首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Most measurements of dairy manure nitrogen (N) availability depend on net changes in soil inorganic N concentration over time, which overlooks the cycling of manure N in the soil. Gross transformations of manure N, including mineralization (m), immobilization (i), and nitrification (n), can be quantified using 15N pool dilution methods. This research measures gross m, n, and i resulting from application of four freeze‐dried dairy manures that had distinctly different patterns of N availability. A sandy loam soil (coarse‐loamy, mixed, frigid Typic Haplorthod) was amended with four different freeze‐dried dairy manures and incubated at 25°C with optimal soil water content. The dilution of 15ammonium (NH4+) during a 48‐h interval (7–9 d and 56–58 d after manure application) was used to estimate m, whereas the dilution of 15nitrate (NO3 ?) was used to estimate n. Gross immobilization was calculated as gross minus net mineralization. Gross mineralization in the unamended soil was similar at 7‐ to 9‐d and 56‐ to 58‐d intervals and was significantly increased by the application of manures. For both amended and unamended soil, m was much greater (i.e., three‐ to nine‐fold) than estimated net mineralization, illustrating the degree to which manure N can be cycled in soil. At the early interval, both m and i were directly related to the manure C input, demonstrating the linkage between substrate C availability and N utilization by soil microbes. This research clearly shows that the application of dairy manures stimulates gross N transformation rates in the soil, improving our understanding of the impact of manure application on soil N cycling.  相似文献   

2.
MANNER‐NPK (MANure Nutrient Evaluation Routine) is a decision support tool for quantifying manure (and other organic material) crop available nutrient supply. The user‐friendly design of an earlier version of MANNER was retained, but in response to user and stakeholder feedback, additional functionality was included to underpin new and revised nitrogen (N) transformation/loss modules (covering ammonia volatilization, nitrate leaching and nitrous oxide/di‐nitrogen emissions, and organic N mineralization) and also to estimate manure phosphorus (as P2O5), potassium (as K2O), sulphur (as SO3) and magnesium (as MgO) supply. Notably, MANNER‐NPK provides N availability estimates for following crops through the mineralization of organic N. Validation of the crop available N supply estimates was undertaken by comparing predicted values with data from more than 200 field experimental measurements. For cattle, pig and poultry manures, there was good agreement (< 0.001) between predicted and measured fertilizer N replacement values, indicating that MANNER‐NPK provides robust estimates of manure crop available N supply and N losses to the wider environment.  相似文献   

3.
An experiment was performed to study the significance of rooting depth of four vegetable crops on their utilization of green manure nitrogen (N). Rates of rooting depth development were estimated as approximately 0.2, 0.7, 1.2 and 1.2 mm day °C?1 for onion, carrot, lettuce and cabbage, respectively. At harvest, onion and lettuce were found to be shallow‐rooted with final rooting depths of only 0.3 and 0.6 m, respectively, whereas carrot and cabbage reached rooting depths of at least 1.1 m. The two deep‐rooted vegetables increased their N uptake by 46, 24 and 7 kg N ha?1 when following winter‐hardy legumes, non‐hardy legumes and rye, respectively; the equivalent responses by the two shallow‐rooted crops were 23, 9 and 15 kg N ha?1, respectively. Thus the deep‐rooted crops used the legume N more efficiently but the shallow‐rooted crops made better use of N left by the non‐legume rye crop. These interactions between green manure type and vegetable crop N response are the result of the dual effects of the green manures: biological N fixation by the legumes, and the variable ability of the green manure crops to concentrate available N in the topsoil. Before shallow‐rooted crops, the ability of rye to concentrate N in the topsoil may be as important as the N fixing ability of legumes.  相似文献   

4.
Despite significant evidence that green manures from agroforestry species can improve soil fertility, green biomasses from many agroforestry species have not been sufficiently explored. In this study, we determined the suitability of green manures of Tithonia diversifolia, Gliricidia sepium, and Senna spectabilis for smallholder agriculture in Africa. Field trials were established to compare them with mineral fertilizer. The results showed that green manures of the three species were of high quality based on their macronutrient compositions. The effect of the green manures (particularly Tithonia) on both the biomass and fruit yield of okro were comparable and in some cases greater than fertilizer treatments. Total yield response in Tithonia treatment was 61% and 20% greater than the control and fertilizer treatments, respectively. In addition, the okro plants recovered a greater percentage of the nitrogen (N), phosphorus (P), and potassium (K) added as green manure compared to fertilizer-treated plots, which received the greatest N, P, and K inputs.  相似文献   

5.
不同施肥量对绿肥产量和养分积累的影响   总被引:5,自引:0,他引:5  
大田试验条件下研究不同氮、磷、钾肥用量对绿肥[豆科绿肥紫云英(Astragalus sinicus L.)和禾本科绿肥看麦娘(Alopecurus aequalis Sobol.)]产量及养分积累量的影响。试验结果表明,施肥能显著增加绿肥产量,绿肥鲜草产量较不施肥处理增加42.8%~311.1%,与缺素处理相比,氮、磷、钾肥的增产率分别为57.1%~177.5%、27.8%~178.7%、14.2%~32.4%。两种绿肥的鲜草产量均随氮、磷、钾肥施用量的增加而增加,中、高水平的氮、磷肥用量下看麦娘的产量均高于紫云英,所有钾肥处理的看麦娘产量均高于紫云英。绿肥的养分积累量均随施肥量的增加而增加,中高水平的氮、磷肥用量下看麦娘的氮、磷积累量高于紫云英,不同钾水平下的看麦娘钾积累量均高于紫云英。氮、磷、钾肥用量分别为112.5 kg(N).hm?2、19.7 kg(P).hm?2、37.5 kg(K).hm?2时,两种绿肥总产量及碳、氮、磷、钾积累量最高,分别为49 424 kg.hm?2和3 212 kg(C).hm?2、151 kg(N).hm?2、19.8 kg(P).hm?2、156 kg(K).hm?2。此时看麦娘产量、碳、氮、磷、钾积累量分别占总量的59.0%、65.7%、66.3%和64.4%。紫云英田间自然洒种的看麦娘无成本投入且养分积累量高,不失为一种优质绿肥。  相似文献   

6.
Acidic soils are limiting the production potential of the crops because of low availability of basic ions and excess of hydrogen (H+), aluminium (Al3+), and manganese (Mn2+) in exchangeable forms. Therefore, a field study was conducted to know the ameliorating effect of organic manures on acidic soils and production performance of cowpea (Vigna unguiculata L., Walp.) by using different locally available organic manures. Growth and yield attributes were observed to be significantly greater with vermicompost (VC) followed by poultry manure (PM). Porosity, maximum water-holding capacity (MWHC), and organic carbon were greater with farmyard manure (FYM) and cow dung manure (CDM). However, water retention at field capacity (FC), permanent wilting point (PWP), bulk density (BD), pH, and availability of nitrogen (N), phosphorus (P), and potassium (K) were greater with VC. However, physical and chemical properties were deteriorated in control plots.  相似文献   

7.
In this study, three types of cropping systems with different nutrient management strategies were studied on a clay soil with the aim of comparing leaching of N, P and K and obtaining knowledge on nutrient budgets. A conventional cropping system with cereals and application of mineral fertilizers (CON) was compared with two organic cropping systems, one without animal manure in which green manure crops were used for N supply (OGM) and one where animal manure (cattle slurry) was applied (OAM). Leaching and crop uptake of N, P and K, and soil mineral N were measured in pipe‐drained plots over a 6‐year period. The mean annual leaching loads of N were moderate and did not differ significantly (P > 0.05) between treatments; 13 kg N ha?1 in CON, 11 kg N ha?1 in OGM and 7.4 kg N ha?1 in OAM. Average annual P leaching showed greater variation than N leaching and was significantly greater in OGM (0.81 kg ha?1 year?1) than in CON (0.36 kg ha?1) and OAM (0.41 kg ha?1). For all cropping systems, removal in harvested crops was the most important export of nutrients from the field and constituted between 80 and 94% of total N outputs (harvested and leached N). Yields of cereals in the organic systems were considerably less (15–50%) than in the CON system, leading to a less efficient use of N than in the conventional system.  相似文献   

8.
Abstract. Measures to reduce ammonia (NH3) emissions by incorporating livestock manures into the soil may increase the potential for nitrate (NO3) leaching. The Manure Evaluation Routine (MANNER) model estimates the amount of N available to crops following livestock manure applications after calculating losses due to NH3 volatilization and NO3 leaching. The main objective of this study was to use the MANNER model to quantify the impact on NO3 leaching of introducing measures to reduce NH3 emissions, following application of livestock manures. The data produced were also used to make preliminary estimates of the likely effect of selected NH3 abatement techniques on the potential for nitrous oxide (N2O) emissions. At typical UK rates of application, the potential for increased NO3 leaching following either injection of slurry or rapid incorporation of solid manures was greatest for broiler/turkey manure (22–58 kg N ha–1) and least for straw‐based cattle manure (6–10 kg N ha–1). The results suggest that in order to avoid substantially increasing the potential for NO3 leaching as a consequence of NH3 abatement, livestock manures should not be applied by low NH3 emission techniques prior to autumn‐sown crops in the UK. Instead, low‐emission applications should be made from October onwards to grassland and where possible, late autumn‐sown combinable crops or to arable land which will be planted in the spring. However, in several areas of England and Wales there is currently insufficient land planted to spring crops on which to incorporate the livestock manures produced in those areas.  相似文献   

9.
Soil samples were collected from a loamy sand and a clayey soil near Cinzana, Mali, for the purpose of documenting the seasonal dynamics of soil inorganic N after 9 years under five crop-management systems. The cropping systems were: continuous grain sorghum (Sorghum bicolor) or millet (Pennisetum glaucum) without residue return, continuous grain with stalk residue returned to the field every second year, grain in rotation with cowpea (Vigna unguiculata), and grain in rotation with the green manure crops, sesbania (Sesbania rostrata) and dolichos (Dolichos lablab). A sharp increase in soil N was observed early in the rainy season in both soils. Extractable N concentration in loamy sand and clayey soils, respectively, peaked between 15–22 kg and 33–51 kg N ha–1 in the upper 10 cm of soil. In the clayey soil, the higher soil N concentrations associated with the early season flush lasted 8 weeks after the onset of rain. Nitrogen addition through rotational crops and crop residue was low. Significant improvement of cereal grain yield may not be possible solely by rotation with sesbania and dolichos green manure or cowpea without additional nutrient input. Earlier cereal planting, where feasible, is recommended to improve synchrony of soil N mineralization and crop demand.  相似文献   

10.
In a field experiment, the effect of combination of different organic manures on the productivity of crops and soil quality were evaluated in deep vertisols of central India. Combinations of cattle dung manure (CDM), poultry manure (PM), and vermicompost (VC) vis‐à‐vis mineral fertilizers were tested in four cropping systems involving soybean (Glycine max L.), durum wheat (Triticum durum Desf.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), and isabgol (Plantago ovata Forsk). The organic manures were applied based on the N‐equivalent basis and nutrient requirement of individual crop. The grain yields of durum wheat and isabgol were higher in the treatment that received a combination of CDM + VC + PM whereas in mustard, CDM + PM and in chickpea, CDM + VC recorded the higher yields. The yield levels in these organic‐manure combinations were similar to the yields obtained with mineral fertilizers. Among the cropping systems, soybean–durum wheat and among the nutrient sources, the combination of CDM + VC + PM recorded the highest total productivity. At the end of the 3‐year cropping cycle, application of organic manures improved the soil‐quality parameters viz., soil organic carbon (SOC), soil available nutrients (N, P, and K), soil enzymes (dehydrogenase and alkaline phosphatase), and microbial biomass C in the top 0–15 cm soil. Bulk density and mean weight diameter of the soil were not affected by the treatments. Among the cropping systems, soybean–durum wheat recorded the highest SOC and accumulated higher soil available N, P, and K. In conclusion, the study clearly demonstrated that the manures applied in different combinations improved the soil quality and produced the grain yields which are at par with mineral fertilizers.  相似文献   

11.
 Nitrogen and carbon mineralization of cattle manure (N=6 g kg–1; C:N=35), pressmud (N=17.4 g kg–1; C:N=22), green manure (N=26.8 g kg–1; C:N=14) and poultry manure (N=19.5 g kg–1; C:N=12) and their influence on gaseous N losses via denitrification (using the acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) were investigated in a growth chamber simulating upland, nearly saturated, and flooded conditions. Mineralization of N started quickly in all manures, except pressmud where immobilization of soil mineral N was observed for an initial 4 days. Accumulation of mineral N in upland soil plus denitrified N revealed that mineralization of cattle manure-, pressmud-, poultry manure- and green manure-N over 16 days was 12, 20, 29 and 44%, respectively, and was inversely related to C:N ratio (R 2=0.703, P=0.05) and directly to N content of organic manure (R 2=0.964, P=0.01). Manure-C mineralized over 16 days ranged from 6% to 50% in different manures added to soil under different moisture regimes and was, in general, inversely related to initial C:N ratio of manure (R 2=0.690, P=0.05). Cumulative denitrification losses over 16 days in control soils (without manure) under upland, nearly saturated, and flooded conditions were 5, 23, and 24 mg N kg–1, respectively. Incorporation of manures enhanced denitrification losses by 60-82% in upland, 52–163% in nearly saturated, and 26–107% in flooded soil conditions over a 16-day period, demonstrating that mineralized N and C from added manures could result in 2- to 3-fold higher rate of denitrification. Cumulative denitrification losses were maximal with green manure, followed by poultry manure, pressmud and cattle manure showing an increase in denitrification with increasing N content and decreasing C:N ratio of manure. Manure-amended nearly saturated soils supported 14–35% greater denitrification than flooded soils due to greater mineralization and supply of C.  相似文献   

12.

Background

Organic vegetable production has a demand for alternative fertilizers to replace fertilizers from sources that are not organic, that is, typically animal-based ones from conventional farming.

Aims

The aim of this study was to develop production strategies of plant-based fertilizers to maximize cumulative nitrogen (N) production (equal to N yield by green manure crops), while maintaining a low carbon-to-nitrogen (C:N) ratio, and to test the fertilizer value in organic vegetable production.

Methods

The plant-based fertilizers consisted of the perennial green manure crops—alfalfa, white clover, red clover, and a mixture of red clover and ryegrass—and the annual green-manure crops—broad bean, lupine, and pea. The crops were cut several times at different developmental stages. The harvested crops were used fresh or pelleted as fertilizers for field-grown white cabbage and leek. The fertilizer value was tested with respect to biomass, N offtake, N recovery, and soil mineral N (Nmin). Poultry manure and an unfertilized treatment were used as controls.

Results

The cumulative N production of the perennial green manure crops ranged from 300 to 640 kg N ha–1 year–1 when cut two to five times. The highest productions occurred at early and intermediate developmental stages, when cut three to four times. Annual green manure crops produced 110–320 kg N ha–1 year–1, since repeated cutting was restricted. The C:N ratio of the green manure crops was 8.5–20.5, and increased with developmental stage. The fertilizer value of green manure, as measured in white cabbage and leek, was comparable to animal-based manure on the condition that the C:N ratio was low (<18). N recovery was 20%–49% for green manure and 29%–42% for poultry manure. A positive correlation was detected between soil Nmin and vegetable N offtake shortly after incorporating the green manure crops, indicating synchrony between N release and crop demand.

Conclusions

Plant-based fertilizers represent highly productive and efficient fertilizers that can substitute conventional animal-based fertilizers in organic vegetable production.  相似文献   

13.
The efficiency of nitrogen (N) derived from different manures in the years following application must be determined to optimize use of N and reduce impact on the environment. Five N efficiency parameters that were originally developed for commercial inorganic N fertilizers were selected to measure the manure N efficiency in the second year following application of liquid hog and solid cattle manure in semiarid east‐central Saskatchewan, Canada. The manures were applied at two sites (Dixon and Burr) at four rates covering a range from zero to 912 kg N ha–1 in 1997. A canola (Brassica napus L.) crop was grown in 1997 followed by a spring wheat (Triticum aestivum L.) in 1998 without fertilization. Tested by the wheat, N utilization efficiency (NUE) was similar between the two manures at either site, but it was higher at Dixon site, where the soil properties were better, than at the Burr site (P < 0.07) with cattle manure. Nitrogen physiological efficiency (NPE) was not affected by either manure source or soil. At the Burr site, N agronomic efficiency (NAE) and N recovery rate (NRR) were all higher with the hog than with the cattle manure (P < 0.08 and P < 0.07, respectively), but N harvest index (NHI) was lower with the hog than with the cattle manure (P < 0.04). The similar trends of the NAE, NRR, and NHI between the hog and cattle manure were also found at the Dixon site. However, the differences in NRR between the hog and cattle manure in the second year was rather small in contrast to the large differences in the year of application. Despite that the wheat crop utilized residual hog and cattle manure N equally efficient in producing grain yield, a higher grain N concentration and a higher NHI with the cattle than with the hog manure revealed different N supply dynamics between the two. Possibly due to the low proportion of ammonium (NH3)‐N in the total N and the high C : N ratio in the cattle manure, mineralization of cattle manure N provided more available N in the later stage of wheat growth than did the hog manure. The N efficiency parameters were useful tools in understanding the impact of residual manure N on wheat production on the Canadian prairies.  相似文献   

14.
1.紫云英与苕子的绿色体一般以初花期前后或盛花期增长最快。紫云英的根系主要分布在0—10厘米,在5,000斤鲜草产量时,1平方尺内约有6克左右的干根。地上与地下部分的干物质比为6.5:1,鲜重比为11:1,目前一般对地下部分的产量估计似乎有些偏高。2.紫云英等含氮、磷、钾的百分率均随绿色体的增长而减低,紫云英在盛花期含 N2.7%,P2O5 0.65%,K2O2.5%,CaO1.6%,含氮量与土壤的肥沃程度没有明显的相关性,含磷量与含钾量则与土壤中磷钾含量成正相关。根部所含的养分一般均低于地上部分,叶子的氮、磷百分率远较茎等部位为高。苕子盛花期含N3.3%左右,其他成分大体与紫云英相近。萝卜菜在盛花期的含N量为1.7%,K2O 量较高,一般是N与P2O5的总和,含CaO量恒多于紫云英,一般在2.0%以上。油菜的成分大体与萝卜菜相近。3.各种绿肥在一定生长时期中地上部分的阳离子总量大体为一常数。紫云英在盛花期的阳离子总量维持在110毫当量左右,萝卜菜的含量还更高。4.萝卜菜、紫云英、苕子与小麦等四种植物对蛇纹石都能利用,但对钾长石不能利用。磷灰石的施用对增产很显著,根据增产百分率的大小,可排列成如下的次序:紫云英>萝卜菜>苕子>小麦。在某种程度上反映植物对难溶性物质的利用能力的三个指标(根的阳离子交换量、根的吸收面积与根的呼吸强度),对于四种植物,其大小次序基本上与其对磷灰石的利用能力的排列次序相一致。因此从各方面来看,这几种绿肥的吸收养分的能力,都较象小麦这样的农作物为强。5.绿肥是一种成本低收效大的肥料。在紫云英鲜草产量5,000斤时,地上与地下部分所合的氮、磷、钾分别相当于硫酸铵105斤、过磷酸钙22.5斤、氯化钾36斤。假定其中的氮素有2/3是来自大气,则“天然工厂”制造了70斤左右的硫酸铵。中稻亩产600斤时所取走的氮素约相当于50斤硫酸铵,因此单就来自大气中的这一部分来讲,对中稻的供应也还是有余。从全国范围来看,凡是绿肥面积大的地区,也就是稻麦产量高而稳定的地区。目前各地绿肥的种植面积与产量都极不平衡,还有很大的潜力。  相似文献   

15.
Abstract

A field experiment was conducted in 2004–2006 to investigate the effect of green manure treatments on the yield of oats and spring barley. In the experiment, different green manure crops with undersowing and pure sowing were compared for amounts of N, C, and organic matter driven into soil and their effect on cereal yield. The spring barley field had a total of 41.7–62.4 kg N ha?1 and 1.75–2.81 Mg C ha?1 added to the soil with straw, weed, and roots, depending on the level of fertilisation; with red clover, and both common and hybrid lucerne undersowing, with barley straw and roots, the values were 3.45–3.96 Mg C ha?1 and 139.9–184.9 kg N ha?1. Pure sowings of these three leguminous green manure crops had total applications of 3.37–4.14 Mg C ha?1 and 219.7–236.8 kg N ha?1. The mixed and pure sowing of bird's-foot trefoil provided considerably less nitrogen and carbon to the soil with the biomass than with the other leguminous crops. Application of biomass with a high C/N ratio reduced the yield of the succeeding spring cereals. Of the green manures, the most effective were red clover and both common and hybrid lucerne, either as undersowing or as pure sowing. Undersowings with barley significantly increased the N supply for the succeeding crop without yield loss of the main crop compared with the unfertilised variant. Compared with ploughing-in of green manure in autumn, spring ploughing gave a 0.2–0.57 Mg ha?1 larger grain yield.  相似文献   

16.
Abstract

Castor and sunflower, drought‐tolerant crops, are cultivated in the semi‐arid tropics of the world. The nutrient‐rich residues of these crops are mostly burnt because of their high C/N (C/N)‐ratios. These high C/N‐ratio residues can be composted and recycled successfully, if they are supplemented with other low C/N‐ratio farm‐based organics and some chemical additives. To study the rate kinetics and half‐life of decomposition of castor (C/N ratio: 75∶90) and sunflower (C/N ratio 57∶47) residue mixtures and the manure value of the compost thus prepared, two on‐farm experiments were conducted at Hayathnagar Research Farm (17° 18′ N latitude, 78° 36′ E longitude, and an elevation of 515 m above sea level) of Central Research Institute for Dryland Agriculture, Hyderabad, India. The decay rate constants obtained on the basis of the exponential functions using the data on weight loss, C concentration, and C/N ratios indicated that among the four combinations of treatments, castor stalks+gliricidia loppings+cattle dung had the fastest rate of decomposition with an average rate constant value of 0.0043 day?1. To achieve 50% decomposition (half‐life), the time periods computed for castor stalks+gliricidia loppings+cattle dung and sunflower stalks+gliricidia loppings+cattle were 197 and 278 days, respectively. On an average basis, sunflower‐based manure contained a significantly higher amount of total N (14.6 gm kg?1) than castor‐based manures (12.2 gm kg?1). The corresponding total hydrolyzable N values were 8.2 and 8.15 gm kg?1, respectively. Amino acid N was found to be the predominant constituent of the total acid hydrolyzable N in the manure. Use of earthworms in composting enriched the manure in terms of mineral [nitrate (NO3)+ammonium (NH4)‐N] and hexosamine‐N fractions. The full article deals with the decomposition patterns (periodical changes in weight loss, C concentration and C/N ratios), decay‐prediction functions, composting, and manure quality of the castor‐ and sunflower‐based residue mixtures.  相似文献   

17.
三种不同绿肥的腐解和养分释放特征研究   总被引:16,自引:1,他引:15  
利用网袋法模拟研究旱地条件下箭筈豌豆(Vicia sativas L.)、苕子(Vicia villosa Roth. Var.)、山黧豆(Lathyrus palustris L. Var. Pilosus ledeb) 三种绿肥的腐解和养分释放特征。结果表明,三种绿肥均在翻压15 d内腐解较快,腐解率均在50%以上,之后腐解速率逐渐减慢,翻压70 d时,箭筈豌豆、苕子和山黧豆的累积腐解率分别达71.7%、67.3%和74.1%。氮和钾在翻压10 d内释放较快,碳和磷在翻压15 d内释放较快,之后释放速率均减慢。箭筈豌豆、苕子和山黧豆在翻压70 d时的碳累积释放率分别为71.3%、67.0%和74.1%。三种绿肥的养分累积释放率均是K>P>N,在翻压70 d时钾的累积释放率均在90%以上,磷的累积释放率为73.3%~78.7%,氮的累积释放率为59.9%~71.2%,其中山黧豆的氮和磷累积释放率高于箭筈豌豆和苕子,而三种绿肥钾的累积释放率无显著差异。养分释放量结果表明,箭筈豌豆和苕子的养分累积释放量表现为K>N>P,而山黧豆表现为N>K>P,不同绿肥的养分累积释放量不同,山黧豆的氮累积释放量最高,箭筈豌豆的磷和钾累积释放量最高,苕子各养分的累积释放量都最低。  相似文献   

18.
The beneficial role of green manures in rice production is generally ascribed to their potential of supplying plant nutrients, particularly nitrogen (N). However, the mechanisms through which green manures enhance the crop productivity are poorly understood. Pot experiments were conducted using a 15N-tracer technique: (1) to compare the biomass production potential of sesbania (Sesbania aculeata Pers.) and maize (Zea mays L.) as green manuring crops for lowland rice and (2) to compare the effect of the two types of green manure and inorganic N on the dry matter accumulation and N uptake by two rice (Oryza sativa L.) cultivars, viz. IR-6 and Bas-370. Although maize produced three times higher shoot biomass compared with sesbania, the latter showed higher N concentration; and thus the total N yield was similar in the two types of plants. Applying the shoot material of the two plants to flooded rice significantly enhanced the dry matter yield and N uptake by the two rice cultivars, the positive effects generally being more pronounced with sesbania than with maize amendment. The difference in the growth-promoting potential of the two plant residues was related more to an increased uptake of the native soil N rather than to their direct role as a source of plant-available N. A positive added nitrogen interaction (ANI) was observed due to both plant residues, the effect was much more pronounced with the application of sesbania than with maize residues. In both rice cultivars, inorganic N also caused a substantial ANI, particularly at higher application rate. Losses from the applied N were 2–3 times lower from sesbania, compared with maize treatment. Green manuring with sesbania also caused much lower N losses than the inorganic N applied at equivalent or higher rates. The overall benefit of green manuring to rice plants was higher than inorganic N applied at comparable rates. The two rice cultivars differed in their response to green manuring, IR-6 generally being more responsive than Bas-370.  相似文献   

19.
冬种绿肥对水稻土硝化作用的影响   总被引:3,自引:0,他引:3  
冬闲田种植绿肥是传统的水稻土培肥增产措施,但绿肥-水稻种植系统中,不同绿肥种类对硝化作用的影响规律及调控机制尚不明确.采用盆栽试验,研究了冬种紫云英、油菜、黑麦草对土壤性状及硝化作用的影响,并通过特异性细菌抑制剂(卡那霉素和大观霉素)研究了氨氧化细菌(AOB)和氨氧化古菌(AOA)对硝化作用的相对贡献.结果表明,冬种三...  相似文献   

20.
The soil incorporation of green manures is a practice that can be used in sustainable agriculture and in organic farming, where nitrogen (N) sources are limited. The aim of this study was to evaluate balansa clover (Trifolium michelianum Savi), yellow lupine (Lupinus luteus L.) and ryegrass (Lolium multiflorum Lam.) as potential alternative N sources. A total of nine treatments were considered in this study: control, aerial of balansa clover, roots of balansa clover, aerial of yellow lupine, roots of yellow lupine, aerial of ryegrass, roots of ryegrass, mixture aerial + roots of yellow lupine and mixture aerial + roots of ryegrass. A laboratory incubation experiment was conducted under controlled conditions during 196 days and carbon and N mineralisation were followed. Results showed that green manures are appropriate N sources for Mediterranean farming. No significant differences in terms of N mineralisation were observed between aerial or roots biomass of the green manures. Besides, 37–55% of total N applied was mineralised in treatments amended with balansa clover or yellow lupine, whereas 13–21% of total N applied was mineralised in ryegrass. It can be concluded that the most efficient green manure for supplying mineral N to the succeeding crop was yellow lupine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号