首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
BACKGROUND: Pest resurgence following a pesticide application may occur owing to a stimulatory (hormetic) response to sublethal insecticide concentrations. The objective of the present study was to examine the potential for a greenhouse‐derived red clone of Myzus persicae to exhibit resurgence owing to a hormetic response following a systemic imidacloprid treatment in a bell pepper greenhouse. RESULTS: No differences in mortality and fecundity were observed among apterous adults exposed to sublethal imidacloprid concentrations on excised pepper leaves fed aqueous solutions of imidacloprid. Survival of first‐generation progeny was negatively affected by imidacloprid exposure, yet surviving progeny exhibited no differences in development rates or fecundity from progeny of adults unexposed to imidacloprid. Aphid mortality declined most rapidly in clip cages on pepper leaves at the top of the pepper canopy as compared with leaves present at the middle or bottom of the pepper canopy. CONCLUSION: Imidacloprid decays rapidly in mature pepper plants, resulting in sublethal concentrations in the upper canopy in as little as 4 weeks. Sublethal insecticide concentrations have been implicated in the resurgence of pest populations; however, exposure to sublethal doses of imidacloprid are unlikely to result in pesticide‐induced resurgence of the M. persicae aphid clone examined in this study. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
An attempt was made to achieve low environmental risk control of insect pests using sublethal concentrations of insecticides, enhanced by the effect of high temperatures (>25°C). For each of the insecticides imidacloprid, abamectin, pirimicarb and azadirachtin, the lethal and sublethal concentrations were determined for the green peach aphidMyzus persicae (Sulzer) (Homoptera: Aphididae) and its predator, the lady beetleHarmonia axyridis (Pallas). The lady beetle was more tolerant of all four insecticides, as well as of high temperatures below 40°C, compared with the prey. The joint action of sublethal concentrations of insecticides and high temperatures was investigated to determine the sublethal concentrations and temperatures that would be effective in controlling the aphids, but not detrimental to the beneficial lady beetle. The results suggested a synergistic effect of sublethal insecticide concentrations and high temperatures against the green peach aphid.  相似文献   

3.
Pesticide-induced hormesis may be an alternative mechanism for pest resurgence which is a serious problem in agriculture. Confirmation of the general phenomenon of hormesis may have significant implications for the design of pest control strategies and pest resistance management practices, although this has proved difficult due to the lack of appropriate methodology and the absence of well-defined mechanisms to support the experimental observations. In this study, a model-based approach to describe a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of imidacloprid-induced hormesis in the green peach aphid, Myzus persicae (Sulzer). The results indicated that imidacloprid at low concentrations induced stimulation of fecundity, however, high concentrations inhibition. This was reflected in an inverted U-shaped curve and related to the change of juvenile hormone III (JH III) levels in M. persicae. Fitting the data with quadratic and Weibull functions, which included a parameter for hormesis, showed that the magnitude of the hormetic effect was 31.31% for fecundity and 32.21% for JH III levels. The presence of hormesis in fecundity induced by imidacloprid may be related to the change in JH III levels in M. persicae.  相似文献   

4.
With a combination of biological, analytical, electrophysiological, and video-optical methods, it was possible to show that low concentrations of the new chloronicotinyl insecticide, imidacloprid, strongly affect the behaviour of Myzus persicae (Sulz.), leading eventually to the death of the aphids. Tests to elucidate the biological properties were performed under laboratory conditions with cabbage leaf petioles placed in insecticidal solutions over different periods of time. LC15(24h) values were considered as low concentrations and calculated for imidacloprid and pirimicarb, respectively. Imidacloprid at low concentrations depressed the honeydew excretion of apterous adults of M. persicae by almost 95% within 24 h without affecting the vitality of the majority of aphids, whereas, at equitoxic concentrations, pirimicarb showed much weaker effects on honeydew excretion, which strongly coincided with mortality. In choice experiments with alate morphs of M. persicae over 48 h, their larvae almost always occurred on the untreated control leaf, and were not found on the leaf which was treated systemically with low concentrations of imidacloprid. Apterous aphids placed on cabbage leaves systemically treated with low concentrations of imidacloprid showed nearly the same decrease in weight as untreated starving aphids, suggesting that their death was caused by starvation. Aphids that were moved from imidacloprid-treated to untreated leaves after 24 h began feeding on the latter and showed a steady increase in weight and honeydew production. This suggests that the behavioural response is reversible. Aphids on pirimicarb-treated (equitoxic dose) leaves showed no decrease in weight. Electrical penetration graphs revealed that M. persicae on artificial membranes containing imidacloprid probed more often before feeding than aphids on control sachets. Time-lapse videofilming of apterous adults placed on cabbage leaves revealed a migration from the leaf treated with low concentrations of imidacloprid to an untreated leaf. From the results of these experiments and the observed symptomatology it is possible to postulate two different and dose-dependent modes of action of imidacloprid on M. persicae: (1) the well-known mode of action with visually obvious irreversible symptoms (paralysis, tremor, uncoordinated leg-movement) at field rates, and (2) the reversible starvation response as an antifeedant effect, which is not coupled with typical symptoms of neuronal disorder, at lower concentrations.  相似文献   

5.
BACKGROUND: Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, transmits the causal bacteria of the devastating citrus disease huanglongbing (HLB). Because of the variation in spatial and temporal uptake and systemic distribution of imidacloprid applied to citrus trees and its degradation over time in citrus trees, ACP adults and nymphs are exposed to concentrations that may not cause immediate mortality but rather sublethal effects. The objective of this laboratory study was to determine the effects of sublethal concentrations of imidacloprid on ACP life stages. RESULTS: Feeding by ACP adults and nymphs on plants treated daily with a sublethal concentration (0.1 µg mL?1) of imidacloprid significantly decreased adult longevity (8 days), fecundity (33%) and fertility (6%), as well as nymph survival (12%) and developmental rate compared with untreated controls. The magnitude of these negative effects was directly related to exposure duration and concentration. Furthermore, ACP adults that fed on citrus leaves treated systemically with lethal and sublethal concentrations of imidacloprid excreted significantly less honeydew (7–94%) compared with controls in a concentration‐dependent manner suggesting antifeedant activity of imidacloprid. CONCLUSIONS: Sublethal concentrations of imidacloprid negatively affect development, reproduction, survival and longevity of ACP, which likely contributes to population reductions over time. Also, reduced feeding by ACP adults on plants treated with sublethal concentrations of imidacloprid may potentially decrease the capacity of ACP to successfully acquire and transmit the HLB causal pathogen. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
Myzus persicae is a well known aphid pest, which can transport plant viruses to plants of the nightshade/potato family, namely the Solanaceae, and other food crops. Our aim was to explore the effects of imidacloprid combined with synergistic agents (Beichuang and Jiexiaoli) on Myzus persicae. Different concentrations of imidacloprid combined with synergistic agents were used to treat M. persicae. Biological activity of M. persicae was analyzed under indoor conditions, and the control efficiency of the admixture was determined through field experiments. The penetration rate of the admixture on tobacco leaf and M. persicae was analyzed, and the liquid surface tension and contact angle was measured. Imidacloprid combined with Beichuang and Jiexiaoli showed significant synergistic effects with high control efficacy. Beichuang and Jiexiaoli significantly improved the penetration of imidacloprid into the cuticle of tobacco leaves and the insect body wall. The surface tension and contact angles were abated by synergists. The combination of imidacloprid with Beichuang and Jiexiaoli showed a significant synergistic effect, which can be used for decreasing the dosage of imidacloprid and improving its long-term control efficacy.  相似文献   

7.
BACKGROUND: Glutathione S‐transferases (GSTs) have received considerable attention in insects for their roles in insecticide resistance. Laodelphax striatellus (Fallén) is a serious rice pest. L. striatellus outbreaks occur frequently throughout eastern Asia. A key problem in controlling this pest is its rapid adaptation to numerous insecticides. In this research, nine cDNAs encoding GSTs in L. striatellus were cloned and characterised. RESULTS: The cloned GSTs of L. striatellus belonged to six cytosolic classes and a microsomal subgroup. Exposure to sublethal concentrations of each of the six insecticides, DDT, chlorpyrifos, fipronil, imidacloprid, buprofezin and beta‐cypermethrin, quickly induced (6 h) up‐expression of LsGSTe1. The expression of LsGSTs2 was increased by chlorpyrifos, fipronil and beta‐cypermethrin. Furthermore, exposure of L. striatellus to fipronil, imidacloprid, buprofezin and beta‐cypermethrin increased the expression of the LsGSTm gene after 24 or 48 h. CONCLUSION: This work is the first identification of GST genes from different GST groups in Auchenorrhyncha species and their induction characteristics with insecticide types and time. The elevated expression of GST genes induced by insecticides might be related to the enhanced tolerance of this insect to insecticides and xenobiotics. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Parthenogenetic clones of the green peach aphid, Myzus persicae (Sulzer), and the cotton aphid, Aphis gossypii Glover, were tested with the anthranilic diamide insecticide cyantraniliprole (i.e. DuPont? Cyazypyr?) in systemic‐uptake bioassays to investigate potential for cross‐resistance conferred by mechanisms of insecticide resistance to organophosphates, carbamates and pyrethroids and, in the case of M. persicae, reduced sensitivity to neonicotinoids. These data were compared with the response of field samples of M. persicae and A. gossypii collected from around Europe. RESULTS: Cyantraniliprole was not cross‐resisted by any of the known insecticide resistance mechanisms present in M. persicae or A. gossypii. The compound was equally active against resistant and susceptible aphid strains. The responses of the M. persicae field samples were very consistent with a maximum response ratio of 2.9 compared with a standard laboratory clone. The responses of the A. gossypii field samples were more variable, although a majority of the responses were not statistically different. CONCLUSION: Cyantraniliprole is currently the only anthranilic diamide (IRAC MoA 28) insecticide targeting aphid species such as M. persicae and A. gossypii. There is no evidence to suggest that the performance of this compound is affected by commonly occurring mechanisms that confer resistance to other insecticide chemistries. Cyantraniliprole is therefore a valuable tool for managing insecticide resistance in these globally important pests. Copyright © 2011 Society of Chemical Industry  相似文献   

9.

BACKGROUND

The prophylactic use of seeds treated with neonicotinoid insecticides remains an important means of controlling aphid pests in canola (Brassica napus) crops in many countries. Yet, one of the most economically important aphid species worldwide, the peach potato aphid (Myzus persicae), has evolved mechanisms which confer resistance to neonicotinoids, including amplification of the cytochrome P450 gene, CYP6CY3. While CYP6CY3 amplification has been associated with low-level resistance to several neonicotinoids in laboratory acute toxicity bioassays, its impact on insecticide efficacy in the field remains unresolved. In this study, we investigated the impact of CYP6CY3 amplification on the ability of M. persicae to survive neonicotinoid exposure under laboratory and semi-field conditions.

RESULTS

Three M. persicae clones, possessing different copy numbers of CYP6CY3, were shown to respond differently when exposed to the neonicotinoids, imidacloprid and thiamethoxam, in laboratory bioassays. Two clones, EastNaernup209 and Osborne171, displayed low levels of resistance (3–20-fold), which is consistent with previous studies. However, in a large-scale semi-field trial, both clones showed a surprising ability to survive and reproduce on B. napus seedlings grown from commercial rates of neonicotinoid-treated seed. In contrast, an insecticide-susceptible clone, of wild-type CYP6CY3 copy number, was unable to survive on seedlings treated in the same manner.

CONCLUSION

Our findings suggest that amplification of CYP6CY3 in M. persicae clones substantially impairs the efficacy of neonicotinoid seed treatments when applied to B. napus. These findings highlight the potentially important real-world implications of resistances typically considered to be ‘low level’ as defined through laboratory bioassays. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

10.
Biological characterization of sulfoxaflor, a novel insecticide   总被引:1,自引:0,他引:1  
BACKGROUND: The commercialization of new insecticides is important for ensuring that multiple effective product choices are available. In particular, new insecticides that exhibit high potency and lack insecticidal cross‐resistance are particularly useful in insecticide resistance management (IRM) programs. Sulfoxaflor possesses these characteristics and is the first compound under development from the novel sulfoxamine class of insecticides. RESULTS: In the laboratory, sulfoxaflor demonstrated high levels of insecticidal potency against a broad range of sap‐feeding insect species. The potency of sulfoxaflor was comparable with that of commercial products, including neonicotinoids, for the control of a wide range of aphids, whiteflies (Homoptera) and true bugs (Heteroptera). Sulfoxaflor performed equally well in the laboratory against both insecticide‐susceptible and insecticide‐resistant populations of sweetpotato whitefly, Bemisia tabaci Gennadius, and brown planthopper, Nilaparvata lugens (Stål), including populations resistant to the neonicotinoid insecticide imidacloprid. These laboratory efficacy trends were confirmed in field trials from multiple geographies and crops, and in populations of insects with histories of repeated exposure to insecticides. In particular, a sulfoxaflor use rate of 25 g ha?1 against cotton aphid (Aphis gossypii Glover) outperformed acetamiprid (25 g ha?1) and dicrotophos (560 g ha?1). Sulfoxaflor (50 g ha?1) provided a control of sweetpotato whitefly equivalent to that of acetamiprid (75 g ha?1) and imidacloprid (50 g ha?1) and better than that of thiamethoxam (50 g ha?1). CONCLUSION: The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross‐resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap‐feeding insect pests. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
The toxicity of pirimicarb, imidacloprid, dimethoate, lambda-cyhalothrin, flonicamid and spinosad to the two-spot ladybird, Adalia bipunctata, was evaluated in a laboratory study. Susceptibility of fourth instars and female adults was assessed by measuring toxicity via residual contact and ingestion through feeding on contaminated green peach aphids (Myzus persicae). Flonicamid and spinosad had no lethal effects on larvae and female adults. Pirimicarb was harmless to the predator by ingestion exposure but showed some residual toxicity at high concentrations to both larval and adult stages. Imidacloprid was highly toxic to the larval stage by residual and ingestion exposure but caused very low adult mortality when ingested through contaminated prey. Dimethoate and lambda-cyhalothrin were highly toxic to both the larval and adult stages of the ladybird. Our findings indicate that pest management programs in agricultural crops using dimethoate, lambda-cyhalothrin and, to a lesser degree, imidacloprid, are detrimental to A. bipunctata, whereas pirimicarb, flonicamid and spinosad are more compatible with the use of this predator.  相似文献   

12.
A French strain of the tobacco aphid Myzus nicotianae Blackman (Homoptera: Aphididae), strain FR, showed high tolerance to imidacloprid in short-term (48-h) oral ingestion bioassays when compared to a susceptible reference strain of Myzus persicae, strain NS. The resulting tolerance factors were >50. Measures of the contact activity of imidacloprid by the FAO dip method failed to detect these high factors of tolerance. The tolerance factor was in general <10 when using the dip method. The resulting difference between tolerance factors could be attributed to a behavioural component to fitness between strain FR and strain NS as further experiments revealed. When measuring the effect of systemically applied imidacloprid on honeydew excretion, a 50% reduction occurred in both strain FR and strain NS at nearly the same concentration of imidacloprid, providing evidence for a similar antifeedant response in both strains. Starvation experiments revealed that the French strain was able to survive approximately 24 h longer than a reference laboratory strain of M. persicae. This result coincided with the fact that systemically applied imidacloprid showed the same aphicidal potential against strain FR after three days as against strain NS after two days, i.e. 24 h later. After rearing in the laboratory for six months the French strain of M. nicotianae lost its hardiness and also its apparent ability to tolerate imidacloprid. However, strain FR was a heterogeneous field strain and it is possible that a susceptible variant out-reproduced a more hardy variant. These findings indicate that the type of bioassay is very important when assessing aphid populations for resistance against the chloronicotinyl insecticide imidacloprid, because of its distinct mode of action. It is obvious that an aphid dip test, i.e. FAO dip test, produces more reliable results than the different kinds of short-term oral ingestion bioassays, because of the reversible behavioural changes induced by imidacloprid after oral uptake. Thus a short-term oral ingestion bioassay (≤48 h) is not recommended for precise detection of possible resistance of Myzus sp. to imidacloprid, although this mode of uptake for imidacloprid might be sometimes more realistic in terms of field behaviour. The ideal test to generate most accurate data would be a slightly longer (72-h) feeding bioassay, perhaps used in conjunction with a dip test. The possible influence of the results on resistance monitoring is discussed. © 1997 SCI.  相似文献   

13.
BACKGROUND: Imidacloprid is the primary insecticide for controlling the tobacco‐adapted form of the green peach aphid (TGPA), Myzus persicae (Sulzer), a major pest of tobacco worldwide. This study used leaf‐dip bioassays to assess TGPA resistance to imidacloprid in the eastern United States from 2004 through 2007. RESULTS: When combined over the 4 year study, 18, 14 and 3% of the TGPA had imidacloprid resistance ratios (RRs) of 10–20‐fold, 20–30‐fold and 30–90‐fold, respectively, compared with the most susceptible colony tested. This indicates that some colonies have developed moderate levels of resistance to imidacloprid. A colony collected near Clayton, North Carolina, had the highest RR of 91 (LC50 value = 31 mg L?1). This resistance declined for six tests over a 3 year period in the laboratory culture from >130‐fold RR (LC50 = 48 mg L?1) to 40‐fold RR (LC50 = 15 mg L?1). Over the same period, the most susceptible colony and a standard colony not exposed to imidacloprid for over 7 years had consistently low LC50 values. CONCLUSION: Moderate levels of resistance to imidacloprid are noticed among TGPA colonies from the eastern United States. The variation in resistance indicates that the factors responsible are present in the populations at low frequencies and are just not enough to cause field failures yet. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Toxicity tests reveal that the zebrafish (Brachydanio rerio) is very sensitive to malathion, an organophosphorus insecticide, and 24 to 96-h LC50 values showed a gradual decrease as the exposure time was increased. Zebrafish exposed to long-term sublethal concentrations failed to spawn and invariably exhibited skeletal deformities. Possible causes of the reduced gonadosomatic index and skeletal deformities are discussed.  相似文献   

15.
Bioassays of nicotine and imidacloprid against clones of Myzus persicae (Sulzer) and Myzus nicotianae (Blackman) from around the world demonstrated that some had low levels of resistance to both compounds. This was expressed not only as a reduced mortality, but more markedly as differential inhibition of feeding by imidacloprid concentrations in the parts per billion range. Such concentrations also reduced aphid fecundity by inhibiting the production and viability of nymphs, and this effect was more marked for susceptible aphids than for those showing reduced direct lethal and antifeedant effects.  相似文献   

16.

Background

Although the pupal parasitoid Trichopria drosophilae is used in conservative and augmentative biocontrol of Drosophila suzukii infestations, current pest management strategies mostly rely on multiple insecticide applications. In this context, the aim of the study was to investigate the baseline toxicity of nine insecticides on D. suzukii larvae and their multiple sublethal effects (LC10) on immature stages of the pest feeding on contaminated diet and T. drosophilae developing within the intoxicated host.

Results

Chlorpyriphos and azadirachtin showed the lowest and the highest LC10, the values of which were 9.78 × 1013 and 1.46 × 103 times lower than their recommended label field rate, respectively. Among tested insecticides, imidacloprid, malathion and dimethoate were the only treatments that did not affect the juvenile development time of D. suzukii, while spinosad and the organophosphates chlorpyriphos and dimethoate did not influence fly pupal size. No sublethal effects were recorded on T. drosophilae degree of infestation (DI) and juvenile development time. On the contrary, cyazypyr and dimethoate negatively affected the success of parasitism (SP) and the number of progeny of the pupal parasitoid, in association with malathion for the first parameter and spinosad for the fertility. Compared to the untreated control, more female progeny emerged following azadirachtin exposure, while dimethoate caused the opposite effect. Imidacloprid, lambda-cyhalothrin and spinetoram decreased hind tibia length of emerged parasitoids.

Conclusion

This study provides new insights on the (eco)toxicological profile of nine insecticides and new information needed to support the deployment of T. drosophilae in the field within the sustainable management techniques against D. suzukii. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

17.

Control of the Mal de Río Cuarto virus (MRCV) and its planthopper vector Delphacodes kuscheli was studied on maize hybrids whose seeds had been treated with systemic insecticides. Laboratory tests were performed to determine the effects of seed treatments with insecticides (acephate, carbofuran, imidacloprid) on the survival of the planthopper. Field experiments using four maize hybrids whose seeds had been treated with the insecticides were performed to establish the effect of the latter on MRCV incidence and severity, and on grain yield. MRCV infection was confirmed by DAS-ELISA. Carbofuran was the most effective insecticide in laboratory tests, independently of the hybrid tested, followed by imidacloprid and acephate. MRCV incidences were high in all treatments in the field test under natural planthopper infestations. Disease severity data analysis indicated that the insecticide - hybrid interaction was not significant. Maize hybrid Dekalb 664 and the imidacloprid treatments had the lowest severity means among the four hybrids and three insecticide treatments, respectively. Data for grain yield showed that the insecticide - hybrid interaction was significant and imidacloprid was generally the most effective in the field experiments. A negative correlation was observed between the mean disease severity index and mean grain yield. The results suggest that if an effective systemic insecticide is applied as a seed coating, it may be possible to obtain good control of D. kuscheli, decrease MRCV severity and increase grain yield under field conditions in areas at risk for MRCV.  相似文献   

18.
The metabolism of the chloronicotinyl insecticide imidacloprid is strongly influenced by the method of application. Whilst in foliar application most of the residues on the leaf surface display unchanged parent compound, most of the imidacloprid administered to plants by soil application or seed treatment is metabolized more or less completely, depending on plant species and time. The present study revealed that certain metabolites of imidacloprid which have been described in crop plants are highly active against aphid pests in different types of bioassays. Some of these metabolites showed a high oral activity against the green peach aphid (Myzus persicae), and the cotton aphid (Aphis gossypii). The aphicidal potency of the metabolites investigated was weaker in aphid dip tests than in oral ingestion bioassays using artificial double membranes. The most active plant metabolite was the imidazoline derivative of imidacloprid. The LC50 values of this metabolite for M. persicae and A. gossypii in oral ingestion bioassays were in the lower ppb-range, i.e. 0·0044 and 0·0068 mg litre-1, respectively. Most of the other reported metabolites showed much weaker activity. Compared to imidacloprid, the imidazoline derivative showed superior affinity to housefly (Musca domestica) head nicotinic acetylcholine receptors, while all other metabolites were less specific than imidacloprid. It seems possible that, after seed treatment or soil application, a few of the biologically active metabolites arising are acting in concert with remaining levels of the parent compound imidacloprid, thus providing good control and long-lasting residual activity against plant-sucking pests in certain crops. © 1998 SCI.  相似文献   

19.
It is known from laboratory studies that tobacco-associated forms of Myzus persicae (Sulzer) and the closely related tobacco aphid Myzus nicotianae (Blackman) are often somewhat less susceptible to imidacloprid than non-tobacco strains of M. persicae. Choice tests (floating leaf technique) showed that tobacco aphids were also less susceptible to the antifeedant potential of imidacloprid in contact bioassays. Synergists like piperonyl butoxide or DEF did not enhance the susceptibility of tobacco-associated morphs of Myzus ssp. to imidacloprid, thus providing evidence that neither oxidative detoxication nor hydrolytic metabolization took place. However, in an attempt to study the influence of endosymbiotic bacteria on the efficacy of imidacloprid, we allowed small populations of tobacco aphids to feed on diets containing the antibiotic chlortetracycline prior to imidacloprid treatment. While the effectiveness of imidacloprid, i.e. lower LC50 values, could be improved in all strains, including the susceptible reference strain, there was no change in overall tolerance factors. In order to investigate any possible alteration of the target site, the affinity of imidacloprid and nicotine to nicotinic acetylcholine receptors in whole-aphid homogenates was measured. All strains (and clones) showed the same high-affinity binding sites and no detectable difference. Studies using the FAO dip method revealed that the lower susceptibility of M. nicotianae is not restricted to chloronicotinyls like imidacloprid or acetamiprid, because other insecticides with different modes of action such as pymetrozine and fipronil were also affected in laboratory studies. It is considered that the observed tolerance to chloronicotinyls in certain strains of Myzus ssp. is a natural variation in response, probably not coupled with any known mechanism of resistance in this species complex. © 1998 SCI  相似文献   

20.
The tomato zonate spot virus (TZSV) is responsible for substantial yield losses in vegetables, tobacco and other cash crops in China in recent years. The western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae), is the main vector of TZSV in Yunnan Province. Because controlling the population of insect vectors is the most efficient way to prevent epidemics of viral diseases, we conducted laboratory assays to assess the potential of using spirotetramat as an alternative to imidacloprid in controlling F. occidentalis. Our results demonstrated that spirotetramat was significantly more lethal than imidacloprid to F. occidentalis at different concentrations. The LC30, LC50 and LC90 values of spirotetramat were all much lower than those of imidacloprid after the same time of treatment. Frankliniella occidentalis was more sensitive when treated with spirotetramat than imidacloprid at the concentrations of 500, 250, 125 and 62.5mg/L, and the median lethal concentrations (LC50) were 285.53, 82.24 and 11.19mg/L at 12, 36 and 72 hours after treatment, respectively. Spirotetramat caused 100% mortality of F. occidentalis at 500 and 250 mg/L after 48 hours treatment, and at the lowest concentration 125 mg/L at 72 hours after treatment, respectively. Field experiments carried out elsewhere have confirmed our findings. Together they allow us to conclude that spirotetramat is a promising pesticide for the control F. occidentalis in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号