首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The diuron‐mineralising ability of the microbiota of a Mediterranean vineyard soil exposed each year to this herbicide was measured. The impact of soil moisture and temperature on this microbial activity was assessed. RESULTS: The soil microbiota was shown to mineralise diuron. This mineralising activity was positively correlated with soil moisture content, being negligible at 5% and more than 30% at 20% soil moisture content. According to a double Gaussian model applied to fit the dataset, the optimum temperature/soil moisture conditions were 27.9 °C/19.3% for maximum mineralisation rate and 21.9 °C/18.3% for maximum percentage mineralisation. The impact of temperature and soil moisture content variations on diuron mineralisation was estimated. A simulated drought period had a suppressive effect on subsequent diuron mineralisation. This drought effect was more marked when higher temperatures were used to dry (40 °C versus 28 °C) or incubate (28 °C versus 20 °C) the soil. The diuron kinetic parameters measured after drought conditions were no longer in accordance with those estimated by the Gaussian model. CONCLUSION: Although soil microbiota can adapt to diuron mineralisation, its activity is strongly dependent on climatic conditions. It suggests that diuron is not rapidly degraded under Mediterranean climate, and that arable Mediterranean soils are likely to accumulate diuron residues. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The dependence of the behaviour of metsulfuron-methyl on soil pH was confirmed during incubations under controlled laboratory conditions with two French soils used for wheat cropping. The fate of [14C] residues from [triazine-14C]metsulfuron-methyl was studied by combining different experimen-tal conditions: soil pH (8·1 and 5·2), temperature (28 and 10°C), soil moisture (90 and 50% of soil water holding capacity) and microbial activity (sterile and non-sterile conditions). Metsulfuron-methyl degradation was mainly influenced by soil pH and temperature. The metsulfuron-methyl half-life varied from five days in the acidic soil to 69 days in the alkaline soil. Under sterile conditions, the half-life increased in alkaline soil to 139 days but was not changed in the acidic soil. Metsulfuron-methyl degradation mainly resulted in the formation of the amino-triazine. In the acidic soil, degradation was characterised by rapid hydrolysis giving two specific unidentified metabolites, not detected during incubations in the alkaline soil. Bound residues formation and metsulfuron-methyl mineralisation were highly correlated. The extent of bound residue formation increased when soil water content decreased and was maximal [48 (±4)% of the applied metsulfuron-methyl after 98 incubation days] in the acidic soil at 50% of the water holding capacity and 28°C. Otherwise, bound residues represented between 13 and 32% of the initial radioactivity. © 1998 SCI  相似文献   

3.
The biomineralization of [14C]glyphosate, both in the free state and as 14C-residues associated with soybean cell-wall material, was studied in soil samples from four different agricultural farming systems. After 26 days, [14C]carbon dioxide production from free glyphosate accounted for 34–51% of the applied radiocarbon, and 45–55% was recovered from plant-associated residues. For three soils, the cumulative [14C]carbon dioxide production from free glyphosate was positively correlated with soil microbial biomass, determined by substrate-induced heat output measurement and by total adenylate content. The fourth soil, originating from a former hop plantation, and containing high concentrations of copper from long-term fungicide applications, did not fit this correlation but showed a significantly higher [14C]carbon dioxide production per unit of microbial biomass. Although the cumulative [14C]carbon dioxide production from plant-associated 14C-residues after 26 days was as high as from the free compound, it was not correlated with the soil microbial biomass. This indicates that the biodegradation of plant-associated herbicide residues, in contrast to that of the free compound, involves different degradation processes. These encompass either additional steps to degrade the plant matrix, presumably performed by different soil organisms, or fewer degradation steps since the plant-associated herbicide residues are likely to consist mainly of easily degradable metabolites. Moreover, the bioavailability of plant-associated pesticide residues seems to be dominated by the type and strength of their fixation in the plant matrix. ©1997 SCI  相似文献   

4.
Herbicide degradation in soils is highly temperature‐dependent. Laboratory incubations and field experiments are usually conducted with soils from the temperate climatic zone. Few data are available for cold conditions and the validation of approaches to correct the degradation rate at low temperatures representative of Nordic environments is scarce. Laboratory incubation studies were conducted at 5, 15 and 28°C to compare the influence of temperature on the dissipation of metribuzin in silt/sandy loam soils in southern and northern Norway and in a sandy loam soil under temperate climate in France. Using 14C‐labelled metribuzin, sorption and biodegradation were studied over an incubation period of 49 days. Metribuzin mineralisation and total soil organic carbon mineralisation rates showed a positive temperature response in all soils. Metribuzin mineralisation was low, but metabolites were formed and their abundance depended on temperature conditions. The rate of dissipation of 14C‐metribuzin from soil pore water was strongly dependent on temperature. In Nordic soils with low organic content, metribuzin sorption is rather weak and biodegradation is the most important process controlling its mobility and persistence.  相似文献   

5.
Mineralisation of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) and two of its known metabolites, 3-(4-isopropylphenyl)-1-methylurea (monodesmethyl-isoproturon) and 4-isopropylaniline, was studied in Danish agricultural soils with or without previous exposure to isoproturon. A potential for rapid mineralisation of isoproturon and the two metabolites was present in soils sampled from three plots within an agricultural field previously treated regularly with the herbicide, with 34-45%, 51-58% and 33-36% of the added [phenyl-U-14C]isoproturon, [phenyl-U-14C]monodesmethyl-isoproturon and [phenyl-U-14C]4-isopropylaniline metabolised to [14C]carbon dioxide within 30 days at 20 degrees C. In contrast, such extensive mineralisation of these three compounds was not observed within this period in soils sampled from two other agricultural fields without previous treatment with isoproturon. The mineralisation patterns indicated growth-linked metabolism of the three compounds in the previously exposed soils, and doubling times for [14C]carbon dioxide production ranged from 1.6 to 3.2, 1.0 to 2.1 and 1.3 to 1.7 days for isoproturon, monodesmethyl-isoproturon and 4-isopropylaniline, respectively. The ability to mineralise [phenyl-U-14C]isoproturon to [14C]carbon dioxide was successfully sub-cultured to a fresh mineral medium which provided isoproturon as sole source of carbon and nitrogen. One of the soils sampled from an agricultural field not previously treated with isoproturon showed accelerated mineralisation of [phenyl-U-14C]4-isopropylaniline toward the end of the experiment, with a doubling time for [14C]carbon dioxide production of 7.4days. This study indicates that the occurrence of rapid mineralisation of the phenyl ring of isoproturon to carbon dioxide is related to previous exposure to the herbicide, which suggests that microbial adaptation upon repeated isoproturon use may occur within agricultural fields.  相似文献   

6.
BACKGROUND: Linuron is a globally used phenylurea herbicide, and a large number of studies have been made on the microbial degradation of the herbicide. However, to date, the few bacteria able individually to mineralise linuron have been isolated only from European agricultural soils. An attempt was made to isolate linuron‐mineralising bacteria from Japanese river sediment using a uniquely designed river ecosystem model (microcosm) treated with 14C‐ring‐labelled linuron (approximately 1 mg L?1). RESULTS: A linuron‐mineralising bacterium that inhabits river sediment was successfully isolated. The isolate belongs to the genera Variovorax and was designated as strain RA8. Strain RA8 gradually used linuron in basal salt medium (5.2 mg L?1) with slight growth. In 15 days, approximately 25% of 14C‐linuron was mineralised to 14CO2, with 3,4‐dichloroaniline as an intermediate. Conversely, in 100‐fold diluted R2A broth, strain RA8 rapidly mineralised 14C‐linuron (5.5 mg L?1) and more than 70% of the applied radioactivity was released as 14CO2 within 3 days, and a trace amount of 3,4‐dichloroaniline was detected. Additionally, the isolate also degraded monolinuron, metobromuron and chlorobromuron, but not diuron, monuron or isoproturon. CONCLUSION: Although strain RA8 can grow on linuron, some elements in the R2A broth seemed significantly to stimulate its growth and ability to degrade. The isolate strictly recognised the structural difference between N‐methoxy‐N‐methyl and N,N‐dimethyl substitution of various phenylurea herbicides. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Background: Repeated applications may have a greater impact on the soil microbial community than a single application of glyphosate. Experiments were conducted to study the effect of one, two, three, four or five applications of glyphosate on soil microbial community composition and glyphosate mineralization and distribution of 14C residues in soil. RESULTS: Fatty acid methyl esters (FAMEs) common to gram‐negative bacteria were present in higher concentrations following five applications relative to one, two, three or four applications both 7 and 14 days after application (DAA). Additionally, sequencing of 16S rRNA bacterial genes indicated that the abundance of the gram‐negative Burkholderia spp. was increased following the application of glyphosate. The cumulative percentage 14C mineralized 14 DAA was reduced when glyphosate was applied 4 or 5 times relative to the amount of 14C mineralized following one, two or three applications. Incorporation of 14C residues into soil microbial biomass was greater following five glyphosate applications than following the first application 3 and 7 DAA. CONCLUSION: These studies suggest that the changes in the dissipation or distribution of glyphosate following repeated applications of glyphosate may be related to shifts in the soil microbial community composition. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Since biological degradation processes are known to be a major driver of the natural attenuation of pesticide residues in the environment, microbial communities adapted to pesticide biodegradation are likely to play a key environmental role in reducing pesticide exposure in contaminated ecosystems. The aim of this study was to assess the diuron‐mineralising potential of microbial communities at a small‐scale watershed level, including a diuron‐treated vineyard (pollution source), its associated grass buffer strip (as a river protection area against pesticide runoff) and the lotic receiver hydrosystem (sediments and epilithon), by using radiorespirometry. RESULTS: Comparison of results obtained at different sampling sites (in both soil and aquatic systems) revealed the importance of diuron exposure in the adaptation of microbial communities to rapid diuron mineralisation in the vineyard but also in the contaminated grass strip and in downstream epilithic biofilms and sediments. CONCLUSION: This study provides strong suggestive evidence for high diuron biodegradation potential throughout its course, from the pollution source to the final receiving hydrosystem, and suggests that, after microbial adaptation, grass strips may represent an effective environmental tool for mineralisation and attenuation of intercepted pesticides. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
The microbial degradation of [14C]paraquat using cultures from two agricultural soils was investigated. The experiments were carried out in the absence of light, under aerobic conditions. Degradation was rapid, with 50% mineralisation to [14C]carbon dioxide occurring within three weeks. HPLC, capillary electrophoresis and mass spectroscopy confirmed that the majority (>85%) of the remaining radiochemical in solution was [14C]oxalic acid, and that no paraquat remained.  相似文献   

10.
Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

11.
Inclusion complex formation of 2,4‐dichlorophenoxyacetic acid (2,4‐D) with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) has been proposed as a way of modifying the behaviour of the pesticide in the soil environment. The present study assesses the effect of complex formation on 2,4‐D physicochemical properties (aqueous solubility, crystallinity and dissolution rate) and its behaviour on soils. The solid complexes were prepared using different methods (spray drying, kneading and heating in a sealed container). To confirm the complex formation in the solid state differential scanning calorimetry, hot stage microscopy and x‐ray diffraction techniques were employed. Complex formation in solution was studied by phase solubility. The presence of HP‐β‐CD increased the 2,4‐D solubility nine times approximately. The apparent stability constant was determined as 98.6 M −1. The dissolution rates of the 2,4‐D/HP‐β‐CD complexes were examined and compared with that of the pure pesticide. The results indicated that the complex may have great utility as a rapid way of dissolving the pesticide. Batch experiments were performed to study the adsorption–desorption of 2,4‐D on soils and the influence of the HP‐β‐CD over these processes. The results showed that HP‐β‐CD could increase the desorption of 2,4‐D previously adsorbed on soils. © 2000 Society of Chemical Industry  相似文献   

12.
The potential to mineralize 2,4‐dichlorophenoxyacetic acid (2,4‐D), mecoprop, isoproturon and terbuthylazine was studied in soil and aquifer chalk sampled at an agricultural field near Aalborg, Denmark. Laboratory microcosms were incubated for 258 days under aerobic conditions at 10 °C with soil and chalk from 0.15–4.45 m below the surface. The [ring‐U14C]‐labeled herbicides were added to obtain a concentration of 6 µg kg?1 and mineralization was measured as evolved [14C]carbon dioxide. The herbicides were readily mineralized in soil from the plough layer, except for terbuthylazine, which was mineralized only to a limited extent. In the chalk, lag periods of at least 40 days were observed, and a maximum of 51%, 33% and 6% of the added 2,4‐D, mecoprop and isoproturon, respectively, were recovered as [14C]carbon dioxide. Large variations in both rate and extent of mineralization were observed within replicates in chalk. No mineralization of terbuthylazine in chalk was observed. As a measure of the general metabolic activity towards aromatic compounds, [ring‐U14C]‐benzoic acid was included. It was readily mineralized at all depths. © 2000 Society of Chemical Industry  相似文献   

13.
Five soil samples were taken from each of five fields with different crop management histories. Three of the fields were in an arable rotation, the fourth field was temporary grassland, and the final field was under permanent grass. Of the three arable fields, two had been cropped with winter wheat in three of the preceding 6 years, and the third had last been cropped with winter wheat once only, 6 years previously. With one exception, the winter wheat had been sprayed with the herbicide isoproturon. The rate of isoproturon degradation in laboratory incubations was strongly related to the previous management practices. In the five soils from the field that had been treated most regularly with isoproturon in recent years, <2.5% of the initial dose remained after 14 days, indicating considerable enhancement of degradation. In the soils from the field with two applications of the herbicide in the past 6 years, residues after 27 days varied from 5% to 37% of the amount applied. In soils from the other three sites, residue levels were less variable, and were inversely related to microbial biomass. In studies with selected soils from the field that had received three applications of isoproturon in the previous 6 years, kinetics of degradation were not first‐order but were indicative of microbial adaptation, and the average time to 50% loss of the herbicide (DT50) was 7.5 days. In selected soils from the field that had received just one application of isoproturon, degradation followed first‐order kinetics, indicative of cometabolism. Pre‐incubation of isoproturon in soil from the five fields led to significant enhancement of degradation only in the samples from the two fields that had a recent history of isoproturon application.  相似文献   

14.
The spatial variability in the mineralisation rate of linuron [N-(3,4-dichlorophenyl)-N'-methoxy-N'-methylurea] was studied within a previously treated Danish agricultural field by sampling soils from eleven different plots randomly distributed across an area of 20 x 20 m. The soils were characterised with respect to different abiotic and biotic properties including moisture content, organic matter content, pH, nutrient content, bacterial biomass, potential for mineralisation of MCPA [(4-chloro-2-methylphenoxy)acetic acid] and linuron. Five soils had a potential for mineralisation of linuron, with 5-15% of the added [ring-U-14C]linuron metabolised to 14CO2 within 60 days at 10 degrees C, while no extensive mineralisation of linuron was observed in the six remaining soils within this period. A TLC analysis of the methanol-extractable residues showed no development of 14C-labelled metabolites from linuron in any of the samples. Multivariate analysis was conducted to elucidate relationships between the intrinsic properties of single soil samples and initial rate of linuron mineralisation. The analysis indicated that important soil parameters in determining the spatial heterogeneity included the C(total)/N(total) ratio, pH and the water-extractable potassium contents, with the first of these highly negatively correlated and the last two highly positively correlated to the initial linuron mineralisation rate. This study shows that enhanced biodegradation of linuron may develop with successive field treatments, but that considerable in-field spatial heterogeneity in the degradation rate still exists. Combined with a parallel enrichment study focused on the underlying microbial processes, the present results suggest that intrinsic soil properties affect the linuron-metabolising bacterial population and thereby determine the spatial variability in the linuron mineralisation activity.  相似文献   

15.
Among 15 soils with different cropping practices, seven which had an history of repeated atrazine applications showed accelerated degradation of this herbicide. By contrast, grassland or agricultural soils with no recorded atrazine application, at least for the last three years, had a low degradation potential. No direct relation was found between the rate of atrazine mineralisation and the size of the microbial biomass. In adapted soils, the amounts of extractable residues were lowered and the very high percentages of radioactivity from [ring-14C]atrazine recovered as [14C]carbon dioxide demonstrated that N-dealkylation and deamidation were the only processes for micro-organisms to derive carbon and energy for heterotrophic growth. Kinetics of microbial 14C accumulation revealed that atrazine ring carbon could be incorporated by direct oxidative condensation with structural components of the bacterial or fungal cell whereas side-chain carbon was preferentially used for biosynthesis of new protoplasmic cell material, as confirmed by the high turnover rate of radiolabelled microbial components. From the determination of the Michaelis–Menten parameters, Vm and Km in the presence of different selective biocides, it was possible to conclude that fungi were probably less active in atrazine degradation than bacteria and that over years the microbial atrazine-degrading community showed an increased efficiency. © 1999 Society of Chemical Industry  相似文献   

16.
Isoxaflutole is a relatively new herbicide used for weed control in maize. The objective of this research was to increase the understanding of the behaviour and environmental fate of isoxaflutole and its diketonitrile (DKN) degradate in soil, including determination of the strength of sorption to soil and whether sorption is affected by ageing. In sandy loam (SL) and silty clay (SiCl) soils, 14C‐isoxaflutole was found to dissipate rapidly after application to soil; recovery ranged from ~42% to 68% at week 0, and recovery had decreased to <10% at week 12. Decreases in 14C isoxaflutole residues over time in SL and SiCl soils are consistent with hydrolysis of isoxaflutole and formation of bound DKN residues in the soil. DKN recovery from freshly treated SiCl and SL soils was 41% to 52%. After a 12‐week incubation in SL soil at pH 7.1 and 8.0, recoveries were similar, ~40%. However, at week 12 in SL soil pH 5.7, DKN recovery decreased to ~28%. DKN recovery in SiCl soil at week 12 was <10%. Increases in sorption of DKN in SL at pH 5.7 and SiCl soil over time indicate that the DKN degradate is tightly bound to the soil and sorption is affected by soil pH and soil type. Sorption of 14C‐DKN in the SiCl soil more than doubled with ageing compared with the lower Kd sorption coefficient values of the SL soils. In the SiCl soil at time 0, the Kd was 0.6; at 1 week, Kd increased to 2; and at the end of the 12‐week incubation period, Kd was 4.5. This strong binding of DKN to the soil may be due to chelate formation in the interlayer of the clay.  相似文献   

17.
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

18.
19.
The persistence of [14C] 2,4-D at a rate equivalent to 1 kg/ha was compared under laboratory conditions in samples of heavy clay, sandy loam, and clay loam at 85% of field capacity moisture and 20 ± 1°C which had either received no pre-treatment, or had been pre-treated for 7 days at the 2 μg/g level with the herbicides benzoylprop-ethyl, diclofop-methyl, dinitramine, flamprop-methyl, nitrofen, picloram, tri-allate, trifluralin, and a combination of tri-allate and trifluralin. The breakdown of [14C] 2,4-D was also studied in the same soils that had similarly received pre-treatments of 2 μg/g of the cereal seed dressing Vitaflo-DB, the insecticide, malathion, and a combination of Vitaflo-DB and malathion. In each soil type, the half-life of the 2,4-D was similar regardless of whether the soil had, or had not, received any pre-treatment, indicating that none of the chemicals investigated adversely affected the soil degradation of 2,4-D.  相似文献   

20.
Carbofuran was incubated in top‐soil and sub‐soil samples from a pesticide‐free site at a range of initial concentrations from 0.1 to 10 mg kg−1. Amounts of the incubated soils were removed at intervals over the subsequent 12 months, and the rate of degradation of a second carbofuran dose at 10 mg kg−1 was assessed. An applied concentration as low as 0.1 mg kg−1 to top‐soil resulted in more rapid degradation of the fresh addition of carbofuran for at least 12 months. The degree of enhancement was generally more pronounced with the higher initial concentrations. When the same study was conducted in sub‐soil samples from the same site, an initial dose of carbofuran at 0.1 mg kg−1 resulted in only small increases in rates of degradation of a second carbofuran dose. However, degradation rates in the sub‐soil samples were, in many instances, considerably greater than in the corresponding top‐soil samples, irrespective of pre‐treatment concentration or pre‐incubation period. Initial doses of 0.5 mg kg−1 and higher applied to sub‐soil successfully activated the sub‐soil microflora. Application of the VARLEACH model to simulate carbofuran movement through the soil profile indicated that approximately 0.01 mg kg−1 of carbofuran may reach a depth of 70 cm 400 days after a standard field application. The results therefore imply that adaptation of the sub‐soil microflora (c 1 m depth) by normal field rate applications of carbofuran is unlikely to occur. In experiments to investigate this in soils exposed to carbofuran in the field, there was no apparent relationship between top‐soil exposure and degradation rates in the corresponding sub‐soils. The results further confirmed that some sub‐soil samples have an inherent capacity for rapid biodegradation of carbofuran. The high levels of variability observed between replicates in some of the sub‐soil samples were attributed to the uneven distribution of a low population of carbofuran‐degrading micro‐organisms in sub‐surface soil. There was no apparent relationship between soil microbial biomass and degradation rates within or between top‐soil and sub‐soil samples. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号