首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A feeding trial was conducted to evaluate dietary protein and lipid requirements for juvenile largemouth bass, Micropterus salmoides. A 4 × 2‐factorial layout included four protein (420, 450, 480, and 510 g/kg) and two lipid (80 and 120 g/kg) levels. Fish (initial weight 8.7 g) were fed the test diets for 8 wk. Weight gain, feed intake, feed conversion ratio, hepatosomatic index, and body composition were dependent on dietary protein level. Nitrogen retention efficiency was independent of dietary protein level, lipid level, and their interaction. Weight gain was higher in fish fed the diet containing 480–510 g/kg crude protein than in fish fed the diet containing 420–450 g/kg crude protein at two dietary lipid levels. The feed intake and weight gain were higher in fish fed the diet containing 484 g/kg crude protein and 115 g/kg crude lipid than in fish fed the diet containing 478 g/kg crude protein and 77 g/kg crude lipid. This study indicated that the suitable dietary protein and lipid levels for largemouth bass are 480–510 g/kg and 120 g/kg, respectively.  相似文献   

2.
The ability of juvenile silver perch (Bidyanus bidyanus) to utilize dietary raw wheat meal, raw wheat starch, gelatinized wheat starch and dextrin as energy sources to spare protein for growth was quantified. Energy utilization and protein sparing were assessed by comparing the weight gain, energy retention efficiency, protein retention and body composition of silver perch that had been fed a series of diets in which the basal diet (low carbohydrate) was systematically replaced with graded levels of each carbohydrate ingredient or an inert diluent, diatomaceous earth. The protein content decreased as the carbohydrate content increased, giving four different protein to energy ratios for each of the four carbohydrate sources (except for the 60% inclusion level, at which only three carbohydrate sources were tested). Silver perch were efficient at utilizing carbohydrate for energy to spare protein. Silver perch fed diets containing up to 30% wheat meal, raw wheat starch, gelatinized wheat starch or dextrin exhibited similar growth, protein retention and energy retention efficiency to the fish fed the basal diet. Weight gain of silver perch fed diets containing wheat meal or carbohydrates at 45% inclusion content had significantly reduced weight gain when compared with fish fed the basal diet. However, protein retention and energy retention efficiency were similar or better. Whole‐body protein levels of silver perch remained constant regardless of carbohydrate sources, and there was no evidence of increasing whole‐body lipid concentrations for fish fed diets with up to 60% dietary carbohydrate. Silver perch were more efficient at utilizing processed starch (either gelatinized starch or dextrin) than wheat meal or raw wheat starch.  相似文献   

3.
The potential of using rendered animal protein ingredients, poultry by‐products meal (PBM), meat and bone meal (MBM), and feather meal (FM), to replace fish meal in diets for malabar grouper, Epinephelus malabaricus, was evaluated in a 10‐week net pen experiment. Triplicate groups of fish (initial body weight 50.2 g) were fed eight isonitrogenous and isocaloric diets formulated to contain 52% crude protein and 9% crude lipid. The control diet contained 50% herring meal, whereas in the remaining seven diets, PBM was incorporated at 11.9 (PM1), 23.8 (PM2), and 35.7% (PM3) to replace 25, 50, and 75% of the fish meal; MBM was incorporated at 14.5 (MM1) and 29.0% (MM2) to replace 25 and 50% of the fish meal; and FM was incorporated at 9.4 (FM1) and 18.8% (FM2) to replace 25 and 50% of the fish meal. A raw fish (RF) diet was used as comparison to assess growth performance of fish fed the formulated diets. Feed intake was lower in fish fed the diets PM3 and FM2 than fish fed the control diet. There were no significant differences in weight gain (WG), final body weight (FBW), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), and total nitrogen waste output (TNW) between fish fed the control diet and the diets PM1, PM2, PM3, MM1, MM2, and FM1. Fish fed the diet FM2 had lower WG, FBW, NRE, and ERE but higher TNW than that of fish fed the control diet. Feed conversion ratio (FCR) was higher in fish fed the diets MM2, FM1, and FM2 than fish fed the control diet. At the end of the experiment, there were no significant differences in whole‐body content of moisture, crude protein, and crude lipid among fish fed the formulated diets. WG, FBW, and TNW of fish fed the diet RF were higher, while FCR and NRE were lower than that of fish fed the control diet. No significant differences were found in feed intake, ERE, and whole‐body composition between fish fed the diet RF and the control diet. Results of the present study suggest that dietary fish meal level for malabar grouper can be lowered from 50 to 38% by incorporating PBM, MBM, or FM.  相似文献   

4.
A feeding experiment was conducted to examine the potential use of defatted soybean meal (SBM) and freeze‐dried meat of blue mussel (BM) as partial replacement of fish meal in the diet of tiger puffer. Eight experimental diets were formulated, in which 0, 20, 40 and 60% fish meal protein were replaced with SBM (S0B0, S20B0, S40B0, and S60B0), and 40 and 60% with a combination of SBM and BM (S30B10, S20B20, and S45B15, S30B30). Fish of 11 g initial body weight were fed the diets to satiation twice daily, 6 d/wk for 8 wk at 20 C. Specific growth rate, feed efficiency, and protein efficiency ratio (PER) of fish fed diets containing SBM as an alternative protein source for fish meal decreased with increasing level of SBM, and these parameters of fish fed S40B0 and S60B0 diets were significantly lower than those of the control. Growth of fish in dietary groups containing BM were statistically identical to those in the control, and tended to increase with increasing level of dietary BM both at 40 and 60% substitution levels. Growth and feed utilization of fish fed S20B20 were almost the same to those in the control.  相似文献   

5.
An 8‐week feeding trial was conducted in a warmwater recirculation system at 27 ± 0.2 °C to evaluate the nutritive value of dhaincha (Sesbania aculeata) seed meal as a possible fish meal substitute in the diet of tilapia. Five isonitrogenous and isoenergetic diets were formulated to contain 32% crude protein and 18.4 kJ g?1 gross energy. Sesbania seed meal was included in diets at various levels [0%, 9.7%, 19.4%, 29.1% and 38.8% for diets 1 (control), 2, 3, 4 and 5, respectively, which correspond to 0%, 10%, 20%, 30% and 40% of dietary crude protein]. Each treatment had two replicates, eight fish per replicate, with mean initial weight of 7.06 ± 0.03 g. Fish were fed 20 g kg?1 metabolic body weight daily. On the basis of the observed growth rate, feed conversion ratio, protein efficiency ratio, apparent net protein utilization and energy retention, diets 1 (control) and 2 (containing 9.7% Sesbania meal) were similar and significantly (P < 0.05) better than the other dietary groups. Fish fed diets 3, 4 and 5 containing higher levels of Sesbania meal showed significantly reduced growth performance compared with those fed diets 1 and 2. Fish fed diets 3, 4 and 5 had significantly lower faecal dry matter (DM) content, apparent crude protein, lipid and energy digestibility and reduced levels of cholesterol compared with the control and diet 2. Fish fed diets containing higher levels (>9.7%) of Sesbania meal had significantly higher whole‐body moisture, lower lipid and gross energy content. The lower growth performance of fish fed diets containing higher levels of Sesbania meal is thought to result from the presence of tannins, saponin and the non‐starch polysaccharide content of the seed. The results of this study showed that inclusion of up to 9.7% untreated Sesbania seed meal (10% of the dietary protein) in the diet did not affect the growth performance and nutrient utilization in tilapia.  相似文献   

6.
To investigate potential use of increasing nutritional density of diets for rapid growth of warm‐water fishes, a feeding trial was conducted in which growth performance, body indexes, and whole‐body composition of juvenile hybrid striped bass fed diets comprising protein (49, 54, and 59%), lipid (16, 20, 23, and 28%), and energy (22.0–25.1 kJ/g) concentrations beyond established minimum levels were compared to those of fish fed a more typical commercial reference diet (37.5% crude protein, 10.5% crude lipid, and 19.6 kJ/g energy on a dry matter basis). A subset of the experimental diets and the commercial reference diet also were fed to juvenile red drum. After 6 wk of feeding, hybrid striped bass fed the high‐protein and high‐lipid diets showed much greater growth performance compared to fish fed the commercial diet. Increasing dietary protein level, but not lipid level, tended (P ≤ 0.1) to enhance weight gain and feed efficiency of hybrid striped bass. Hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, and whole‐body protein were significantly (P < 0.01) influenced by dietary protein level. The dietary lipid and associated energy level had significant negative linear effects on daily feed intake. Linear regression analysis showed that dietary energy : protein ratio, largely influenced by dietary protein level, moderately but significantly influenced weight gain, HSI, IPF ratio, and whole‐body protein of hybrid striped bass and red drum. Red drum grew very similar to hybrid striped bass in response to the experimental diets. However, significant differences in HSI, IPF ratio, whole‐body protein, lipid, moisture, and ash between hybrid striped bass and red drum were observed, indicating species differences in protein and energy partitioning. In particular, the excessive lipid in the diet increased HSI and whole‐body lipid of red drum but not of hybrid striped bass.  相似文献   

7.
A 50‐day feeding trial was conducted to examine the effects of dietary protein and lipid levels on growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica. Fish (initial body weight 44.6 g ind−1) were fed ten test diets which were formulated at 5 crude protein levels (360, 400, 440, 480 and 520 g kg−1) and 2 crude lipid levels (90 and 150 g kg−1). In addition, a raw fish diet (fillet of small yellow croaker) served as the reference. The weight gain (WG) increased, whereas the feed intake (FI) and feed conversion ratio (FCR) decreased, with increasing dietary protein level from 360 to 520 g kg−1. At the same dietary protein level, no significant difference was found in the WG between fish fed the diets containing 90 or 150 g kg−1 crude lipid. Fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid exhibited higher WG, nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) but lower nitrogen wastes output (TNW). At the end of the feeding trial, the hepatosomatic index (HSI) and viscerosomatic index (VSI) decreased, whereas the body protein content increased, with increase in dietary protein level. The body lipid content was higher in fish fed at the 150 g kg−1 lipid level than in fish fed at the 90 g kg−1 lipid level. No significant difference was found in the maximum sustained swimming speed (MSS) between fish fed at different dietary protein and lipid levels. The WG, NRE, ERE and condition factor (CF) were higher, whereas the FI, FCR, HSI, VSI and TNW were lower, in fish fed the raw fish diet than in fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. No significant difference was detected in the MSS between fish fed the raw fish diet and diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. The results of this study suggest that the suitable dietary crude protein and crude lipid levels are 480 g kg−1 and 90 g kg−1 for giant croaker reared in net pens.  相似文献   

8.
Two experiments were conducted to evaluate the effect of lowering crude protein level and fish-meal inclusion rate by using commercially available synthetic amino acid supplements in practical diets on the growth performance of Litopenaeus vannamei. In experiment 1, three diets were formulated to assess whether 50% of fish meal could be replaced by soybean meal with synthetic amino acid supplementation. Diet 1 was formulated as the normal control with 20% fish meal and 36% crude protein; diet 2 was the negative control with 34% crude protein and half of the fish meal was replaced with soybean meal; and diet 3 was similar to diet 2 but was supplemented with amino acids to ensure the level of lysine, methionine plus cystine, and threonine similar to that in the diet 1. After a 70-day feeding trial, weight gain and specific growth rate of shrimps fed diet 2 were significantly lower than those fed diet 3, and numerically lower than those fed diet 1. Feed intake of shrimps fed diet 3 was significantly higher than those fed diets 1 and 2. There were no significant differences in feed conversion ratio among shrimps fed different diets. In experiment 2, four diets were prepared with diet 1 as the normal control with 41.26% crude protein, diets 2–4 were formulated to contain 39.81, 38.40, and 35.52% of crude protein with synthetic amino acids were added to simulate the amino acid levels of the diet 1. After a 70-day feeding trial, it was found that reducing dietary crude protein from 41.26 to 35.52% did not affect weight gain or feed conversion ratio. The survival of crude protein 35.52% treatment was significantly lower than other treatments. No difference was observed in body protein, lipid composition, and apparent digestibility coefficient among dietary treatments. Results of this study suggested that dietary crude protein could be reduced from 41.26 to 35.52% in the diets of L. vannamei as long as synthetic amino acids were supplemented.  相似文献   

9.
A 6-week feeding trial with four dietary protein levels (22%, 32%, 42% and 52%) and two dietary lipid levels (10% and 19%) was conducted to investigate the optimum dietary protein and lipid level for the growth of bagrid catfish fingerlings (0.92±0.01 g initial weight). Survival of fish was not affected by either dietary protein or dietary lipid level. Specific growth rate of fish fed the diets containing 10% lipid increased with increasing protein level and that of fish fed the diets containing 19% lipid increased with increasing protein level up to 42%. Feed efficiency of fish fed the 42% protein diet with 19% lipid and 52% protein diet with 10–19% lipid was higher than that of other groups. Daily feed intake of fish decreased with increasing dietary protein level at both lipid levels and showed a tendency toward higher values at 10% lipid diets than at 19% lipid diets. Protein efficiency ratio and protein retention of fish decreased with increasing dietary protein level, and those of fish fed the 19% lipid diet were higher than those of fish fed the 10% diet at 42% protein diet. Moisture content of fish fed 10% lipid diets was higher than that of fish fed 19% lipid diets, at each protein level. Crude lipid content of fish fed 19% lipid diets was higher than that of fish fed 10% lipid diets at each protein level. The results of this study indicate that an increase of dietary lipid level can improve growth and protein utilization, and the diet containing 42% protein with 19% lipid would be suitable for optimum growth and effective protein utilization of bagrid catfish fingerlings.  相似文献   

10.
A fish feeding trial was conducted in a warm‐water recirculating system for 8 weeks to assess the nutritive value of processed mucuna seeds as a dietary protein replacement for fish meal in practical diets of tilapia. Diets 2–6 contained mucuna seeds processed as follows: raw, soaked in water, soaked in sodium bicarbonate solution (0.07%), soaked in ascorbic acid solution (0.1%) or soaked in water containing 3% of freeze‐dried moringa leaf powder, followed by autoclaving. The mucuna seed meals were then used to replace 25% of the total dietary protein in each diet. The performance of fish fed these diets was compared with fish fed a fish meal‐based control diet (diet 1), which contained 35% protein. All diets were prepared to be isonitrogenous and isoenergetic. Each treatment had three replicates, using seven fish per aquarium, with a mean initial body weight of 3.9 ± 0.06 g. Fish were fed five times about their maintenance level (3.0 g feed × body weight (kg)?0.8 day?1), and no mortality was observed during the experiment. The growth rate, feed conversion ratio and protein productive value of fish fed diets 1, 3, 4, 5 and 6 were similar. However, with regard to energy retention and apparent net lipid utilization, the values observed in fish fed diet 1 were similar to those of fish fed diets 5 and 6, and diet 6, and significantly higher than other dietary groups. Fish fed diet 2 showed a significantly (P < 0.05) reduced growth performance, higher carcass moisture and ash contents, and lower levels of lipid and energy compared with all other dietary groups. Fish fed diet 2 had a significantly lower plasma cholesterol level compared with other diets. However, no significant variation of muscle cholesterol was found between the dietary groups. Even though the hepato‐somatic index of the fish fed diets 3, 4, 5 and 6 was significantly lower than diet 1, these values appeared to be significantly higher compared with fish fed diet 2. The present study indicates that the inclusion of mucuna seed meal (replacement of 25% of total dietary protein of feed) after soaking in any one of the tested solutions followed by autoclaving significantly improved the growth performance and feed utilization of tilapia compared with that of the raw seeds. Moreover, these values were similar to the performance obtained with the fish meal‐based control diet 1. This might be due to the relative reduction of anti‐nutrients, particularly the non‐protein amino acid 3, 4‐dihydroxyphenylalanine, and increased palatability and nutrient availability of processed beans.  相似文献   

11.
Gilthead seabream Sparus aurata L. (initial mean body weight: 42.5 g) were fed four experimental diets containing either 47 or 51% of dry matter (DM) as protein and either 15 or 21% as lipid for 12 weeks. Each diet was hand-distributed to triplicate groups of 60 fish, three times a day until satiation. The digestibility coefficients of the dietary components were determined using chromic oxide as a marker. The levels of protein or lipid in the diets did not affect the digestibility. Fish regulated their feed intake and attained the same weight at the end of the experiment. However, feed efficiency varied between diets, with best values obtained with both diets containing 21% lipid. When diets contained only 15% lipid, feed efficiency increased with dietary protein level. Nitrogen retention was significantly higher with high fat diets regardless of dietary protein level. Neutral lipid deposition was significantly higher in liver for diets rich in lipids. It was elevated in muscle only in fish fed the diet containing 47% protein and 21% lipid and this deposition in muscle contributed to a significant increase in body fat content. Phosphorus load to the environment, measured as percentage retention of ingested or digestible phosphorus, was significantly lower with both diets higher in lipids.  相似文献   

12.
Antinutritional factors in rapeseed products have been identified to reduce feed palatability and growth performance of turbot. Therefore, we evaluated the potential of blue mussel (Mytilus edulis L.) meal as feed attractant in rapeseed protein‐based diets for turbot. Triplicate fish groups received isonitrogenous and isocaloric diets with fish meal (FM) protein replacements of 50% or 75% by rapeseed protein concentrate (RPC 50, RPC 75). These diets were supplemented with 0%, 2%, 4% or 8% of blue mussel meal. In contrast with RPC 50 diets, fish fed with RPC 75/0 showed significantly reduced daily feed intake (DFI) and specific growth rate (SGR). With increasing mussel meal inclusion, RPC 75 diets resulted in increased DFI and SGR, suggesting mussel meal as attractant in rapeseed protein‐based diets for turbot. Feed conversion was unaffected by any treatment. Protein productive value and apparent digestibility coefficients were unaffected by either RPC or mussel meal inclusion. With regard to the whole body composition, no differences in crude protein, crude lipid and ash content could be determined. Haematological characteristics were unaffected among the treatments indicating good nourished and unstressed fish. In conclusion, we demonstrated that the utilization of blue mussel meal improved the palatability of rapeseed protein‐based diets for turbot.  相似文献   

13.
A feeding trial using five semi-purified diets (50% crude protein) was conducted to investigate the effects of different dietary amino acid patterns on growth and body composition of juvenile Japanese flounder. The control diet contained casein and gelatin as intact protein sources and four other diets contained 30% casein–gelatin (2:1, w/w) and 20% crystalline amino acids (CAA). CAA were added to the diets to simulate the amino acid pattern found in red sea bream egg protein (REP), Japanese flounder larvae whole body protein (FLP), Japanese flounder juvenile whole body protein (FJP), and brown fish meal protein (BFP), respectively. The test diets were fed to triplicate groups of juveniles (2.75±0.05 g) twice a day for 40 days to evaluate weight gain, survival, feed conversion efficiency (FCE), protein efficiency ratio (PER), and apparent protein utilization (APU). The apparent retention of total dietary amino acids in the whole body and A/E ratios of the whole body were also evaluated. The highest weight gain was observed in fish fed the diet containing the dietary amino acid pattern of BFP followed by fish fed the control, FJP, FLP and the REP diets. Percent survival, FCE, PER and APU were also significantly (P<0.05) affected by the amino acid pattern in the diets, indicating the highest value in fish fed the BFP diet. Except for a few amino acids, the amino acid composition of the whole body did not show marked differences with different dietary amino acid pattern. Results suggest that BFP could be more suitable as a reference amino acid pattern in the diet of juvenile Japanese flounder compared to the amino acid pattern of FLP, FJP or REP.  相似文献   

14.
Arctic charr (Salvelinus alpinus) were fed for 99 days on experimental diets with 40% of fish meal replaced, on a crude protein basis, with intact yeast (Saccharomyces cerevisiae) (ISC), extracted yeast (ESC), Rhizopus oryzae fungus (RHO) or de‐shelled blue mussels (Mytilus edulis) (MYE). The fish were evaluated for growth performance, nutrient digestibility and fish intestinal function. Growth performance, retention of crude protein and sum of amino acids were not affected in fish fed diets ISC or MYE compared with those fed the reference (REF) diet. However, fish fed diet ISC displayed decreased digestibility of crude protein and indispensable amino acids and decreased intestinal barrier function compared with fish fed the REF diet. Fish fed diet ESC exhibited decreased growth performance and protein retention, but had comparable digestibility to fish fed the REF diet. Fish fed diets MYE and RHO showed similar performance in terms of growth, nutrient digestibility and intestinal barrier function. Overall, the results indicated that blue mussel and intact S. cerevisiae yeast are promising protein sources for Arctic charr.  相似文献   

15.
An experiment was conducted to determine the dietary protein requirement by different analysis methods and to study the effects of dietary protein levels on growth performance and body composition in Japanese flounder Paralichthys olivaceus fed white fish meal and casein-based diets for 8 wk. After a 1-wk conditioning period, one of six isocaloric diets containing 30, 36, 42, 48, 54, and 60% crude protein (CP) was fed to fish at approximately 4–5% of wet body weight on a dry matter basis to triplicate groups of 15 fish averaging 13.3 ± 0.06 g (mean ± SD). After 8 wk of the feeding trial, weight gain (WG) and feed efficiency (FE) from fish fed 48% CP diet were similar to those from fish fed 42% and 54% CP diets, and were significantly higher than those from fish fed 30, 36 and 60% CP diets ( P < 0.05). Fish fed 48 and 54% CP diets had a significant higher specific growth rate (SGR) than did fish fed 30 and 36% CP diets ( P 0.05). Protein efficiency ratio (PER) was inversely related to the dietary protein level. No significant differences existed in hematocrit (PCV) and survival rate among the dietary treatments. Broken-line model analysis indicated that the optimum dietary protein level could be 44.0 ± 3.0% for maximum WG in Japanese flounder. Polynomial regression analysis of the dose-response showed that maximum WG occurred at 50.2% ( R2 = 0.94) based on WG, and the second-order polynomial regression analysis with 95% confidence limits revealed that the range of minimum protein requirement was between 38.9% and 40.3% based on WG. Therefore, these findings suggest that the optimum dietary protein requirement for maximum growth of Japanese flounder is greater than 40%, but less than 44% CP in the fish meal and casein-based diets containing 17.0 kJ/g of energy.  相似文献   

16.
This study was performed to determine the effect of the dietary inclusion of various sources of green tea on growth, body composition and blood chemistry of the olive flounder. Twenty-five juvenile fish were distributed into each of 15 180 l flow-through tanks. Five experimental diets with triplicates were prepared: control, raw leaves, dry leaves, by-product and extract. The 5% various sources (raw leaves, dry leaves and by-product) of green tea were included in the experimental diets at the expense of 5% wheat flour. The extract was diluted with water and mixed with the ingredients to maintain 5% green tea at the same concentration as in the other diets. Weight gain and specific growth rate of fish fed the control diet and experimental diet containing extract were higher than those of fish fed the diets containing raw and dry leaves and by-product. Feed and protein efficiency ratio for fish fed the control diet and diet containing extract was higher than for fish fed the diets containing raw leaves and by-product. The level of low-density lipoprotein (LDL) cholesterol of fish fed the control diet was higher than that of fish fed the other diets containing various sources of green tea. The glutamic oxaloacetic transaminase (GPT) concentration of fish fed the diets containing raw leaves and extract was lower than that of fish fed the control diet. Crude lipid content of liver in fish fed the control diet was higher than that in fish fed the diets containing raw and dry leaves and by-product but was not significantly different from that of fish fed the diet containing extract. Dietary inclusion of extract was the most effective way to improve growth and feed utilization of the olive flounder among the various sources of green tea, and all sources of green tea were effective in lowering serum LDL cholesterol and GPT of the fish.  相似文献   

17.
Effects of dietary fatty acid composition on the growth of the tiger puffer Takifugu rubripes were examined. Eight experimental diets were formulated with fish meal and casein as the major ingredients, providing 45.0–48.2% crude protein. Pollack and squid liver oils were used for the control diet while experimental diets contained three levels of EPA-DHA concentrated (C-HUFA) oils, soybean oil, linseed oil, and combinations of them, providing 0.5–5.5% n-3 HUFA and 5.0–11.1% crude lipid. Triplicate groups of fish with a mean body weight of 18.7 g per dietary treatment were fed the diets twice daily to apparent satiation, 6 days per week for 8 weeks. The final body weight and weight gain of the fish fed the soybean oil diet without C-HUFA oils were significantly lower than those fed the control diet. Both parameters were not statistically different among the other dietary groups, although the values obtained for the linseed oil diet without C-HUFA oils were lower. Similar trends were seen for SGR and feed efficiency. However, significantly lower PER values compared to the control were observed for the lower C-HUFA and the vegetable oil without C-HUFA oil groups. These results indicate that tiger puffer can be produced successfully with diets containing more than 1.5% n-3 HUFA.  相似文献   

18.
This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1 crude lipid) levels. Fish (initial weight 4.7 g fish−1) were fed the test diets for 8 weeks. Final body weight, weight gain (WG), feed intake (FI), feed conversion ratio (FCR), contents of crude protein, lipid and energy in whole body were dependent on both dietary protein and lipid levels, while specific growth rate (SGR), hepatosomatic index and body moisture content were dependent on dietary lipid level. The WG and SGR increased with the increase in either dietary protein level (at the same lipid level) or lipid level (at the same protein level). The FI and FCR decreased with the increase in dietary protein level (at the same lipid level) or lipid level (at the same protein level). Protein sparing action occurred in case dietary lipid level increased. Fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid had the highest WG and SGR, but the lowest FI and FCR, among the diet treatments. There were no significant differences in the protein retention efficiency (PRE) and energy retention efficiency (ERE) among the diet treatments, although PRE and ERE were relatively high in fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid. At the end of the feeding trial, body protein content increased, while body lipid content decreased, with the increase in dietary protein content at the same lipid level. Our results suggest that dietary levels of 450 g kg−1 crude protein and 90 g kg−1 lipid are adequate to support fast growth of P. hypophthalmus reared in cages.  相似文献   

19.
A study was undertaken to determine the effect of dietary lipid level on growth, feed efficiency and body chemical composition of juvenile grass carp. Seven isonitrogenous diets (400 g kg?1 crude protein) containing seven dietary lipid level (0, 20, 40, 60, 80, 100 and 120 g kg?1 dry matter) were fed to triplicate groups of 40 fish with initial weight 6.52 g, for 70 days. No obvious and assured essential fatty acid deficiency symptom appeared in fish fed the lipid‐free diet. Excess dietary lipid level (100 and 120 g kg?1) resulted in decreased feed intake. The best growth performance and feed utilization was observed in fish fed 20–40 g kg?1 dietary lipid. The fish fed a lipid‐free diet had the lowest protein efficiency and protein retention. Growth performance and feed utilization increased with the increasing dietary lipid levels up to 40 g kg?1 dietary lipid. Higher dietary level (above 40 g kg?1) made growth performance and feed utilization decrease and no protein sparing effect was observed. Lipid retention decreased as dietary lipid level increased. Mesenteric fat index (MFI) increased, hepatosomatic index (HSI) decreased with dietary lipid level. The increased MFI and simultaneous decrease lipid retention can be explained by differences in growth. The effect of dietary lipid levels on the chemical composition of tissues was significant only for whole body and muscle. The excess lipid content of liver in all groups was regarded as a slight symptom of fatty liver, which was partly identified by microscopic structural study and lower plasma lipid indexes, comparing to the initial plasma data. In conclusion, grass carp is a fish with low energy requirement and excess dietary lipid level should be avoided.  相似文献   

20.
An 11‐week feeding trial was conducted to evaluate the effects of dietary protein and/or energy levels on growth, feed efficiency and proximate composition of juvenile (average weight: 21.5 g) common carp (Cyprinus carpio L.) fed various diets based on constant daily protein input. Five experimental diets were prepared. One group of diets (diets 1, 2 and 3) contained three crude protein (P) levels (35%, 40% and 45%) with a constant gross energy (GE) of 3.8 kcal g?1 diet. The second group of diets (diets 4 and 5) were formulated to contain a GE of 4.3 or 4.9 kcal g?1 diet and 40% or 45% protein levels, respectively, where GE/P was constant at 10.8 kcal g?1 protein. Fish receiving diet 1 served as the control; they were hand‐fed to visual satiety. Feed allowance for diets 2 and 4 was 87.5% of the control. Feed allowance for fish receiving diets 3 and 5 was 77.8% of the control. Thus, all tanks received the same daily protein input. When gross energy in the diets was constant, 3.8 kcal g?1 diet, weight gain of fish fed diet 2 at 87.5% satiation was significantly higher than that of fish fed diet 3 at 77.8% of satiation. When the GE/P in the diets was constant, 10.8 kcal g?1 protein, weight gain of fish fed diet 1 was significantly higher than that of fish fed diet 5 at 77.8% satiation. The feed efficiency ratio (FER) for diets 2–5 was significantly higher than for diet 1 at constant GE and GE/P, and this improved linearly as dietary protein levels increased. The protein efficiency ratio (PER) for diet 2 was significantly higher than for diet 3 at constant GE. However, PER was not significantly different at constant GE/P. Protein retention of fish fed diet 2 was significantly higher than that of fish fed diet 3 at constant GE. Protein retention of fish linearly decreased at constant GE/P. The energy efficiency ratios (EER) for diets 2 and 3 were significantly higher than for diet 1 at constant GE. Moisture and protein contents of the whole body of fish were not significantly different at constant GE, but they decreased linearly at constant GE/P. The lipid content of fish fed diet 1 was significantly lower than that of fish fed diet 2 at constant GE, and body lipid content linearly increased at constant GE/P. These results indicate that growth and feed efficiency for common carp fed a 40% protein diet with 3.8 kcal g?1 diet GE at 87.5% satiation rate was superior to those for the fish fed either a 35% protein diet with 3.8 kcal g?1 diet GE at 100% satiation rate or a 45% protein diet with either a 3.8 or 4.9 kcal g?1 diet GE at 77.8% satiation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号