首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Despite the ecological and economic importance of Acacia senegal, little is known about the effects of anthropogenic disturbances on its natural regeneration patterns and population structure. We investigated the effects of these factors within the Lake Baringo woodland ecosystem. Data was collected from 60 plots of 20 m × 20 m systematically distributed in four A. senegal-dominated populations within the Lake Baringo woodland. Sample populations spanned a degradation gradient measured by a population disturbance index (PDI). Trees were measured for diameter at breast height (DBH) and categorized by growth stages: seedling, sapling and adult tree. Higher seedling and sapling densities were recorded in lightly than heavily disturbed populations, but only sapling density was significantly different between the two disturbance levels (P = 0.02). Lightly disturbed populations revealed a reversed J-shape size-class distribution (SCD) indicative of stable structure unlike the heavily disturbed populations. The quotient and permutation indices indicated unstable populations with episodic recruitment and mortality. Our study reveals that natural regeneration and population structure of A. senegal were affected majorly by selective harvesting and heavy browsing. Suitable management strategies to control livestock grazing and illegal tree harvesting within the woodland is required to promote conservation of the species genetic resources  相似文献   

2.
Taxus chinensis and T. wallichiana in have been threatened in their distribution areas in recent decades because of their over-exploitation and reduction and destruction of native habitats. Determining the genetic diversity in populations of the two species will provide guidelines for their protection and preservation. Two hundred and fifteen trees from six populations of T. chinensis and 150 sampled trees of T. wallichiana were sampled. Six microsatellite primer pairs selected from 16 primer pairs were used to investigate genetic variation at the population and species levels. Five yielded polymorphic alleles, and among the 13 putative alleles amplified, 11 were polymorphic (accounting for 76.33 %).Shannon’s information index (I) and percentage of polymorphic bands (PPB) (I = 0.202 and PPB = 67.22 % for T. chinensis; I = 0.217 and PPB = 65.03 % for T. wallichiana). Both species had low levels of genetic diversity (mean H o = 0.107, H e = 0.121 for T. chinensis; H o = 0.095, H e = 0.109 for T. wallichiana). Genetic differentiation among populations was higher (F ST = 0.189) for T. chinensis and lower (0.156) for T. wallichiana, indicating limited gene flow (Nm) among populations for T. chinensis (0.68) and T. wallichiana (0.65). Variation among individuals of T. chinensis was 63.59 and 73.12 % for T. wallichiana. Thus, the threatened status of the two conifers is related to a lack of genetic diversity. All populations are isolated in small forest remnants. An ex situ conservation site should be established with a new population for these species that comprises all the genetic groups for the best chance to improve their fitness under environmental stresses.  相似文献   

3.
The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems. Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is strongly influenced by environmental factors. As a result, an assessment of the relationship between environmental factors and photosynthetic productivity makes it possible to calculate and even predict carbon sinks in coniferous forests at the regional level. However, at various stages of the vegetative period, the force of the connection between environmental conditions and the productivity of photosynthesis may change. In this research, correlations between the photosynthetic activity of Scots pine (Pinus sylvestris L.) with the environmental conditions were compared in spring and in autumn. In spring, close positive correlation of the maximum daily net photosynthesis was identified with only one environmental factor. For different years, correlations were for soil temperature (rs = 0.655, p = 0.00315) or available soil water supply (rs = 0.892, p = 0.0068). In autumn within different years, significant correlation was shown with two (temperature of air and soil; rs = 0.789 and 0.896, p = 0.00045 and 0.000006, respectively) and four factors: temperature of air (rs = 0.749, p = 0.00129) and soil (rs = 0.84, p = 0.00000), available soil water supply (rs = 0.846, p = 0.00013) and irradiance (rs = 0.826, p = 0.000001). Photosynthetic activity has a weaker connection with changes in environmental factors in the spring, as compared to autumn. This is explained by the multidirectional influence of environmental conditions on photosynthesis in this period and by the necessity of earlier photosynthesis onset, despite the unfavorable conditions. This data may be useful for predicting the flow of carbon in dependence on environmental factors in this region in spring and in autumn.  相似文献   

4.
Pollen flow and mating patterns are the most important factors influencing the genetic structure of insect-pollinated forest trees and are essential parts of genetic management in seed orchards. We investigated pollen flow, the mating system and the level of pollen contamination in a clonal seed orchard of Schima superba Gardn. et Champ. In total, 328 open-pollination progenies coming from 11 mother trees were identified using 13 polymorphic microsatellite loci. A total of 203 full-sib families were identified and were nested among the 11 studied seed donors. The male reproductive success rate from 0.49 to 7.77% for most male parents, with an average of 2.44%. More than 80% of the crosses were found within a distance of 60 m, and the most frequent pollination distance between female parent and male parents was approximately 20 m. Mating system analysis showed that the outcrossing level was very high (t m  = 1.000, outcrossing rate = 98.5%) in the seed orchard and that there was an average of 2.3 effective pollen donors (N ep ) per female parent. In addition, the mating success of individual males within neighborhoods was moderately influenced by their fecundity and the direction of their location relative to mother trees. The pollen contamination from outside the seed orchard was high (7.01%). Our findings are valuable for the assessment of seed orchards, and it may be worthwhile to use pollen management strategies to decrease pollen contamination and increase the genetic quality of the seeds produced.  相似文献   

5.
Gardenia jasminoides and Rosa chinensis are economically important horticultural plants in China. Frankliniella occidentalis and Thrips hawaiiensis are serious coexisting pests that previously demonstrated opposite population trends on G. jasminoides and R. chinensis flowers. To further study the different performances between F. occidentalis and T. hawaiiensis, we investigated their population dynamics in the field (for 5 years) and their life history characteristics on the two flowers in the laboratory. In the field, the density of F. occidentalis was lower than that of T. hawaiiensis on G. jasminoides but was higher than that of T. hawaiiensis on R. chinensis. Under laboratory conditions, F. occidentalis showed significantly slower development, and lower survival and fecundity levels than T. hawaiiensis on G. jasminoides, but the opposite was true on R. chinensis. Significant differences in the net reproductive rate (R 0) between F. occidentalis and T. hawaiiensis were observed, with respective values of 38.66 ± 2.85 and 47.91 ± 2.70 on G. jasminoides, and 55.64 ± 2.15 and 32.45 ± 2.16 on R. chinensis. The intrinsic rates of increase (r m ) of F. occidentalis and T. hawaiiensis were 0.156 ± 0.008 and 0.198 ± 0.007, respectively, on G. jasminoides, and 0.172 ± 0.003 and 0.165 ± 0.002, respectively, on R. chinensis. Thus, the performances of both thrips with respect to population size in the laboratory were in accordance with those in the field, suggesting that the innate capacity for insect population increases may directly impact their population dynamics in fields. Thus, the population performance of different thrips species on flowers is species-dependent, which could be exploited in thrips control programs by breeding pest-resistant cultivars.  相似文献   

6.
We investigated the effects of two commercial diatomaceous earth based insecticides (DE), Protect-It® and SilicoSec®, the nano-structured silica product AL06, developed by the section for Urban Plant Ecophysiology at Humboldt University Berlin, and the monoterpenoids, eugenol, and cinnamaldehyde on two stored product pests, Callosobruchus maculatus and Sitophilus oryzae. Protect-It® was more effective than SilicoSec® against C. maculatus while the reverse was true for S. oryzae. Generally C. maculatus was more sensitive towards DE and silica treatment than S. oryzae. Mortality rate of both pest species increased when DE’s were applied to food commodities previously treated with a monoterpenoid. In admixture experiments, the toxicity of SilicoSec® + cinnamaldehyde (LD50 = 42.73 ppm), SilicoSec® + eugenol (LD50 = 24.30 ppm), and Protect-It® + eugenol (LD50 = 2.60 ppm) was increased over DE alone against S. oryzae. Both substances showed a synergistic effect considering their co-toxicity coefficient relative to the LD50-value. In contrast, we could not find any synergistic effects in experiments with C. maculatus. Here only Protect-It® + cinnamaldehyde (LD50 = 20.84 ppm) showed an additive effect while all other combinations of monoterpenoid and DE indicated antagonistic effects. In addition to contact insecticidal effects both monoterpenoids showed a strong fumigant action. The presented results indicate that the natural product DE has great potential to replace synthetic pesticides commonly used in stored product pest management. Efficacy of DE can be improved by adding certain monoterpenoids against certain insect pests.  相似文献   

7.
The extensive use of synthetic insecticides and fumigants for control stored-product insects has led to the development of resistance. Essential oils from aromatic plants may provide proper alternatives to currently used insect control agents. Essential oils from 20 Egyptian plants were obtained by hydrodistillation. The chemical composition of the oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against Sitophilus oryzae. The inhibitory effects of the essential oils on acetylcholinesterase and adenosine triphosphatases activities were examined. The oils were composed of monoterpene hydrocarbons (i.e., limonene, sabinene, β-pinene and γ-terpinene) and oxygenated monoterpenes (i.e., terpinen-4-ol, β–thujone, 4-terpineol, α-citral and 1,8-cineole) with the exception of the oil of Schinus terebinthifolius which was contained sesquiterpenes, and the oil of Vitex agnus-castus which contained similar amounts of monoterpenes and sesquiterpenes. In the fumigation assay, the oils of Origanum vulgare (LC50 = 1.64 mg/L air), Citrus lemon (LC50 = 9.89 mg/L air), Callistemon viminals (LC50 = 16.17 mg/L air), Cupressus sempervirens (LC50 = 17.16 mg/L air), and Citrus sinensis (LC50 = 19.65 mg/L air) showed high toxicity to S. oryzae. In the contact assay, the oils of Artemisia judaica, C. viminals, and O. vulgare caused the highest toxicity to S. oryzae with LC50 values of 0.08, 0.09, and 0.11 mg/cm2, respectively. The oil of A. judaica (I50 = 16.1 mg/L) invoked the highest inhibitory effect on AChE activity, while the oils of C. viminals and O. vulgare were the most potent inhibitors to ATPases activity with I50 values of 4.69 and 6.07 mg/L, respectively. The results indicate that the essential oils of A. Judaica, O. vulgare, C. limon, C. viminals, and C. sempervirens could be applicable to the management of populations of S. oryzae.  相似文献   

8.
Pieris japonica is a poisonous tree species that is rarely eaten by herbivorous animals, a fact that could enable the expansion of its distribution range and influence ecosystems into which it encroaches. In a regional-scale study, 300 P. japonica trees from 13 populations were sampled at the University of Tokyo Chichibu Forest, Japan, and were analyzed using 11 microsatellite markers. Genetic differentiation among the populations was low (F ST = 0.022 and G′ ST = 0.024). A plot (30 × 30 m) was established for a fine-scale study, in which all P. japonica trees and saplings were measured and genetically analyzed using the microsatellite markers. Using this approach, we detected 84 genotypes among the 121 P. japonica trees in the plot. A few genotypes had expanded by more than 5 m, indicating that the ability to reproduce asexually could facilitate P. japonica trees to remain in a given location. Autocorrelation analysis showed that the extent of nonrandom spatial genetic structure was approximately 7.0 m, suggesting that seed dispersal was limited. KINGROUP analyses showed that 44 genotype pairs were full siblings, 23 were half-siblings, and 40 were parent-offspring. Only 32 seedlings were observed, of which 15 had reproduced asexually. The number of P. japonica trees has been increasing gradually for more than half a century in our study areas.  相似文献   

9.
The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure (40 ha) and a mixed (45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark–Evans index (CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices. Sampling was undertaken in a grid based on a square lattice using square plots (30 m × 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic (h t ) and the density-based standardised Morisita (I p ), patchiness (IP) and Cassie (C A ) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough.  相似文献   

10.
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture, soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa (Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate (P N), stomatal conductance (g s), and water-use efficiency (W UE) in the seedlings exhibited a clear threshold response to the relative soil water content (R SWC). The highest P N and W UE occurred at R SWC of 51.84 and 64.10%, respectively. Both P N and W UE were higher than the average levels at 39.79% ≤ R SWC ≤ 73.04%. When R SWC decreased from 51.84 to 37.52%, P N, g s, and the intercellular CO2 concentration (C i) markedly decreased with increasing drought stress; the corresponding stomatal limitation (L s) substantially increased, and nonphotochemical quenching (N PQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II (PSII) in the form of heat, and the reduction in P N was primarily due to stomatal limitation. While R SWC decreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry (F v/F m) and the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (q P), and N PQ; in contrast, minimal fluorescence yield of the dark-adapted state (F 0) increased markedly. Thus, the major limiting factor for the P N reduction changed to a nonstomatal limitation due to PSII damage. Therefore, an R SWC of 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% ≤ R SWC ≤ 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F. suspensa.  相似文献   

11.
Soil organic carbon (SOC) plays an important role in soil fertility and productivity. It occurs in soil in labile and non-labile forms that help in maintaining the soil health. An investigation was undertaken to evaluate the dynamics of total soil organic carbon (C tot), oxidisable organic carbon (C oc), very labile carbon (C frac 1), labile carbon (C frac 2), less labile carbon (C frac 3), non-labile carbon (C frac 4), microbial biomass carbon (C mic) and SOC sequestration in a 6-year-old fruit orchards. The mango, guava and litchi orchards caused an enrichment of C tot by 17.2, 12.6 and 11 %, respectively, over the control. The mango orchard registered highest significant increase of 20.7, 13.5 and 17.4 % in C frac 1, C frac 2 and C frac 4, respectively, over control. There is greater accumulation of all the C fractions in the surface soil (0–0.30 m). The maximum total active carbon pool was 36.2 Mg C ha?1 in mango orchard and resulted in 1.2 times higher than control. The passive pool of carbon constituted about 42.4 % of C tot and registered maximum in the mango orchard. The maximum C mic was 370 mg C kg?1 in guava orchard and constituted 4.2 % of C tot. The carbon management index registered 1.2 (mango orchard)- and 1.13 (guava and litchi orchard)-fold increase over control. The mango orchard registered highest carbon build rate of 1.53 Mg C ha?1 year?1 and resulted in 17.3 % carbon build-up over control. Among the carbon fractions, C frac 1 was highly correlated (r = 0.567**) with C mic.  相似文献   

12.
The naturally occurring Verticillium nonalfalfae shows promise for biocontrol of the highly invasive Tree of Heaven (Ailanthus altissima), but might also bear a risk for non-target tree species. In this study, we conducted inoculations on potted seedlings of A. altissima as well as on eight indigenous and two invasive tree species associated with Tree of Heaven in Austria. Although vascular discolourations developed in all inoculated tree species, V. nonalfalfae was reisolated from Ailanthus and eight of the ten non-target-species, whereas typical disease symptoms and mortality only occurred on A. altissima. Results confirmed high susceptibility (S) of A. altissima to V. nonalfalfae but indicated tolerance (T) of Acer campestre, Acer pseudoplatanus and Quercus robur, possible resistance (PR) of Fraxinus excelsior, Populus nigra, Tilia cordata, Ulmus laevis and Ulmus minor and resistance (R) of Fraxinus pennsylvanica and Robinia pseudoacacia to this potential biocontrol agent. Results from seedling inoculations were confirmed by cursory field observations in Ailanthus-inoculated forest stands, where admixed A. campestre, A. pseudoplatanus, F. excelsior, Populus alba, R. pseudoacacia and U. laevis canopy trees remained asymptomatic, while mortality was induced in Ailanthus.  相似文献   

13.
Tomicus minor Hartig (Col., Curculionidae, Scolytinae), occurring on Pinus sylvestris L., is a species which demonstrates high reproductive capability on weakened stands, accelerating the process of forest death. In protected areas, T. minor is regarded as a sensitive bioindicator that reacts to decline in the health and vitality of forests. Although there have been many publications concerning T. minor, no precise method has yet been given for estimating its population so as to enable the monitoring of forest vitality and assessment of the role played by T. minor in the forest ecosystem. The aim of the present work is to develop a statistical method for estimating populations of T. minor, requiring minimum work and interference with the forest ecosystem and permitting the computation of estimation errors. Research was carried out in the years 1992–2011 in pine stands aged over 80 years, growing in a variety of habitats and situated at varying distances from sawmill timber yards. Attack density of T. minor was measured on trap logs made from uninfested living trees. The population of T. minor on the trap logs was described using a multiple linear regression model with two explanatory variables. Among the features investigated, the T. minor population was found to depend significantly on the number of egg galleries on the fifth metre of the trap log counted from the thinner end (p < 0.001) and on the diameter of the trap log in bark at the thinner end (p < 0.05). The model explains approximately 85% (R 2 = 0.8564) of the variation in the total number of T. minor egg galleries on the trap logs. The numbering of units beginning from the thinner end of the log enabled increased precision in determining the model parameter resulting from the concentration of egg galleries on certain units of the log. In all validated plots, the mean real and model values for the number of T. minor egg galleries on the trap logs are similar (p > 0.5), confirming the high accuracy of the developed model.  相似文献   

14.
Pericopsis elata (a.k.a. African teak) is one of the most valuable timber species in Central Africa. Like other shade intolerant tropical tree species, P. elata could play a vital role in economic development, and ecological sustainability, but regenerates poorly following selective logging. Now endangered, there is a critical need for sustainable silvicultural systems to restore this once prominent timber species. To assess management options for P. elata we analyzed growth performance and survival in primary and secondary forest plots under burning and weeding treatments in Yoko Forest Reserve, Ubundu Democratic Republic of Congo. We transplanted nursery-grown seedlings of P. elata to experimental gaps and followed their growth and survival for 1 year. Seedlings in large canopy gaps 50 × 50 m were taller (mean difference; P = 0.006) and more likely to survive (mean difference; P < 0.001). Weeding improved both diameter (P = 0.024) and height (P = 0.007) growth rates; however, burning alone did not significantly improve the performance of P. elata seedlings. Our data suggest that P. elata regeneration is compatible with shelterwood harvesting and traditional swidden agricultural systems widely practiced in the region.  相似文献   

15.
This study investigated near-infrared spectroscopy (NIRS) to rapidly estimate physical and mechanical properties of No. 2 2 × 4 southern pine lumber. A total of 718 lumber samples were acquired from six mills across the Southeast and destructively tested in bending. From each piece of lumber, a 25-mm-length block was cut and diffuse reflectance NIR spectra were collected from the transverse face using a FOSS 5000 scanning spectrometer. Calibrations were created using partial least squares (PLS) regression and their performance checked with a prediction set. Overall moderate predictive ability was found between NIRS and the properties for the calibration and prediction sets: block specific gravity (SG) (R 2 = 0.66 and R p 2  = 0.63), lumber SG (0.54 and 0.53), modulus of elasticity (MOE) (0.54 and 0.58), and modulus of rupture (MOR) (0.5 and 0.4). Model performance for MOE (R p 2  = 0.70) and MOR (R p 2  = 0.50) improved when performing PLS regression on a matrix containing lumber SG and NIR spectra. Overall NIRS predicted MOE better than linear models using lumber SG (R 2 = 0.46), whereas lumber SG (R 2 = 0.51) predicted MOR better than NIRS. Overall NIRS has reasonably good predictive ability considering the small volume of wood that is scanned with the instrument.  相似文献   

16.
In the present work, for the first time, the chemical components of essential oils (EOs) and extracts from wood branch (WB) resulted from the tree pruning wastes of Schinus molle L. grown in Egypt were evaluated for their antioxidant and antibacterial activities. EOs, methanol (ME), dichloromethane (DCME) and water (WE) extracts as antioxidant and antibacterial activities were measured. Total phenolic and flavonoid contents as well as analysis of extracts by gas chromatography–mass spectrometry (GC–MS) were reported. The major components in EOs were α-elemol, β-pinene, and α-phellandrene, in ME were 6-(4-chlorophenyl)-3-cyano-4-(N-benzylpiperazino)-2H-pyran-2-one, and 2-naphthalene methanol, decahydro-α,α,4a-trimethyl-8-methylene, in DCME were 12-methyl-E,E-3,13-octadecadien-1-ol, and 1,2-benzenedicarboxylic acid, dioctyl ester, and in WE were β-eudesmol, and (Z,Z,Z)-9,12,15-octadecatrienoic acid, 2,3-dihydroxypropyl ester. The highest total antioxidant activity was found with EOs (90 ± 1.23 %) and WE (86.30 ± 1.40 %). The lowest IC50 values of 13.11 ± 3.00, and 12.66 ± 2.15 μg/mL were found with WE and EOs, respectively. EOs and WE were observed to have good antibacterial activity against Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Sarcina lutea, Pseudomonas aeruginosa, and Micrococcus luteus. In conclusion, the Schinus molle L. WB EOs and extracts might, indeed, be used as a potential source for pharmaceutical or food industries.  相似文献   

17.
The study aimed to test the potential anthelmintic activity of Salix babylonica (SB) extract for the control of gastrointestinal and pulmonary parasites in sheep and goats under field conditions. A representative sample of 20 % of all animals reared in 8 sheep and 7 goat farms was used in the study. Animals from each farm were randomly selected for a total number of 93 sheep and 75 goats. Animals suffered a natural gastrointestinal nematode infection and had never been treated with chemical anthelmintic drugs. The SB extract (20 mL) was orally administered weekly before the morning feeding to each animal for 60 days. Fecal eggs or oocysts were counted at 0, 1, 20, 40, and 60 days after starting the extract administration. Differences (P < 0.01) in the fecal oocyst and egg output of Eimeria, Dictyocaulus, and Moniezia were observed between sheep and goats. In addition, the treatment influenced (P < 0.05) egg outputs of Cooperia, Dictyocaulus, and Trichuris. Fecal egg or oocyst counts of Haemonchus contortus, Eimeria, Cooperia, Chabertia, Dictyocaulus, Moniezia, and Ostertagia were time-dependent (P < 0.05). For sheep, administration of SB decreased (P < 0.05) the fecal eggs count of H. contortus, Cooperia, Chabertia, Dictyocaulus, Moniezia, and Trichuris. After 20 days of treatment, H. contortus, Cooperia, or Moniezia were not detected. For goats, SB reduced (P < 0.05) the fecal egg counts of H. contortus, Cooperia, Chabertia, and Moniezia. Moreover, decreases were observed (P < 0.05) for Chabertia, Trichostrongylus, and Ostertagia. Eggs of H. contortus and Moniezia were not present in the feces after 1 day of administration of the extract. It could be concluded that the weekly administration of SB extract at 20 mL per animal can be used to treat gastrointestinal and lung nematodes of small ruminants in organic and traditional farming systems of tropical regions.  相似文献   

18.
Within-stem variations in the mechanical properties of 17–19-year-old Melia azedarach planted in two sites in northern Vietnam were examined by destructive and nondestructive methods. Wood samples were collected from 10, 50, and 90% of the radial length from pith on both sides (North and South) at 0.3, 1.3, 3.3, 5.3, and 7.3 m heights above the ground. The mean values in whole trees of wood density (WD), modulus of rupture (MOR), modulus of elasticity (MOE), and dynamic modulus of elasticity (Ed) at 12% moisture content were 0.51 g/cm3, 78.58 MPa, 9.26 GPa, and 10.93 GPa, respectively. Within the stem, the radial position was a highly (p?<?0.001) significant source of variation in mechanical properties. MOR, MOE, and Ed increased from pith to bark. WD had a strong positive linear relationship with both MOR (r?=?0.85, p?<?0.001) and MOE (r?=?0.73, p?<?0.001). This suggests that it is potentially possible to improve mechanical properties through controlling WD. MOR had also a strong linear relationship with Ed (r?=?0.84, p?<?0.001). This indicates that Ed is a good indicator to predicting the strength of wood if the density of measured element is known. Besides, the stress wave method used in this study provides relatively accurate information for determining the stiffness of Melia azedarach planted in northern Vietnam.  相似文献   

19.
The relationship between the acute toxicity and feeding deterrent activity of ten compounds occurring commonly in essential oils was explored in order to determine whether they are acute toxins or antifeedants against stored-grain pests. Simultaneously, the objective was also to demonstrate the comparative efficacy against three post-harvest stored-grain pests. Thymol, carvacrol, eugenol and trans-anethole were specifically toxic, and linalool was a generalist feeding deterrent against all three species studied. Thymol was most toxic to Tribolium castaneum and Rhyzopertha dominica compared to carvacrol and eugenol but was least toxic to Sitophilus oryzae. Similarly, linalool deterred feeding of S. oryzae (FI50 = 0.025 mg/g of the wafer diet), T. castaneum (FI50 = 0.207 mg/g of the wafer diet) and R. dominica (FI50 = 0.482 mg/g of the wafer diet) at different concentrations; R. dominica beetles required about 20 times the concentration to deter feeding compared to S. oryzae and more than twice compared to T. castaneum. Comparison of toxicity and deterrent activity with respective artificial blends as binary mixtures revealed that synergism was not a generalized phenomenon, and the variations were both species as well as blend specific. Individual compound efficacy correlations were not ascertained, which suggests that artificial blends could be prepared to obtain potential mixtures for substantial control of stored-grain insect pests. The present study also implies that the compounds are mostly acute toxins, and whatever inhibition in feeding was obtained could be due to physiological toxicity rather than any interaction with gustatory receptors.  相似文献   

20.
Plant-based products, namely essential oils (EOs), are environmentally friendly alternatives for the control of disease vectors, hosts and/or parasites. Here, we studied the general toxicity and biopesticidal potential of EOs and phenylpropanoids from Foeniculum vulgare var. vulgare (bitter fennel), a perennial plant well adapted to temperate climates. EO/compound toxicity was tested against a freshwater snail and potential intermediate host of Fasciola hepatica (Radix peregra), a mosquito and former European malaria vector (Anopheles atroparvus) and one of the most damaging plant-parasitic nematodes, the root-knot nematode (Meloidogyne javanica). Lethal concentrations (LC50; LC90) of EOs (infrutescences/stems with leaves) and compounds were calculated by probit analysis. All displayed noteworthy activity against R. peregra adults (LC50 21–39 µg ml?1) and A. atroparvus larvae (LC50 16–56 µg ml?1). trans-Anethole revealed acute nematicidal activity after 24 and 48 h (LC50 310 and 249 µg ml?1, respectively), and estragole (1,000 µg ml?1) showed some effectiveness against M. javanica hatching and juveniles after 15 days. Plant and EO yields were determined to evaluate the bitter fennel productivity. The chemical composition of the EOs was analyzed by gas chromatography coupled to mass spectrometry. EOs extracted from whole plants, infrutescences and stems with leaves were characterized by estragole-dominant profiles (28–65 %), considerable amounts of phellandrene (10–34 %) and fenchone (6–16 %), and minor trans-anethole contents (1–4 %). Although additional toxicological studies against nontarget organisms are required, our study demonstrates that bitter fennel is a productive source of molluscicides and larvicides, and thus a potential sustainable biological agent to control particular host species, namely freshwater snails and mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号