首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salt stress has become a major menace to plant growth and productivity. The main goal of this study was to investigate the effect of inoculation with the arbuscular mycorrhizal fungi (AMF; Rhizophagus intraradices) in combination or not with plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. (Ps) and Bacillus subtilis) on the establishment and growth of Sulla coronaria plants under saline conditions. Pot experiments were conducted in a greenhouse and S. coronaria seedlings were stressed with NaCl (100 mM) for 4 weeks. Plant biomass, mineral nutrition of shoots and activities of rhizosphere soil enzymes were assessed. Salt stress significantly reduced plant growth while increasing sodium accumulation and electrolyte leakage from leaves. However, inoculation with AMF, whether alone or combined with the PGPR Pseudomonas sp. alleviated the salt‐induced reduction of dry weight. Inoculation with only AMF increased shoot nutrient concentrations resulting in higher K+: Na+, Ca2+: Na+, and Ca2+: Mg2+ ratios compared to the non‐inoculated plants under saline conditions. The co‐inoculation with AMF and Pseudomonas sp. under saline conditions lowered shoot sodium accumulation, electrolyte leakage and malondialdehyde (MDA) levels compared to non‐inoculated plants and plants inoculated only with AMF. The findings strongly suggest that inoculation with AMF alone or co‐inoculation with AMF and Pseudomonas sp. can alleviate salt stress of plants likely through mitigation of NaCl‐induced ionic imbalance, thereby improving the nutrient profile.  相似文献   

2.
Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil In pot experiments with a sewage sludge treated soil, the influence of two arbuscular mycorrhizal fungi (AMF) isolates of Glomus sp. (T6 and D13) on plant growth and on the uptake of heavy metals by alfalfa (Medicago sativa L.) and oat (Avena sativa L.) was investigated. Alfalfa showed an increase of biomass with mycorrhizal infection only to a small extent. In oat AMF inoculation increased the growth of both root and shoot by up to 70% and 55% respectively. Mycorrhization raised the P-content and -uptake in alfalfa, but not in oat, in both roots and shoots. Mycorrhizal alfalfa showed lower Zn-, Cd- and Ni-contents and uptake in roots and shoots. The root length was significantly decreased in mycorrhizal alfalfa plants (up to 38%). The translocation of heavy metals into the shoot of mycorrhizal alfalfa was slightly increased. Mycorrhizal infection of oat led to higher concentrations of Zn, Cd and Ni in the root but to less Zn in the shoot. The translocation of heavy metals to the oat shoot was clearely decreased by mycorrhizal colonisation. This may be based on the ability of fungal tissues to complex heavy metals at the cell walls, thus excluding metals from the shoot. This conclusion is supported by the enhanced root length (up to 78%) of mycorrhizal oat plants in this experiment. The mycorrhizal infection seemed to protect plants against heavy metal pollution in soils. It was obvious that different host plants reacted in different ways.  相似文献   

3.
A pot experiment was conducted to evaluate native plant species associated with exogenous AMF for their suitability in the revegetation of iron mine tailings of Inner Mongolia grassland. Agropyron cristatum (L.) Gaertn. and Elymus dahuricus Turcz. associated with AMF, Glomus mosseae, or Glomus versiforme, were grown on iron mine tailings to assess the mycorrhizal effects on plant growth, mineral nutrition uptake, C:N:P stoichiometry, and heavy metals uptake. The symbiotic associations were successfully established between exogenous AMF and two native plants, and root colonization rates of G. versiforme were significantly (P?<?0.05) higher than those of G. mosseae. G. versiforme was more effective than G. mosseae in promoting plant growth by significantly (P?<?0.05) increasing the concentrations of N, P, and K and decreasing the ratios of C:N:P. The shoot and root dry weights of A. cristatum and E. dahuricus were increased by 51–103 %. The N, P, and K concentrations of shoots and roots of two plants were increased by 18–236 %. Inoculation with AMF also significantly (P?<?0.05) decreased concentrations of heavy metals in the shoots and increased those in the roots, indicating that AMF could confer some degree of heavy metal tolerance to plants. The results indicated that plant inoculation with G. versiforme was more suitable than inoculation with G. mosseae for the revegetation of iron mine tailings. The experiment provided evidence for the potential use of local plant species in combination with exogenous AMF for ecological restoration of metalliferous tailings in arid and semi-arid grassland.  相似文献   

4.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

5.
Advances in fungal-assisted phytoremediation of heavy metals: A review   总被引:1,自引:0,他引:1  
Trace metals such as manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) are essential for many biological processes in plant life cycles. However, in excess, they can be toxic and disrupt plant growth processes, which is economically undesirable for crop production. For this reason, processes such as homeostasis and transport control of these trace metals are of constant interest to scientists studying heavily contaminated habitats. Phytoremediation is a promising cleanup technology for soils polluted with heavy metals. However, this technique has some disadvantages, such as the slow growth rate of metal-accumulating plant species, low bioavailability of heavy metals, and long duration of remediation. Microbial-assisted phytoremediation is a promising strategy for hyperaccumulating, detoxifying, or remediating soil contaminants. Arbuscular mycorrhizal fungi (AMF) are found in association with almost all plants, contributing to their healthy performance and providing resistance against environmental stresses. They colonize plant roots and extend their hyphae to the rhizosphere region, assisting in mineral nutrient uptake and regulation of heavy metal acquisition. Endophytic fungi exist in every healthy plant tissue and provide enormous services to their host plants, including growth enhancement by nutrient acquisition, detoxification of heavy metals, secondary metabolite regulation, and enhancement of abiotic/biotic stress tolerance. The aim of the present work is to review the recent literature regarding the role of AMF and endophytic fungi in plant heavy metal tolerance in terms of its regulation in highly contaminated conditions.  相似文献   

6.
Owing to their potential advantages such as waste reduction,recycling,and economic attributes,fast-growing bioenergy crops have the capacity to e?ectively phytoremediate heavy metal-contaminated soils.However,little is known about the role of microbial and chemical amendments in phytoremediation using bioenergy crops.Here,we studied the contributions of inoculation with the arbuscular mycorrhizal fungus (AMF) Acaulospora mellea ZZ and three soil amendments,i.e.,hydroxyapatite (HAP),manure,and bi...  相似文献   

7.
The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal (HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on plant–fungus–soil combinations and are greatly influenced by environmental conditions. To better understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions, AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal contaminated soil from a lead–zinc mining region of northwest China. Samples were analyzed by restriction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1), and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types, including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae, Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil and spore. Glo9 (Rhizophagus intraradices), Glo17 (Funneliformis mosseae) and Acau3 (Acaulospora sp.) were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH, organic matter content, and phosphorus levels all showed significant correlations with the AMF species compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity than sites with heavy metal contamination. The study highlights the effects of different soil chemical parameters on AMF colonization, spore density and community structure in contaminated and uncontaminated sites. The tolerant AMF species isolated and identified from this study have potential for application in phytoremediation of heavy metal contaminated areas.  相似文献   

8.
Aims : The aim of this study was to explore interactive effects between quality (types) and quantity (application rates) of biochar as well as of arbuscular mycorrhiza (AM) symbiosis on the growth of potato plants. Methods : A low P sandy loam soil was amended with 0%, 1.5%, or 2.5% (w/w) of either of 4 types of biochar, which were produced from wheat straw pellets (WSP) or miscanthus straw pellets (MSP) pyrolyzed at temperatures of either 550°C or 700°C. Potato plants grown in pots containing the soils or soil biochar mixture were inoculated with or without AM fungus (AMF), Rhizophagus irregularis. The experiment was carried out under fully irrigated semi‐field conditions and plants were harvested 101 days after planting. Results : Application of high temperature biochar decreased growth, biomass and tuber yield of potato plants, while the low temperature biochar had a similar effect on yield as plants grown without biochar amendment. Total biomass of potato plants were decreased with the increasing rate of biochar. Arbuscular mycorrhizal fungus inoculation stimulated the growth of potato plants in all organs, increased tuber biomass significantly in 1.5% MSP700 amended plants, and to a lesser degree for WSP700, MSP550, and WSP550. In addition, plant biomass gain was linearly related to N, P, and K uptake, the ratio of P to N in the leaf of plants indicated that all treatments were mainly P‐limited. A multiple linear regression using P uptake and biochar rate as independent variables explained 91% of the variation in total biomass. The single effect of AMF inoculation, type and rate of biochar affected plant N, P and K uptake similarly. While AMF inoculation significantly increased P uptake in potato plants grown in soil with WSP700 or MSP700 despite of the rate of biochar. In general, application of biochar significantly increased AMF root colonization of potato plants. Conclusions : The application of MSP550 at 1.5% combined with AMF stimulated growth of potato the most. Furthermore, the results indicated that the interactive effect of AMF inoculation, biochar type and application rate on potato growth to a large extent could be explained by effects on plant nutrient uptake.  相似文献   

9.
Cadmium (Cd) contamination in soil poses a huge threat to plants even at low concentrations; Broussonetia papyrifera has great potential in remediation of soil heavy metal contamination. However, whether exogenous indole-3-acetic acid (IAA) application and arbuscular mycorrhizal fungi (AMF) have synergistic effects on Cd tolerance of B. papyrifera remains unclear. To investigate the effects of AMF inoculation and IAA application on the tolerance of B. papyrifera to Cd stress, two experiments were conducted: the first to investigate the effect of AMF (Rhizophagus irregularis) inoculation on the tolerance of B. papyrifera to Cd stress and the second to investigate the combined effects of AMF inoculation and IAA application on the tolerance of B. papyrifera to Cd stress. Parameters including endogenous hormone concentration, antioxidant defense response, malondialdehyde (MDA) content, and gene expression related to antioxidant enzyme system and hormone were measured. The results indicated that AMF alleviated Cd toxicity of B. papyrifera by reducing MDA content and improving antioxidant enzyme activities and Cd absorption capacity. Furthermore, the combination of AMF inoculation and IAA application had a synergetic effect on the tolerance of B. papyrifera to Cd stress through upregulating BpAUX1 and BpAUX2, which might contribute to root growth and root xylem synthesis, and by upregulating BpSOD2 and BpPOD34 to enhance the antioxidant enzyme system. This work provides a new insight into the application of IAA in the remediation of soil Cd pollution by mycorrhizal plants.  相似文献   

10.
Arbuscular mycorrhizal fungi (AMF) alter heavy metal acquisition by higher plants and may alter plant response to soil-contaminating heavy metals. Two communities comprised of Glomus intraradices and G. spurcum were investigated for their influence on copper (Cu) and zinc (Zn) resistance of Sorghum bicolor. One community was isolated from a Cu- and Zn-contaminated soil (AMF-C) and one consisted of isolates from non-contaminated soil (AMF-NC). Non-mycorrhizal (NM) sorghum plants were also included. The two community ecotypes differed in their capacity to protect sorghum from Cu and Zn toxicity and exhibited differential metal uptake into hyphae and altered heavy metal uptake by roots and translocation to plant shoots. AMF-C reduced Cu acquisition under elevated Cu conditions, but increased Cu uptake and translocation by sorghum under normal Cu conditions, patterns not exhibited by AMF-NC or NM plants. Hyphae of both fungal ecotypes accumulated high concentrations of Cu under Cu exposure. AMF-C exhibited elevated hyphal Zn accumulation and stimulated Zn uptake and translocation in sorghum plants compared to AMF-NC and NM plants. Differences in metal resistance between fungal treatments and between mycorrhizal and non-mycorrhizal plants were not related to differences in nutrient relations. The enhanced Cu resistance of sorghum and altered patterns of Cu and Zn translocation to shoots facilitated by AMF isolated from the metal-contaminated soil highlight the potential for metal-adapted AMF to increase the phytoremediation potential of mycotrophic plants on metal-contaminated environments.  相似文献   

11.
Dark septate endophytic (DSE) fungi are ubiquitous and cosmopolitan,and occur widely in association with plants in heavy metal stress environment.However,little is known about the effect of inoculation with DSE fungi on the host plant under heavy metal stress.In this study,Gaeumannomyces cylindrosporus,which was isolated from Pb-Zn mine tailings in China and had been proven to have high Pb tolerance,was inoculated onto the roots of maize (Zea mays L.) seedlings to study the effect of DSE on plant growth,photosynthesis,and the translocation and accumulation of Pb in plant under stress of different Pb concentrations.The growth indicators (height,basal diameter,root length,and biomass) of maize were detected.Chlorophyll content,photosynthetic characteristics (net photosynthetic rate,transpiration rate,stomatal conductance,and intercellular CO2 concentration),and chlorophyll fluorescence parameters in leaves of the inoculated and non-inoculated maize were also determined.Inoculation with G.cylindrosporus significantly increased height,basal diameter,root length,and biomass of maize seedlings under Pb stress.Colonization of G.cylindrosporus improved the efficiency of photosynthesis and altered the translocation and accumulation of Pb in the plants.Although inoculation with G.cylindrosporus increased Pb accumulation in host plants in comparison to non-inoculated plants,the translocation factor of Pb in plant body was significantly decreased.The results indicated that Pb was accumulated mainly in the root system of maize and the phytotoxicity of Pb to the aerial part of the plant was alleviated.The improvement of efficiency of photosynthesis and the decrease of translocation factor of Pb,caused by DSE fungal colonization,were efficient strategies to improve Pb tolerance of host plants.  相似文献   

12.
Drought stress greatly affects the growth and development of plants in coal mine spoils located in the Inner Mongolia grassland ecosystem. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to drought. However, little is known regarding the contribution of AMF to plants that are grown in different types of coal mine spoils under drought stress. To evaluate the mycorrhizal effects on the drought tolerance of maize (Zea mays L.) grown in weathered (S1) and spontaneously combusted (S2) coal mine spoils, a greenhouse pot experiment was conducted to investigate the effects of inoculation with Rhizophagus intraradices on the growth, nutrient uptake, carbon:nitrogen:phosphorus (C:N:P) stoichiometry and water status of maize under well-watered, moderate and severe drought stress conditions. The results indicated that drought stress increased mycorrhizal colonization and decreased plant dry weights, nutrient contents, leaf moisture percentage of fresh weight (LMP), water use efficiency (WUE) and rehydration rate. A high level of AMF colonization ranging from 65 to 90% was observed, and the mean root colonization rates in S1 were lower than those in S2. In both substrates, inoculation with R. intraradices significantly improved the plant growth, P contents, LMP and WUE and decreased the C:P and N:P ratios of plants under drought stress. In addition, maize grown in S1 and S2 exhibited different wilting properties in response to AMF inoculation, and plant rehydration after drought stress occurred faster in mycorrhizal plants. The results suggested that inoculation with R. intraradices played a more positive role in improving the drought stress resistance of plants grown in S2 than those grown in S1. AMF inoculation has a beneficial effect on plant tolerance to drought and effectively facilitates the development of plants in different coal mine spoils.  相似文献   

13.
Contamination of soils with heavy metals becomes more and more a problem in many countries all over the world. In areas where metal contaminated soils are used for food crop production, metals relatively mobile within the plant, such as cadmium (Cd) and zinc (Zn) can easily come into the food chain with great risks for human health. Since bioavailability of heavy metals in soils varies with soil and plant characteristics, e.g., mineralogical and organic matter properties of the soil and plant metal susceptibility, prediction of heavy metal uptake by plants by the common soil and plant chemical analysis techniques is often unreliable. Recently, the use of biomarkers has been suggested to be a suitable technique complementing chemical soil analysis. Therefore, the usefulness of the biomarker phytochelatin (PC), a non‐protein thiol, specifically induced in plants suffering from heavy metal stress, was tested. Maize (Zea mays L.) plants were exposed to excess copper (Cu) or Cd in nutrient solution systems and metal and PC concentrations were monitored in plant shoot and root. Results clearly illustrated that very soon after plant exposure to the metal, PC induction started, especially in plant roots. Phytochelatin seems to be a useful early warning system for heavy metal stress in plants.  相似文献   

14.
Ectomycorrhizal fungi have been shown to affect metal transfer from the soil to the host plant, but the use of these fungi for increased phytoextraction of heavy metals has been scarcely investigated. Therefore, a two‐factorial pot experiment was conducted with Salix × dasyclados and (1) two contaminated soils with different concentrations of NH4NO3‐extractable metals and (2) two strains of the ectomycorrhizal fungus Paxillus involutus (one strain originating from a noncontaminated site—Pax1, and another from a contaminated site—Pax2). The inoculation with Pax2 increased the phytoavailability of Cd in the soils. Inoculation with both fungal strains increased the stem and root biomass, but had no effect on metal concentrations in the stems. Decreased Cd and increased Cu concentrations were observed in the roots of inoculated willows. The inoculation with P. involutus increased Cd (up to 22%), Zn (up to 48%), and Cu content in the stems. Decreased Pb content (Cu and Pb content were always <1 mg per plant) occurred in the stems from plants at the soil with the higher concentration of NH4NO3‐extractable metals. Contrary to this, in the soil with lower concentrations of NH4NO3‐extractable metals, the inoculation had no significant effects on the total uptake of Zn and Cu and even caused decreased Cd (Pax2) and Pb (Pax1) contents in the stems. Strain Pax2 had higher colonization densities, but the plants had lower mycorrhizal dependencies in the contaminated soils than after inoculation with the strain Pax1. Generally, metal extractability in the soils substantially affected the mycorrhizal dependency and heavy‐metal uptake of the willows. We concluded, that the inoculation with P. involutus offers an opportunity to particularly increase the phytoextraction of Zn, but the metal extractability and fungal strain effects have to be tested.  相似文献   

15.
The concentrations of heavy metals in water, sediments, soil, roots, and shoots of five aquatic macrophytes species (Oenanthe sp., Juncus sp., Typha sp., Callitriche sp.1, and Callitriche sp.2) collected from a detention pond receiving stormwater runoff coming from a highway were measured to ascertain whether plants organs are characterized by differential accumulations and to evaluate the potential of the plant species as bioindicators of heavy metal pollution in urban stormwater runoff. Heavy metals considered for water and sediment analysis were Cd, Cr, Cu, Ni, Pb, Zn, and As. Heavy metals considered for plant and soil analysis were Cd, Ni, and Zn. The metal concentrations in water, sediments, plants, and corresponding soil showed that the studied site is contaminated by heavy metals, probably due to the road traffic. Results also showed that plant roots had higher metal content than aboveground tissues. The floating plants displayed higher metal accumulation than the three other rooted plants. Heavy metal concentrations measured in the organs of the rooted plants increased when metal concentrations measured in the soil increased. The highest metal bioconcentration factors (BCF) were obtained for cadmium and nickel accumulation by Typha sp. (BCF = 1.3 and 0.8, respectively) and zinc accumulation by Juncus sp. (BCF = 4.8). Our results underline the potential use of such plant species for heavy metal biomonitoring in water, sediments, and soil.  相似文献   

16.
采用温室盆栽试验方法,研究了镉(Cd)、锌(Zn)污染土壤中,8种不同丛枝菌根真菌(AMF)Glomus lamellosum(G.la)、Acaulospora mellea(A.m)、Glomus mosseae(G.m)、Glomus intraradices(G.i)、Glomus etunicatum(G.e)、Glomus constrictum(G.c)、Diversispora spurcum(D.s)、Glomus aggregatum(G.a)对紫花苜蓿(Medicagosativa L.)吸收Cd、Zn的影响。结果表明,Cd、Zn污染下AMF仍然明显侵染紫花苜蓿,并促进紫花苜蓿对Cd、Zn的吸收积累,但不同AMF影响的效应和植株不同部位对重金属的吸收积累规律存在差异。AMF处理下紫花苜蓿根部Cd、Zn含量和积累量明显增加,但地上部Cd、Zn的含量则降低,地上部Zn的积累量也减小,这表明AMF处理减弱了Cd、Zn由根部向地上部的运移,减轻了植物地上部毒害。接种AMF条件下,植株尤其是根部生物量增加是Cd、Zn在其体内含量和积累量增加的重要因素,不同种类AMF促进植株生物量增加的幅度不同,导致植株对Cd、Zn的积累和抗性存在差异。  相似文献   

17.
Abstract

Heavy metals are often added indiscriminantly to soils in pesticides, fertilizers, manures, sewage sludges, and mine wastes, causing an imbalance in nutrient elements in soils. Heavy‐metal toxicity causes plant stress in various degrees dependent on the tolerance of the plant to a specific heavy metal. The objectives of this study were (i) to show that plant species and soils respond differently to heavy metals and (ii) to show the necessity for proper quantity and balance of heavy metals in soils for plant growth.

Three Fe‐inefficient and three Fe‐efficient selections of soybean, corn, and tomato were grown on two alkaline soils with Cu and Zn ranging from 14 to 340 and Mn from 20 to 480 kg/ha. Heavy‐metal toxicity caused Fe deficiency to develop in these plants. The Fe‐inefficient T3238fer tomato and ys1/ys1 corn developed Fe deficiency on all treatments and both soils. T3238FER tomato (Fe‐efficient) did not develop heavy metal toxicity symptoms on any treatment or soil. The soybean varieties and WF9 corn were intermediate in their response.

The unpredictable response of both the soil and the plant to heavy metals make general recommendations difficult. In order to maintain highly productive soils, we need to know what we are adding to soils and the consequences. Without some control, the continued addition of heavy metals to soils is a crisis in embryo.  相似文献   

18.
Mycorrhizal technique is a promising biotechnology in horticultural industry, benefiting plants exposed to diverse abiotic stresses. In this study, the effects of three arbuscular mycorrhizal fungi (AMF), Acaulospora laevis, Glomus mosseae, and Glomus caledonium on plant growth and nutrient uptake of loquat (Eriobotrya japonica Lindl.) seedlings under three water regimes (well watered, water stressed-slight, water stressed-heavy) were investigated. Results showed that inoculated seedlings had higher dry biomass, plant height, and total leaf areas than those un-inoculated ones. AMF effect was the greatest for water stressed-heavy seedlings, followed by water stressed-slight seedlings and well watered seedlings. All AMF species increased the uptake of nitrogen (N) potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), and the mycorrhizal contributions to the nutrient uptake were positively related to that to the biomass. Data suggest that AMF inoculation increases the tolerance of loquat seedlings to drought stress, and the improved nutrient uptake by AMF contributes greatly to the tolerance.  相似文献   

19.
Forest trees can establish symbiotic associations with dark septate endophytes (DSEs) and ectomycorrhizal fungi (ECMF) simultaneously. However, the combined effects of these two fungi on the growth and cadmium (Cd) tolerance of host plants remain largely unexplored. To address this knowledge gap, a pot experiment was conducted to examine the effects of the interaction between an ECMF strain (Suillus granulatus) and a DSE strain (Pseudopyrenochaeta sp.) on Pinus tabulaeformis under Cd stress, by assessing plant growth and physiological parameters, nutrient uptake, and soil properties. Notably, the colonization rates of both fungal strains were found to increase in response to Cd stress, with the extent of this increase being influenced by the specific fungal species and the Cd level in the soil. Compared to the non-inoculation treatment, single inoculation with fungal strain resulted in enhanced biomass, root development, and nutrient contents in P. tabulaeformis seedlings under Cd stress. Furthermore, a synergistic effect was observed when these seedlings were co-inoculated with S. granulatus and Pseudopyrenochaeta sp., as indicated by significantly greater measurements in various indicators compared to both the single and non-inoculation treatments. Fungal inoculation effectively regulated the antioxidant defense responses and photosynthesis of P. tabulaeformis seedlings subjected to Cd stress, particularly in the co-inoculation treatment. In addition, fungal inoculation facilitated the Cd accumulation in P. tabulaeformis, suggesting a promising potential for the implementation of bioremediation strategies in the areas contaminated with heavy metals. The findings from this study indicate that the utilization of root symbiotic fungi obtained from stress environments could potentially enhance the growth performance and tolerance of P. tabulaeformis towards heavy metals, and co-inoculation of both fungal groups may result in even more pronounced synergistic effects on the overall fitness of the plant.  相似文献   

20.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号