首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation under varying concentrations of solution hydrogen (H) and aluminum (Al) was investigated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment with solutions adjusted to either different pH values from 3.7 to 5.5 or a factorial combination of pH (4.0,4.6, and 5.2) and Al (0,7.5, 15, and 30 μM) levels. Ionic forms of Al were estimated with GEOCHEM and solution Al was determined with ferron. Boron (B) (18.5 μM) and zinc (Zn) (0.5 μM) were supplied to all solution treatments, in addition to 2000 μM Ca, after preliminary studies at pH 5.2 without Al indicated that their omission inhibited length of tap roots and their laterals in the subsurface compartment. Both H+ and Al inhibited the length of lateral roots more than tap roots. Lateral roots failed to develop on tap roots at pH<4.3 or in treatments with 30 μM Al. Relative tap root length (RRL) among treatments receiving Al correlated with Al as measured by reaction with ferron for 30s. Ferron‐reactive Al was correlated to GEOCHEM‐predicted Al3+ activity (r=0.99). A 50% reduction in RRL occurred with either 2.1 μM Al3+ activity or 4.9 uM ferron‐reactive Al. The absence of shoot and soil‐root biomass differences among solution treatments in the split‐root system indicated that differences in root growth in the subsurface compartment were not directly confounded with differences in top growth.  相似文献   

2.
White clover (Trifolium repens L., cultivar Huia), a dominant forage legume in Appalachia, usually grows poorly on acidic soils common to the region. The effects of bulk solution concentrations of calcium (Ca), hydrogen (H), and aluminum (Al) on the relative root growth (RRG) of white clover were determined using one‐ to three‐day‐old seedlings to assess the relative toxicity of H+ and Al. The RRG was affected by bulk solution concentrations of Ca, Al, and pH, in a manner indicative of significant interactions among these parameters. The RRG was directly related to the activities of Al3+ or H+ at the surface of the root as calculated by the Gouy‐Chapman‐Stern model. Fifty percent inhibition of RRG occurred at activities of 5 and 200 μM Al3+ and H+, respectively. A large part of the interaction between bulk solution concentrations of Ca, Al, and H could be explained by how these parameters affected the activities of these ions at the root surface.  相似文献   

3.
Seedlings of Norway spruce (Picea abies [L.] Karst.), which had been grown under sterile conditions for three months, were treated for one week in a hydroculture system with either 500 μM AlCl3 or 750 μM CaCl2 solutions at pH 4. Organic acids were determined in hot‐water extracts of ground root tissue. Oxalate (3.3—6.6 μmol (g root dry weight)—1) was most abundant. Malate, citrate, formate, acetate, and lactate concentrations ranged between 1—2 μmol (g root dry weight)—1. Organic substances and phosphate found in the treatment solutions at the end of the experimental period were considered to be root exudates. Total root exudation within a 2‐day period ranged from 20—40 μmol C (g root weight)—1. In root exudates, organic acids, and total carbohydrates, total amino acids, and total phenolic substances were quantified. Citrate and malate, although present in hot‐water extracts of root tissue, were not detected in root exudates. Phosphate was released from Ca‐treated plants. In Al treatments, there was indication of Al phosphate precipitation at the root surface. Oxalate and phenolics present in the exudates of Norway spruce seedlings are ligands that can form stable complexes with Al. However, concentrations of these substances in the treatment solutions were at micromolar levels. Their importance for the protection of the sensitive root apex under natural conditions is discussed.  相似文献   

4.
Aluminum (Al) toxicity to plants in complete nutrient solutions is difficult to relate to Al activity in solution because of precipitation and complexation. Aluminum toxicity was studied for two seedling crops, sorghum (Sorghum bicolor L. Moench) and wheat (Triticum aestivum L. em Thell), at low levels (≤10 μM) in two incomplete nutrient solutions to study plant response to Al alone, Al+PO4 3‐, Al+OH, and Al+PO4 3‐+OH. Relative root length was the bioassay for Al toxicity. ‘Monomeric’ Al was measured using Aluminon and both root length and measured Al were compared to the theoretical Al in solution predicted by the MINTEQA2 equilibrium model.

Low levels of Al were toxic to plant roots with sorghum showing a decrease in relative root length from 1 to 10 μM Al, and wheat showing a decrease from 4 to 10 μM. A mono‐salt background solution (400 μM CaCl2) and a more complex base solution (CaCl2, KNO3, and MgCl2) gave similar root lengths and measured Al values. Phosphate and hydroxyl ameliorated Al toxicity and lowered measured Al in solution, but not to the extent predicted by the model. Adding phosphate (PO4 3‐) or hydroxyl (OH) raised the pH, but again not as high as the model predicted. The difference in toxicity and measured Al were most likely the result of polymers (Al+3) which are toxic, but not measured by the procedure used, or included in the model which showed the Al as being removed from solution by precipitation.  相似文献   

5.
Glutathione (GSH) and phenolics play an important role in plant defense against metal‐ion toxicity. The antioxidant activity and metal‐binding capacity of these compounds can account for the protective effects. In contrast to animal‐cell models, however, the possible interplay among these substances in stress defense of plants is poorly investigated. This study compares the influence of cadmium (Cd) on the profiles of both soluble phenolics and GSH in shoots of different Thlaspi and Noccaea species: two ecotypes of the nonhyperaccumulator T. arvense differing in Cd resistance (ecotype Aigues Vives, Cd‐sensitive, and ecotype Jena, Cd‐resistant) and two Cd‐tolerant Cd‐Zn hyperaccumulators N. praecox and N. caerulescens (formerly Thlaspi praecox and T. caerulescens). To reveal the possible influence of Cd‐induced sulfur (S) shortage on the stress response, plants receiving normal S concentrations (500 μM MgSO4) and plants treated with surplus S (500 μM MgSO4 + 500 μM K2SO4) were analyzed. Our working hypothesis was that species differences in tolerance to high tissue Cd concentrations should be reflected by differences in endogenous levels of GSH and phenolic compounds. The results reveal clear species‐dependent differences in both the constitutive patterns and the Cd‐ and S‐induced changes in shoot concentrations of GSH and phenolics. However, no simple relationship between these shoot concentrations and Cd accumulation and tolerance can be established.  相似文献   

6.
Maize cultivars (Zea mays L.) were evaluated for their aluminum (Al) sensitivity using intact plants and excised root tips exposed to 25 μM Al in nutrient solution of low ionic strength and pH 4.3. Aluminum supply increased callose formation and Al concentrations in root tips of intact plants as well as in excised root tips. Using intact plants, differences in Al sensitivity among cultivars could be characterized by Al‐induced callose formation, Al‐induced inhibition of root elongation, as well as Al contents in root tips as parameters. Significant correlations between Al‐induced callose formation and Al contents in root tips (r2 = 0.64**) and inhibition of root elongation (r2 = 0.80***) were found. Excised root tips did not show a significant Al‐induced inhibition of root elongation. While average Al‐induced callose formation was similar for root tips of intact plants and excised root tips, mean Al contents in excised root tips were up to 1.5‐fold higher than in root tips of intact plants after 24 h of Al treatment. Aluminum‐induced callose formation as found in excised root tips did neither correspond to Al‐induced callose formation nor to inhibition of root elongation of intact plants. The addition of 10 mM glucose to the incubation medium led to a significant increase in the elongation of excised root tips and a 2‐3‐fold increase in Al‐induced callose formation. Staining with triphenyl‐tetrazolium‐chloride (TTC) revealed increased viability of these root segments. However, these effects of glucose supply did not improve the characterization of the cultivars for Al resistance. The results presented suggest that Al exclusion mechanisms expressed in root tips of intact plants might be non‐operational in excised root tips. Therefore, the characterization of maize germplasm for Al resistance using excised root tips appears not to be reliable.  相似文献   

7.
Effects of various aluminum (AlCl3) concentration and exposure times (6, 12, and 24 h and 3 d) on growth and potassium (K) transport were studied in two wheat species (Triticum aestivum L. cv. Jubilejnaja 50 and Triticum durum Desf. cv. GK Betadur) grown in low salt conditions hydroponically. In longer (3 d) Al exposure times at pH 4.1, the inhibition of root growth appeared at 10 μM Al3+ treatment in GK Betadur, and at 50 μM Al3+ treatment in Jubilejnaja 50. Shoot growth was not influenced by Al3+ treatment, except at 100 μM in 7 d experiments. In 6, 12, and 24 h Al3+ exposure times, at low pH, the K+(86Rb) influx in roots increased as the Al3+ concentration increased in the outer medium in both species. It also appeared in K+(86Rb) transport toward the shoots, except by higher Al3+ treatments of GK Betadur seedlings. At the same time, in longer‐term (3 d) Al3+ treatments, a striking inhibition were observed in K+(86Rb) influx and K+ concentration of roots and shoots. The K+concentration of roots and shoots measured at the end of 24 h Al3+ exposure times was significantly not affected by Al3+ treatment. Durum wheat proved to be more sensitive to the Al toxicity than common winter wheat.  相似文献   

8.
The effect of aluminium (Al) on the relative yield of plants grown from seeds of ryegrass (Lolium perenne L.) or white clover (Trifolium repens L.) and either tillers (ryegrass) or stolon tip cuttings (white clover) were investigated using a low ionic strength (2.7 x 10‐3 M) solution culture technique. In ryegrass, plants grown from tillers had higher relative yields than plants grown from seedlings in the tops when solution Al concentrations were greater than 16 μM and in the roots when solution Al concentrations were greater than 7 μM. In white clover, relative yields in the tops and roots plants were higher in plants grown from stolon tip cuttings than from seedlings when solution Al concentrations were greater than 10 μM. There were no significant cultivar effects. The results indicate that plants used in Al‐tolerance experiments can be grown from seed or vegetatively propagated, provided solution Al rates are adjusted to reflect differences in Al tolerance.  相似文献   

9.
We examined the response of the tea plant (Camellia sinensis L.) to aluminum (Al) exposure under sterile conditions, focusing specifically on the secretion of low molecular mass organic compounds from roots. After germination in agar medium, tea seedlings together with medium were placed on agar containing 0.4?mM Al with 0.2% hematoxyline (hematoxylin-Al medium). The purple color of the hematoxylin-Al medium was observed to fade gradually, until none of the color remained 6 days later. The tea seedlings were then treated with simple calcium solution (0.2?mM, at pH 4.2) containing AlCl3, which ranged in concentration from 0 to 0.8?mM, for 24?hrs. The amount of oxalate secreted into the medium increased as the external Al concentration increased, while the concentrations of malate and citrate in the medium remained unchanged. Oxalate secretion started within 30?min after Al exposure and increased linearly thereafter. The findings demonstrated that oxalate was a key compound in the Al-tolerance mechanism employed by the tea plant, which detoxifies Al3+ externally in the rhizosphere. In addition to oxalate, caffeine was also secreted by tea roots in response to Al exposure. It is possible that caffeine excretion from the roots of tea plants may stimulate root growth through the inhibition of callose deposition in root tips.  相似文献   

10.
Exchangeable and soluble soil aluminum (Al) is limiting plant growth in many soils worldwide. This study evaluated the effects of increasing rates of dolomite and magnesium carbonate (MgCO3) on Al3+, pH, dissolved organic carbon, cations, anions, and Al speciation on oil palm Deli dura × AVROS pisifera root growth. Dolomite and MgCO3 additions significantly raised linearly soil solution pH, magnesium (Mg2+), nitrate (NO3 ?) and chlorine (Cl?) concentrations; exponentially decreased the activity of phytotoxic Al species [aluminum (Al3+), aluminum sulfate (Al2SO4), and aluminum fluoride (AlF3)]; and reduced manganese (Mn) concentration and activity. High activity of those species exponentially reduced root dry weight. Optimum oil palm growth was achieved at: <50 μM monomeric Al, < 30 μM Mn, and <0.20 unit of the ratio Al+Mn to calcium (Ca)+Mg. High activity of Al species and Mn in acidic soil solution cause significant reduction of the root growth. Soil acidity alleviation either with dolomite or MgCO3 mitigates the toxic effect of Al and Mn.  相似文献   

11.
Roots of endophyte‐infected (E+) tall fescue (Festuca arundinacea Schreb.) exude more phenolic‐like reductants than roots of endophyte‐free (E‐) plants when mineral stressed. Phenolic compounds are efficient chelators of aluminum (Al) and may influence Al tolerance in many plant species. The objective of our study was to determine if enhanced release of phenolic compounds by roots of E+ plants contributes to Al tolerance in tall fescue. Two cloned genotypes (DN2 and DN11) of tall fescue infected with their naturally occurring fungal endophyte Neotyphodium coenophialum (Morgan‐Jones and Gams) Glenn, Bacon and Hanlin and their noninfected isolines were grown in nutrient solutions at 0 μM Al (Al‐) and at 640 μM Al (Al+) under controlled environment conditions. Root and shoot dry matter (DM) of endophyte‐infected tall fescue was greater in E+ than E‐ plants by 57% and 40%, respectively, when plants were grown without Al. Endophyte infection did not affect root and shoot DM of tall fescue grown with Al but relative (to Al‐treatment) reduction in root and shoot DM was greater in E+ than E‐ plants. In response to Al stress, more Al (47%) and P (49%) could be desorbed from root surfaces of E+ than E‐ plants. Aluminum concentrations in roots of E+ plants were 35% greater and P concentrations were 10% less than those determined in roots of E‐plants. No differences in mineral concentrations were observed in shoots, regardless of endophyte status, or Al level in nutrient solution. Roots of E+ plants increased pH of both Al‐ and Al+ nutrient solutions to a greater extent than roots of E‐ plants in a 48 h interval. Our results show that more Al can be sequestered on root surfaces and in root tissues of endophyte‐infected tall fescue than in plants devoid of endophyte. Aluminum sequestration was greater on root surfaces and in root tissues of E+ than E‐ plants of a given tall fescue genotype. Our results suggest that increased exudation of phenolic‐like compounds from roots of endophyte‐infected tall fescue may be directly involved in Al tolerance and serves as a mechanism for widespread adaptability and success of endophyte‐tall fescue associations.  相似文献   

12.
The effect of varying solution calcium (Ca) and magnesium (Mg) concentrations in the absence or presence of 10 μM aluminum (Al) was investigated in several experiments using a low ionic strength (2.7 × 10‐3 M) solution culture technique. Aluminium‐tolerant and Al‐sensitive lines of wheat (Triticum aestivum L.) were grown. In the absence of Al, top yields decreased when solution Ca concentrations were <50 μM or plant Ca concentrations were <2.0 mg/g. Top and root yields decreased when solution Mg concentrations were <50 μM or plant Mg concentrations were <1.5 mg/g. There were no differences between the lines in solution or plant concentrations at which yield declined. Increasing solution Ca concentrations decreased plant Mg concentrations in the tops (competitive ion effect) but increased plant Mg concentrations in the roots of wheat. This suggests that Ca is competing with Mg when Mg is transported from the roots. Increasing solution Mg concentrations decreased plant Ca concentrations in the tops and the roots (competitive ion effect). In the roots, increasing solution Mg concentrations decreased plant Ca concentrations at a lower solution Ca concentration in the Al‐sensitive line than the Al‐tolerant line. In the presence of Al, increasing solution Ca and Mg concentrations increased yield (Ca and Mg ameliorating Al toxicity). Yield increased until the sum of the solution concentrations of the divalent cations (Ca+Mg) was 2,000 μM for the Al‐tolerant line or 4,000 μM for the Al‐sensitive line. The exception was that yield decreased when solution Mg concentrations were > 1,500 μM and the solution Ca concentration was 100 μM (Mg exacerbating Al toxicity). The ameliorative effects of solution Ca or Mg on Al tolerance were not related to plant Ca or Mg concentrations per se.  相似文献   

13.
Three experiments were conducted in which roots of two species of Lotus were immersed for up to 40 min in complete nutrient solutions containing 6, 15 or 25 μM Al. The two species tested were L. pedunculatus cv. Grasslands Maku (Al‐tolerant) and L. corniculatus cv. Maitland (Al‐sensitive). There was an initial rapid (< 5 min) decrease in solution Al at 25 μM Al. The effect was less marked with solution Al ≤ 15 μM. The decrease in solution Al was greater in the Al‐sensitive Maitland than in the Al‐tolerant Grasslands Maku, particularly when expressed on the basis of root fresh mass and root length. Root cation‐exchange capacity (CEC) was lower in Grasslands Maku than in Maitland, viz. 23.9 vs 36.5 mmol kg‐1 dry mass. Maitland roots removed more Al from solution than did those of Maku on the basis of total exchange capacity.

We propose a mechanism of Al tolerance on the basis of the results of this study and of other published information, viz. that differential Al tolerance results from differences in root CEC. Aluminum‐tolerant genotypes have roots with low CEC, and high Al activities (> 20 μM in the case of Grasslands Maku) are required to precipitate the relatively highly methylated pectins associated with low CEC. In contrast, relatively low activities of Al would precipitate the pectins in plants with roots of high CEC. This would decrease the protective capacity of the pectins, enabling the toxic, monomeric Al ions to come in contact with a number of Al‐sensitive compounds or processes in the cell wall, plasmalemma, or cell cytoplasm.  相似文献   

14.
From acidic tea soils of Kagoshima Prefecture in Japan, some soil properties were determined and 38 strains of acid tolerant microorganisms were isolated. Different Al3+ concentrations were applied to YG media to estimate Al resistance. Selected microbial strains could grow strongly in the liquid media in the presence of 100 mM Al3+ and survive even in 300 mM Al3+ at pH 3.0. Their base sequences of 28S rDNA-D1/D2 were determined and sequence data were searched using the Basic Local Alignment Search Tool (BLAST) system. The results of sequencing revealed that the isolates belong to two different species, Cryptococcus sp. and Candida palmioleophila. When cultivated with various Al3+ concentrations, the yeast growth was inhibited at a concentration of 200 mM. Pre-cultivation of these strains with 0–30 mM Al3+ did not promote the growth response caused by Al3+. Inductively-Coupled Plasma-Mass Spectrometry (ICP-MS) was used to assess the elimination of Al. The amount of Al remaining in culture media was decreased considerably after cultivation. Due to a capacity for resistance to significant Al concentrations as well as high Al elimination, these acid tolerant and Al resistant yeasts may have potential applications in the bio- and phyto-remediation of Al and acid-contaminated soils.  相似文献   

15.
Abstract

Cotton (Gossypium hirsutum L.) is extremely sensitive to Al toxicity. Increasing Si concentration in solution has been reported to alleviate AI toxicity. In this investigation the effects of varying Si concentrations (700, 1400, and 2800 μM Si) on reactive Al (defined as Al reactive with aluminon during 10‐s reaction time, without acidification and heating) was studied in solutions containing either 50, 100 or 200 μM Al during 50 d of aging. An increase in Si concentration had negligible effects on the reactive Al in solutions with 50 or 100 μM Al. However, in solutions with 200 μM Al the reactive Al decreased by 6 to 15% with an increase in Si concentration from 0 to 2800 μM.

The effects of either 700, 1400 or 2800 μM Si on root growth of Coker 208, Coker 315, DPL 90, McNair 235, Stoneville 506 and Tifcot 56 cotton cultivars were investigated in solutions containing either 0, 10, 20 or 40 μM Al with 500 μM Ca at pH 4.5. In solutions containing no Al, addition of 700 μM Si improved root growth by 69–87% in Coker 315, DPL 90 and McNair 235 cultivars but not in the other cultivars. In solutions containing 10 μM Al, an increase in Si concentration from 0 to 2800 μM improved the root growth by 15–17% in DPL 90 and McNair 235 cultivars only. An increase in Si additions failed to improve root growth of any of the cultivars in solutions with 20 or 40 μM Al.  相似文献   

16.
Abstract

Considerable uncertainty prevails concerning a suitable measure that can adequately describe Al phytotoxicity in nutrient and soil solutions. A study was conducted to evaluate the ability of a modified aluminon technique to discriminate between phytotoxic and non‐phytotoxic Al in solutions containing 80 μM Al with varying levels of CaSO4(625 to 10000 μM), at two pH levels (4.2 and 4.8). The concentration of Al measured by the modified aluminon technique ranged from 18.3 to 77.7 μM,thereby indicating substantial polymerization in some of the solutions. The greatest amount of polymerization occurred at pH 4.8 in the presence of 625 μM CaSO4. Increasing additions of CaSO4resulted in an increase in predicted activity of AlSO4 +at both pH levels. However, with increasing addition of CaSO4, the predicted activity of Al3+decreased at pH 4.2 or remained relatively constant at pH 4.8. The relationship between the sum of predicted activities of monomeric Al (SaAl mono.) in solution and tap root length of soybean [Glvcine max(L.) Merr.] cv. Lee was extremely poor, thereby indicating the inability of the modified aluminon technique to measure phytotoxic Al in solutions employed in the current study. This difficulty was due to failure of the modified aluminon technique to exclude lesser phytotoxic AlSO4 +species. The activity of Al3+was closely related to tap root length (R2= 0.865). The prediction of root length response to Al was further improved (R2= 0.899) by considering the solution Al index as: S[3aA13+ + 2aAl(OH)2+ + aA1(OH)+]. There was a poor relationship between tap root length and the concentration of polymeric Al, thus suggesting the lower phytotoxicity of this component under the prevailing solution conditions.  相似文献   

17.
Alleviation by calcium (Ca) of inhibition of soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation by hydrogen (H) and aluminum (Al) was evaluated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment containing nutrient solution with treatments consisting of factorial combinations of either pH (4.0, 4.6, and 5.5) and Ca (0.2, 2.0, 10, and 20 mM), Al (7.5, 15, and 30 μM) and Ca (2.0,10, and 20 mM) at pH 4.6, or Ca (2, 7, and 12 mM) levels and counter ions (SO4 and Cl) at pH 4.6 and 15 μM Al. Length of tap roots and their laterals increased with solution Ca concentration and pH value, but decreased with increasing Al level. Length of both tap and lateral roots were greater when Ca was supplied as CaSO4 than as CaCl2, but increasing Ca concentration from 2 to 12 mM had a greater effect on alleviating Al toxicity than Ca source. In the absence of Al, relative root length (RRL) of tap and lateral roots among pH and Ca treatments was related to the Ca:H molar activity ratio of solutions (R2≥0.82). Tap and lateral RRL among solutions with variable concentrations of Al and Ca at pH 4.6 were related to both the sum of the predicted activities of monomeric Al (R2≥0.92) and a log‐transformed and valence‐weighted balance between activities of Ca and selected monomeric Al species (R2≥0.95). In solutions with 15 μM Al at pH 4.6, response of tap and lateral RRL to variable concentrations of CaSO4 and CaCl2 were related to predicted molar activity ratios of both Ca:Al3+ (R2≥0.89) and Ca:3 monomeric Al (R2≥0.90), provided that AISO4 and AI(SO4)2 species were excluded from the latter index. In all experiments H and Al inhibited length of lateral roots more than tap roots, and a greater Ca:H or Ca:Al concentration ratio was required in solutions to achieve similar RRL values as tap roots.  相似文献   

18.
A study was conducted to quantify effects of soluble aluminum (Al) and gypsum (CaSO4) on initial root growth of three varieties of tall fescue (Festuca arundinacea). Experiments were performed in a growth chamber using hydroponic solutions containing Al from 0 to74 µM in combination with CaSO4 at 0 to10 mM. Seedlings were grown for 7 d, harvested, air dried, scanned, and weighed for treatment comparisons. Significant differences in root length existed between varieties in Al‐only solutions at low Al concentrations. All varieties showed reduced root growth at concentrations greater than 37 µM Al. Increased calcium (Ca2+) and sulfate (SO4 2?) at given concentrations of Al resulted in greater root growth. Relative root growth increased approximately 30% to >80% at 37 µM Al as CaSO4 increased from 2.5 to 10 mM. A simple logistic model adequately described the effects of Al and CaSO4 on root growth (r2 = 0.86, 0.95, and 0.96 for the three varieties).  相似文献   

19.
A 1,4‐dihydroxypyridine type of ion channel blocker, nifedipine [1,4‐dihydro‐2,6‐dimethyl‐4‐(2‐nitrophenyl)‐3,5‐pyridinedicarboxylate dimethyl ester], was tested on the root absorption of Al3+ and Ca2+ by sorghum [Sorghum bicolor (L.) Moench] cultivars with varying acid stress tolerance. In an acid stress sensitive cultivar, Funk G522DR, nifedipine (1 μM) influenced Ca2+ but not Al3+ absorption. In one acid stress tolerant cultivar, SC574, nifedipine (1 μM) influenced both Ca2+ and Al3+ absorption. In a second acid stress tolerant cultivar, SC283, nifedipine (1 μM) did not influence Ca2+ but did influence Al3+ absorption. Considerable genetic diversity is present in Ca2+ and Al3+ absorption between sorghum cultivars.  相似文献   

20.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号