anaesthetic medication. Propofol was administered in 1 mg/kg incremental injections until tracheal intubation was achieved. Total propofol dose was recorded.
R esults : Reaction to injection was significantly greater (P=0·009) in the intramuscular group compared to the subcutaneous group. Sedation scores were not significantly different (P=0·523) between the intramuscular and the subcutaneous group. There was no statistically significant difference in propofol dose for induction (P=0·7).
Clinical Significance: Acepromazine–buprenorphine pre-anaesthetic medication provides a similar degree of sedation whether administered by the intramuscular or subcutaneous route. The intramuscular route is more painful compared to the subcutaneous route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号