首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用消(耗)能元件的结构在遭受地震作用时,元件芯材首先屈服进入塑性阶段,利用其滞回变形消耗地震输入能量,保护主体结构,元件芯材本构关系的数值模拟是对采用消(耗)能元件结构进行抗震分析与设计的基础。为更真实地模拟结构消(耗)能元件芯材在单调和循环荷载下的本构响应,更准确地对采用消(耗)能元件结构进行结构弹塑性地震响应分析,对常用作消(耗)能元件芯材的日本高延性钢材SN490B的单调、循环加载本构及循环骨架曲线进行了数值模拟,包括:采用Esmaeily-Xiao二次流塑性模型模拟材料在单调荷载作用下弹性段、屈服段、强化段和二次流塑段4个阶段;采用混合强化模型模拟材料循环荷载作用下的本构响应,运用大型通用有限元软件ABAQUS结合数值模拟参数对16种不同循环加载制度下的循环加载试验进行模拟,并与试验结果进行对比;采用Ramberg-Osgood模型、无量纲化的Ramberg-Osgood模型及两段式模型模拟循环骨架曲线。研究结果表明:所采用数学模型可以较好地模拟SN490B钢材单调、循环加载本构响应及循环骨架曲线,数值模拟与试验结果拟合较好。  相似文献   

2.
A New-type Steel Tube Buckling-Restrained Brace with Reinforced Concrete outside (ST-BRB-RC) was introduced in this paper. Six specimens of the ST-BRB-RC were designed and cyclic loading test were carried out to study the hysteretic energy dissipation performance of the six specimens. And then, ABAQUS finite element analysis was used to study the performance of four specimens. The results indicated that the ST-BRB-RC had stable and full hysteretic curve. The bearing capacity of the ST-BRB-RC was stable and the hysteretic behavior was excellent. And the analysis model of ST-BRB-RC could be described by a bilinear model. The construction of the ST-BRB-RC was reasonable, and the energy dissipation mechanism of the ST-BRB-RC was clear. It is proved that the design philosophy of using reinforced concrete for exterior restrained element was available.  相似文献   

3.
This paper discusses the distribution regularity of earthquake total input energy of structures between hysteretic energy and damping energy and their influencing factors taking account of various factors.The results can serve as the basis for the energy method of aseismic structural design and energy analysis in the study of damage criteria.  相似文献   

4.
Based on the data of inelastic dynamic-static comparison tests of three pairs of SDOF small steel frames, the problem of hysteretic restoring force in damping identification of structures in elasto-plastic range is investigated.  相似文献   

5.
In order to improve seismic performance of steel frame with prefabricated reinforce-concrete infill shear walls (SFCW), the ear bar device was used in the connection between the steel frame and the infill wall. Two one-bay, two story and one-third scaled models of SFCW were tested with low cyclic load. The working performance of ear bar connection, the cracks development in infill walls and deformation performance of SFCW were investigated. And the failure mode, hysteretic behavior,stiffness degradation,deformation and ductility and energy dissipation of composite structure were analyzed. The comparison study of steel frame with prefabricated, cast-in-place and silt reinforce-concrete infill shear walls was carried out. The results show that no failure occurs in the connection between the steel frame and the infill wall because ear plates below and up the beam-to-column connections are added in the specimens, and the connection device of ear plate presents good working performance. The properly designed SFCW has good ductility.  相似文献   

6.
7.
The inelastic dynamic response analysis program for frame-shear wall structures developed by the authors is introduced firstly, in which the multi-vertical-line-element model was adopted for shear walls and the refined single-component model was used for beams and columns in frame.By analyzing three-story structural models tested in shaking-table in a famous foreign research institute, the validity of the modeling of shear wall in the program was verified. The analytical results indicate that the inelastic dynamic responseof shear walls under random ground motion input can be predicted effectively withthe program. Finally, with the preliminary discussion of some key points in modeling of shear wall, some suggestions areput forward for further improving and refining the multi-vertical-line-element model.  相似文献   

8.
9.
Based on characteristics of hysteretic energy of structures which are simplified single freedom degree systems and under the short duration impulse modle mid duration and long duration modle earthquakes, correlation between the maximum hysteretic energy increment per cycle and the maximum inelastic displacement of different structures is investigated. Simplified equations to estimate the maximum inelastic displacement are obtained. The validity of the equation is recognized. It is pointed out that the impact destroy of the structures may occur when energy increment per cycleis 50 80 percent of total hysteretic energy, and the maximum hysteretic energy increment per cycle, and that the maximum inelastic displacement can be used to evaluate aseismic capacity.If energy increment per cycleis small relative to total hysteretic energy, the destroy of the structures by cumulate dissipation energy may occur, and the total hysteretic energy can be used to evaluate aseismic capacity.  相似文献   

10.
11.
By the hysteretic experiments and the finite element analysis of the proof-of-concept connections, the mechanical properties and energy dissipation capacity of the new steel beam-to-column connections are investigated. These connections are semi-rigid ones improved by adding threaded rods into the angle connections and can be designed to limit the structural damage only to the angles and threaded rods. It is found, by the comparative analysis of six connections tested with the same loading sequence, that the performance degradation of the connections may be resulted from the plastic damage, crack propagation of the angles and the buckling and fatigue crack of the rods. The rotation capacity and failure modes of the connections with threaded rods depend on the ability of anti-fatigue crack of the rods, and the better ductility the rods have, the better energy dissipation capacity the connections have. In addition, the hysteretic behavior and the deformation modes of the connections prior to the significant strength degradation or the fracture of the rods could be well simulated by the finite element method. Meanwhile, the stiffening effect from pre-stressing the angles, the plastic distribution of the angles and the degradation induced by the rod buckling were strongly verified by the FEA. Finally, the advantages and disadvantages of such new beam-to-column dissipative connections were analyzed, and the proposal for further connection improvement and in-depth study was made.  相似文献   

12.
新型土坯墙体房屋抗震性能试验研究   总被引:2,自引:0,他引:2  
提出了一种新型土坯墙房屋,对新型土坯墙房屋承重墙体的受力及抗震性能进行试验研究。设计三片新型土坯墙试件,研究土坯墙体在竖向荷载和反复水平荷载作用下的破坏过程、破坏形态、滞回曲线和骨架曲线特征以及墙体水平承载力和变形能力等,同时,研究新型构造措施对土坯墙抗震性能的作用。试验表明:新型土坯墙体的破坏模式与配筋混凝土小型空心砌块相似,土坯墙体具有良好的承载力和变形能力。新型构造措施对墙体整体抗震性能作用明显,其连接构造至关重要。与计算结果比较得出,在建筑抗震概念设计原则指导下,抗震设防7度区采用新型土坯墙建造二层房屋具有可行性。  相似文献   

13.
Seven specimens were loaded with axial force and horizontal cycle force to analyze the hysteretic performance and the influencing factor as well. The influence of axial compression ratio and aspect ratio on the hysteretic performance was investigated, including the buckling behaviors and the energy dissipation. And the positive role of combined effects on the hysteretic performance of cold-formed specimens was studied emphatically. The experiment reveals that a large axial compression ratio incurs a serious decrease on hysteretic performance, while the combined effects give an increase on it. In addition, the numerical mode is set up. Considering double nonlinearity, the results of experiment and simulation match each other well. Based on the data, it is obtained that local buckling plays a great negative role during the loading course. At last, the characteristics of hysteretic performance of cold-formed steel specimens are concluded and some suggestions are given.  相似文献   

14.
The Quasi static tests of one steel frame and two the composite deep beams infilled steel frames were carried out. The effects of the deep beams on the load capacity, ductility, hysteretic property and energy dissipation of pure steel structure were analyzed. It is found that the hysteresis curve is a straight line with the constant of the stiffness at the beginning and without residual deformation. And the hysteresis curve of specimen was full after yielding, and the skeleton curves had a clear plastic flow phase with triple linear. The lateral drifts of the beam specimens at failure were 1/25 and 1/22. The composite deep beams enhance the initial stiffness, yield load and maximum load bearing capacity of steel frame. Therefore, seismic performance of the composite deep beams is better.  相似文献   

15.
介绍了开式试验台、电封闭试验台和机械传动封闭试验台的加载原理,并对其性能及应用选型进行了分析。  相似文献   

16.
After analyzing the ten-year load data of a real power system, a novel method, with the help of Edgeworth progression has been developed to determine the representative daily load curve, which is useful in power generation planning. The method is successful to avoid the random and subjective factors in the exiting method of curve-making.  相似文献   

17.
基于对50根弯曲破坏钢筋混凝土圆柱低周反复试验结果的分析,建立了完整滞回环的数学表达式并推导得出等效阻尼比计算模型;以双柱墩桥梁为例,说明了建立桥梁整体结构等效阻尼比与墩柱端部塑性铰等效阻尼比关系的方法。研究表明,完整滞回环数学表达式较好地反映了弯曲破坏钢筋混凝土圆柱的滞回特性,得到的等效阻尼比模型计算结果与试验结果符合较好;采用建立的桥梁整体结构等效阻尼比与墩柱端部塑性铰等效阻尼比的关系进行pushover分析更能反映实际情况。采用等效阻尼比模型算得的目标位移与基于Rosenblueth模型和Kowalsky模型算得的位移之间存在较大差距。  相似文献   

18.
Joints are the most important parts of the space structure, the load-derormation curve (hysteretic curve) under repeated loading is the comprehensive reflection of their mechanical properties such as ductility, energy dissipation capacity, strength, stiffness and so on. By the simulation experiment analysis and the finite element simulation between the two models of hidden welding and no-welding hidden in K-type node in the chord axial reciprocating load resulted in the failure modes and hysteretic curve, the result of comparative analysis about finite elements is consistent with that of experiment study. The results show that the destroyment at hidden welding seam node is partly, the take-over is broken down at the welds finally. The welding line is destroyed overall when facing the destroyment of no-welding node. The carrying capacity of the hidden welding is obvious. Through the finite element simulation analysis instead of phase through node hysteretic performance test is feasible.  相似文献   

19.
Accurately predicting the residual displacement of reinforced concrete (RC) structures after an earthquake is of great significance in post-earthquake structural performance evaluation and control. To study the residual deformation of the structure, seismic time-history responses of single degree-of-freedom (SDOF) systems with different parameters were analyzed. Based on the analytical results, simplified models for estimating the likely residual deformations of structures characterized by Takeda and Kinematic hysteretic models were proposed respectively, and the residual deformation was found to be sensitive to hysteretic characteristics, stiffness ratio of structures, peak ground acceleration (PGA), as well as maximum elasto-plastic deformation. A case study for RC single-column bridge pier was provided to illustrate the process of residual deformation calculation and post-earthquake performance evaluation by using the proposed methods. Calculation results indicate that the residual deformation of the single-column pier characterized by the Takeda model often is much larger than that of columns characterized by the Kinematic model.  相似文献   

20.
It is necessary to simplify the capacity spectrum into bilinear form so as to get characteristic point of hysteretic bone curve(especially the yield point and the yielded stiffness),ductility and equivalent damping of the structure.Three general methods of calculating yield point and yielded stiffness of equivalent SDOF are introduced and the yield point and the yielded stiffness of three frame structures are compared using above given methods in this paper.The hysteretic bone curves of equivalent SDOF are decided by the equivalent yield force and displacement,the maximum plastic displacements of equivalent SDOF under rare earthquake are calculated,and it is compared with the maximum plastic displacements of member structures using nonlinear dynamic analysis.Finally,the advice of simplifying capacity spectrum is advanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号