首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective use of hydrogen peroxide as a chemical sterilant in mushroom production and selection of cultivable mushroom strains for tropical conditions require knowledge of the genetic diversity in the tolerance of the strains to hydrogen peroxide and to high temperatures. Therefore, three experiments were conducted to examine the sensitivity of Pleurotus mycelium to temperature and hydrogen peroxide. In Experiment 1, eight Pleurotus strains, which included two Pleurotus sajor-caju strains, three Pleurotus ostreatus strains, Pleurotus salmoneo stramineus, Pleurotus cornicopae and Pleurotus eryngii were cultured aseptically on agar at 25, 30 and or 35 °C. In Experiment 2, the eight strains were cultured aseptically on agar at six hydrogen peroxide concentrations (0–0.1%, v/v) at 27 °C. In Experiment 3, P. sajor-caju strain 1, a fast growing strain, was cultured non-asceptically at six hydrogen peroxide concentrations (0–0.1%, v/v) at 27 °C. In Experiment 1, mycelial growth was maximal at 25–30 °C, whereas a temperature of 35 °C was detrimental to mycelial growth except in one strain. At the highest temperature tested (35 °C), the relative mycelial growth rate (% of maximum) ranged from 6 to 91%, indicating marked differences in tolerance of the strains to high temperature. In Experiment 2, the mycelial growth rate in all strains increased when hydrogen peroxide was increased from 0 to 0.001% (v/v), and then decreased with further increments in hydrogen peroxide concentration. The strains differed markedly in sensitivity to hydrogen peroxide. The hydrogen peroxide concentration associated with 50% reduction in maximum mycelial growth rate due to toxicity (EC50) ranged from 0.009 to 0.045% (v/v). It was noted that P. sajor-caju strain 1 which was the most tolerant strain to high temperature was also the most tolerant to high hydrogen peroxide concentration. In Experiment 3, involving non-aseptic culture of P. sajor-caju strain 1, bacterial growth was observed at concentrations ≤0.016%, whilst the upper hydrogen peroxide concentration limit for fungal growth was 0.025% (v/v). The highest hydrogen peroxide concentrations 0.016% (v/v) and 0.025% (v/v) in which bacteria and fungi, respectively, were observed to grow were within the concentration range 0.009–0.028% (v/v) that was found in Experiment 2 to cause a 50% reduction in mycelia growth in six of the eight Pleurotus strains tested. Use of hydrogen peroxide as a chemical sterilant in conjunction with strains highly tolerant of its toxicity offers a very cheap method of producing spawn as well as the mushrooms, and opens up opportunities for poor rural people.  相似文献   

2.
During 2003 and 2005, plant growth promoting effects of two Bacillus strains OSU-142 (N2-fixing) and M3 (N2-fixing and phosphate solubilizing) were tested alone or in combinations on organically grown primocane fruiting raspberry (cv. Heritage) plants in terms of yield, growth, nutrient composition of leaves and variation of soil nutrient element composition in the province of Erzurum, Turkey. The results showed that Bacillus M3 treatment stimulated plant growth and resulted in significant yield increase. Inoculation of raspberry plant roots and rhizosphere with M3 and/or OSU-142 + M3, significantly increased yield (33.9% and 74.9%), cane length (13.6% and 15.0%), number of cluster per cane (25.4% and 28.7%) and number of berries per cane (25.1% and 36.0%) compared with the control, respectively. In addition, N, P and Ca contents of raspberry leaves with OSU-142 + M3 treatment, and Fe and Mn contents of the leaves of raspberry with M3 and OSU-142 + M3 applications significantly improved under organic growing conditions. Bacterial applications also significantly effected soil total N, available P, K, Ca, Mg, Fe, Mn, Zn contents and pH. Available P contents in soil was determined to be increased from 1.55 kg P2O5/da at the beginning of the study to 2.83 kg P2O5/da by OSU-142, to 5.36 kg P2O5/da by M3 and to 4.71 kg P2O5/da by OSU-142 + M3 treatments. The results of this study suggest that Bacillus M3 alone or in combination with Bacillus OSU-142 have the potential to increase the yield, growth and nutrition of raspberry plant under organic growing conditions.  相似文献   

3.
Floral initiation of a wild strawberry strain, Fragaria chiloensis CHI-24-1, is strongly induced by a 24 h day-length (DL) treatment for 40 days consisting of natural daylight and continuous lighting at night by an incandescent lamp. To use the characteristics of floral initiation in CHI-24-1 as a genetic resource for breeding of cultivated strawberries, the photoperiodic reactions of sexual and asexual reproductive growth under various temperature conditions should be clarified. For that purpose, we examined: (1) floral initiation, inflorescence emergence and runner production seasons of CHI-24-1 plants grown under natural climatic conditions in an open field at the Faculty of Agriculture, Kagawa University and (2) the effects of various DLs and temperatures on floral initiation and runner production of CHI-24-1 plants. When the CHI-24-1 plants were grown under natural conditions, the floral initiation, inflorescence emergence and runner production were observed, respectively, in late autumn, spring, and from spring to autumn. Floral initiation of CHI-24-1 plants was induced strongly by 24 h DL at mean temperatures greater than 20 °C. The maximum floral initiation rates were 90% in the parent plant and 94% in the daughter plants, which were linked by runners to the parent plant. The floral initiation of the daughter plants occurred under 20, 22, and 23 h DL at mean temperatures greater than 20 °C, but not for the parent plants. Floral initiation was induced in 100% of the parent plants by the 8 h DL and the lowest mean-temperature conditions. Results of those experiments indicated that CHI-24-1 was an absolute long day plant having critical DL of about 20 h at mean temperatures greater than 20 °C, even though it was a June-bearing strawberry plant. In addition, CHI-24-1 was a facultative short-day plant at mean temperatures of less than 15 °C.  相似文献   

4.
A greenhouse study was conducted to evaluate the ameliorative effects of zinc (0, 5, 10 and 20 mg Zn kg−1 soil) under saline (800, 1600, 2400 and 3200 mg NaCl kg−1 soil) conditions on pistachio (Pistacia vera L. cv. Badami) seedlings’ photosynthetic parameters, carbonic anhydrase activity, protein and chlorophyll contents, and water relations. Zn deficiency resulted in a reduction of net photosynthetic rate and stomatal conductance. The quantum yield of photosystem II was reduced at zinc deficiency and salt stress. Zinc improved plant growth under salt-affected soil conditions. Increasing salinity in soil under Zn-deficient conditions, generally decreased carbonic anhydrase activity, protein, chlorophyll a and b contents. However, these adverse effects of salinity alleviated by increasing Zn levels up to 10 mg kg−1 soil. Under increasing salinity, chlorophyll a/b ratio significantly increased. Zinc treatment influenced the relationship between relative water content and stomatal conductance, and between leaf water potential and stomatal conductance. It concluded that Zn may act as a scavenger of ROS for mitigating the injury on biomembranes under salt stress. Adequate Zn also prevents uptake and accumulation of Na in shoot, by increasing membrane integrity of root cells.  相似文献   

5.
The effects of plant growth promoting bacteria (PGPB) on the fruit yield, growth and nutrient element content of strawberry cv. Fern were investigated under organic growing conditions between 2006 and 2008. The experimental plot was a completely randomized design with 3 replicates. Three PGPB strains (Pseudomonas BA-8, Bacillus OSU-142 and Bacillus M-3) were used alone or in combination as bio-fertilizer agent in the experiment. Data through 3 years showed that the use of PGPB significantly increased fruit yield, plant growth and leaf P and Zn contents. Root inoculation of M3 and floral and foliar spraying of OSU-142 and BA-8 bacteria stimulated plant growth resulting in significant yield increases. M3 + BA-8, BA-8 + OSU-142, M3, M3 + OSU-142 and BA-8 applications increased cumulative yield by 33.2%, 18.4%, 18.2%, 15.3% and 10.5%, respectively. Number of fruits per plant significantly increased by the applications of M3 + BA-8 (91.73) and M3 (81.58) compared with the control (68.66). In addition, P and Zn contents of strawberry leaves with bacterial inoculation significantly increased under organic growing conditions. Available P contents in soil were increased from 0.35 kg P2O5/da at the beginning of the study to 2.00, 1.97 and 1.82 kg P2O5/da by M3 + OSU-142, M3 + BA-8 and M3 + BA-8 + OSU-142 applications, respectively. Overall, the results of this study suggest that root inoculation of Bacillus M3 alone or in combination with spraying Bacillus OSU-142 or Pseudomonas BA-8 have the potential to increase the yield, growth and nutrition content of strawberry plant under organic growing conditions.  相似文献   

6.
The objective of this study is to investigate the response of screening, and selection of novel indigenous AM fungal species and Azotobacter chroococcum strains for inoculating apple under different soil disinfestations and moisture conservation mulch practices for sustainable nursery management. Two local AM fungal species namely, Glomus fasciculatum (Thaxter sensu Gerdemann) and Glomus mosseae (Nicol. & Gerd.), and two strains of A. chroococcum viz., A. chroococcum strain-I (AZ1) and A. chroococcum strain-II (AZ2) were inoculated at nursery stage under soil solarization, chemical disinfestation and natural soil conditions at four different mulch materials namely, black plastic mulch (BPM), and organic mulches, i.e. grass mulch (GM); cover crops (CC); green manuring + clean cultivation (Gm + Cc). The comparative performance of the seedlings on the impact of local AM species and A. chroococcum strains on growth characteristics, microbial population, root colonization and leaf nutrient status was evaluated. The inoculation of seedlings to G. fasciculatum and AZ1 increased all growth characteristics (plant height, stem diameter, leaf area and total root length), microbial consortium of the rhizosphere soil and leaf N, P, K and Zn content in all those plots where soil solarization and black plastic mulching was used followed by chemical disinfestations and natural soil conditions at all other mulch types used. These findings suggested that the soil inoculation of G. fasciculatum and AZ1 strain to seeds and/or the saplings under soil solarization with black plastic mulch attained a desirable plant height and become ready for grafting which however saved a period of 1 year for nursery management compared to traditional nursery raising practice, and thus, it may be a viable and feasible approach to maintain soil productivity under nutrient limited soils for sustainable apple nursery production under temperate rain-fed conditions.  相似文献   

7.
The aim of this work is to evaluate the potential of asparagus (Asparagus officinalis L.) straw as a raw material for cultivating Agaricus blazei Murrill (ABM). On non-supplemented asparagus straw substrate, the yield and biological efficiency (BE) of ABM were respectively 6.7 kg/m2 and 30.2%. Addition of appropriate amounts of cottonseed hull or cow manure to the substrate increased the mushroom yield significantly. The mushroom yield on asparagus straw + cottonseed hull substrate was higher than that on asparagus straw + cow manure substrate. Maximum mushroom yield (9.8 kg/m2) and BE (44.1%) were obtained on the substrate consisting of asparagus straw (600 kg) and cottonseed hull (300 kg). No significant differences were found in either the dry matter contents or the polysaccharides contents of fruit bodies among the treatments.  相似文献   

8.
Plant height, a vigor trait, in 1-year-old seedlings made from Japanese pear (Pyrus pyrifolia) cultivars/selections was measured using 994 individuals from 29 families. The family mean of plant height was negatively correlated (r = −0.72**) to the inbreeding coefficients (F). The regression of the family mean (Fm) on the F value (Fm = 130 − 104F) showed that inbreeding depressions were 8%, 20%, and 40% for F = 0.1, 0.25, and 0.5, respectively. According to the regression, the family mean at F = 0 was estimated at 130 cm. These results showed that the vigor was greatly influenced by inbreeding in Japanese pear. Within-family variances, the genetic segregation of offspring in a family, differed according to family. The proportions of offspring with plant height above 130 cm (estimated Fm for F = 0) were extremely low, i.e., 0–17% for 0.5 ≤ F < 0.60 and 0–8% for F = 0.75.  相似文献   

9.
Low seed germination is a major problem in commercial rose propagation and breeding and is species-dependent. The present work selected four rose species previously un-examined to explore effective methods for improving seed germination and the relevant dormancy mechanism and its levels in seven experiments. The results showed that both pulp and achenes from the four rose shrubs had chemical substances that significantly inhibited seed germination with the inhibitory effect was more pronounced in pulp extract than of achenes. Single treatments of H2SO4 scarification, short-term cold stratification (<16 weeks) or warm stratification were less effective in breaking dormancy as indicated by lower germination index than their combinations. Comprehensive comparisons showed that among the six treatments the most effective for breaking dormancy was H2SO4 scarification followed by warm plus cold stratification, then H2SO4 scarification followed by cold stratification and finally warm plus cold stratification. Scarification with H2SO4 for 2–4 h ordinal followed by warm stratification at 20 °C for 4 weeks and cold stratification at 5 °C for 8 weeks was the best pretreatment for increasing seed germination percentage for Rosa multibracteata (81.4 ± 2.9%), Rosa hugonis (13.1 ± 6.0%), and Rosa filipes (62.7 ± 5.7%); and H2SO4 scarification for 4 h followed by cold stratification at 5 °C for 12 weeks was the best pretreatment for Rosa sericea (46.7 ± 8.7%). Our results suggest that these four species have only physiological dormancy caused by integrative roles of pulp, pericarp and embryo. The level of physiological dormancy was ranked as R. hugonis > R. sericea > R. filipes > R. multibracteata.  相似文献   

10.
Using Agrobacterium mediated transient expression method, plant bivalent expression vector pBI121 containing GUS as a report gene was transformed into lettuce (Lactuca sativa). Through designed orthogonal analysis, intact lettuce leaves infiltrated with 200 μM acetosyringone and 0.8 OD600 bacterial suspensions under vacuum for 30 min, then co-cultured at 24 °C for 6 ds produced a maximum GUS protein of 2.5% TSP with 21.39 nmol mg−1 min−1 MU activity, which was 19 times of the control (1.31 nmol mg−1 min−1 MU). Employed these optimized conditions HuIFN-beta was expressed in lettuce leaves. Western blot and antivirus bioactivity analyses confirmed the HuIFN-beta achieved by agrobacterium infiltration had a high biological activity (3.1 × 104 IU/mL). To our knowledge, it is the first detailed orthogonal optimizing study of Agrobacterium mediated transient expression and the first report on the production of the biologically active therapeutic proteins produced by Agrobacterium mediated transient expression in lettuce. In summary, transient expression by Agrobacterium vacuum infiltration can be adopted as an efficient, inexpensive and small-scaled plant expression system for therapeutic protein production.  相似文献   

11.
The effects of mean daily temperature (MDT) and mean photosynthetic daily light integral (MDLI) on flowering during the finish stage of two petunia (Petunia × hybrida) cultivars were quantified. Petunia ‘Easy Wave Coral Reef’ and ‘Wave Purple’ were grown in glass-glazed greenhouses at 14–23 °C or 14–26 °C and under 4–19 mol m−2 d−1 with a 16-h photoperiod. The flower developmental rate was predicted using a model that included a linear MDT function with a base temperature multiplied by an exponential MDLI saturation function. The flower developmental rate increased and time to flower decreased as MDT increased within the temperature range studied. For example, under a MDLI of 12 mol m−2 d−1, as MDT increased from 14 to 23 °C, time to flower of ‘Easy Wave Coral Reef’ and ‘Wave Purple’ decreased from 51 to 22 d and 62 to 30 d, respectively. Flower developmental rate increased as MDLI increased until saturation at 14.1–14.4 mol m−2 d−1. Nonlinear models were generated for effects of MDT and MDLI on flower bud number and plant height at flowering. The number of flower buds at flowering increased as MDT decreased and MDLI increased. For example, at an MDT of 14 °C with 18 mol m−2 d−1, plants had 2.5–2.9 times more flower buds than those grown at 23 °C and 4 mol m−2 d−1. Models were validated with an independent data set, and the predicted time to flower, flower bud number, and plant height were within ±7 d, ±20 flowers, and ±4 cm, respectively, for 96–100%, 62–87%, and 93–100% of the observations, respectively. The models could be used during greenhouse crop production to improve scheduling and predict plant quality of these petunia cultivars.  相似文献   

12.
This study was initiated to investigate the differences in germination percentages and rates between Corylopsis coreana Uyeki and Corylopsis sinensis var. calvescens Rehder & E.H. Wilson following a warm stratification (WS) and cold stratification (CS), and to study the effect of different WS temperatures interacting with different durations of CS. Warm stratification at 10 °C, 15 °C, 20 °C, and 25 °C was given for 1 month (1 M 10 °C, 15 °C, 20 °C, and 25 °C WS) followed by 0 M, 1 M, 2 M, and 3 M of CS at 5 °C (0 M, 1 M, 2 M, 3 M CS) and seeds were germinated in an air conditioned greenhouse maintained at 18.5 °C/18 °C. On average, less than 1% of C. coreana seeds germinated when sown without any WS and CS or with 1 M 15 °C, 20 °C, and 25 °C WS without CS treatment. However, 26% C. coreana seeds germinated after 1 M 10 °C WS without any CS treatment. Germination was not affected by WS temperatures when followed by 2 M 5 °C CS. It is concluded that C. coreana exhibited low seed germination at 10 °C and that this temperature could be considered the upper limit of CS for C. coreana. Only 2 M CS was required for more than 90% seeds to germinate. However, C. sinensis var. calvescens required longer than 3 M CS for more than 29% seeds to germinate. This clearly shows that there is an interspecific variation in optimum dormancy-breaking requirements.  相似文献   

13.
Hairy roots were induced from leaf-derived calli of lavandin (Lavandula × intermedia Emeric ex Loisel.) by infection with wild-type strains of Agrobacterium rhizogenes, A-5 (MAFF 02-10265) and A-13 (MAFF 02-10266). A-5-inoculated calli formed hairy roots more efficiently than A-13 ones. The transgenic shoots could be obtained from hairy root segments mediated by each Agrobacterium strain. However, different plant growth regulators were required for efficient adventitious shoot formation in each strain. In A-5, the most efficient adventitious shoot formation rate of 23.8% was observed in a medium with 4.4 × 10−6 M of 6-benzylaminopurine. On the other hand, a significantly higher rate of 13.2% was detected in a medium with 4.0 × 10−7 M of N-(2-chloro-4-pyridyl)-N′-phenylurea in A-13. Most of the regenerated plants showed dwarfism with closed internodes and extensive lateral branching, which were typical characteristics of ‘hairy root syndrome’. On the other hand, only nine of the 45 regenerated plants formed flower buds in early June, a delay of about one month compared with nontransgenic regenerated plants. The floral stalks and spikes of these plants were very short, resulting in a compacted form. Many regenerants showed a significantly lower productivity of essential oil than nontransgenic regenerants. Moreover, the relative percentage of the linalyl-cation-derived compounds, linalool and linalyl acetate, decreased in most of the regenerated plants. Compact plants with the ability of flower bud formation are assumed to be valuable not only for lavandin breeding, but also for clarifying the interaction between rol genes expression and essential oil production.  相似文献   

14.
Nutrient elements and lipoxygenase (LOX) activity were determined in strawberry fruit to establish a relationship, if it exists, between nutrient ratios (N/Ca and K/Ca), and lipoxygenase activity with albinism disorder. About 33% strawberry fruit were affected by albinism. Etna had highest incidence of albinism (48.6%) and Sweet Charlie the lowest (16.2%). Dry matter content (%) was lower in albino fruit (5.23%) than normal fruit (7.36%). The concentration of N, P, and Mg did not differ significantly, but that of K (1.87 mg g−1 fresh weight) was notably higher and of Ca (0.105 mg g−1 fresh weight) was lower in albino fruit than normal fruit. Consequently, the nutrient ratios, N/Ca (9.78) and K/Ca (16.96) were higher in albino fruit than normal fruit. Cultivars differed widely in respect to dry matter (%), mineral content and nutrient ratios. LOX activity determined on dry weight or fresh weight basis was significantly higher in albino fruit than normal fruit, with significant differences among cultivars. Positive correlations existed between nutrient ratios and albinism incidence (r = +0.338), LOX activity and albinism incidence (r = +0.412), and LOX and nutrient ratios (r = +0.448). Thus, it appears from the study that calcium and LOX activity may not the basic cause of albinism in strawberry, but these may be involved in senescence or fruit ripening process, as LOX activity was lower in albino than in normal fruit.  相似文献   

15.
Procedures for cold storage of in vitro cultures can delay subculturing, reducing production costs and risks of contamination and somaclonal variation. The present work investigates the effects of media with sorbitol (116.8 mM, medium SO) or sucrose (58.4 mM) alone (medium SU), or the latter in combination with mannitol (58.4 mM, medium M) on 7-month storage at 5 °C of apricot shoots, cv San Castrese and Boreale. Shoots in SO survived in lower percentages and grew less than in the other treatments during storage, and died in large numbers after transfer to standard culture conditions. In comparison to other treatments, survival was 100% in the presence of M and both shoot weight and number of surviving proliferated axillary shoots was increased. Moreover, M improved regrowth compared to SU under standard culture conditions. The SOD and CAT activity confirmed the higher stress of shoots stored in SO than controls, and in contrast, the low stress of shoots in M.  相似文献   

16.
The effects of night interruption (NI) were examined on the vegetative growth and flowering of Cymbidium ‘Red Fire’ and ‘Yokihi’. Plants were grown under 9/15 h ambient light/dark (control), 9 h ambient light plus night interruption (22:00–02:00 h) with low light intensity at 3–7 μmol m−2 s−1 (LNI) and 9 h ambient light plus NI with high light intensity at 120 μmol m−2 s−1 (HNI) conditions. The number of leaves, leaf length, number of pseudobulbs and pseudobulb diameter increased in both LNI and HNI compared to controls for both cultivars. While none of the control plants flowered within 2 years, 100% of the ‘Yokihi’ and 80% of the ‘Red Fire’ plants grown under HNI condition flowered. In the LNI group, 60% of the plants flowered in both cultivars. Plants in the HNI group showed a decreased time to visible inflorescence and flowering than those in the LNI group. The number of inflorescences and florets were greater in the plants grown under HNI than those in the LNI group. The tallest plants at flowering were in the HNI group in both cultivars. NI with low light intensity can be used effectively to promote flower induction with increased growth rate during the juvenile stage in Cymbidium. To obtain high quality plants, however, NI with high light intensity strategies should be considered.  相似文献   

17.
Linaria maroccana Hook. f. Ann., ‘Lace Violet’, Lupinus hartwegii ssp. cruikshankii Lindl. ‘Sunrise’ and Papaver nudicaule L. ‘Meadow Pastels’ seeds were directly sown into 105 cell plug trays and received either ambient light or supplemental high intensity discharge (HID) lighting. For each species, a 2 × 3 × 3 factorial was used with two light intensities during propagation, three transplant stages, and three night temperatures. Seedlings were transplanted at the appearance of 2–3, 5–6, or 8–9 true leaves. Transplanted Linaria and Papaver seedlings were placed at 5/11, 10/16, or 15/21 ± 1 °C night/day temperatures and Lupinus seedlings were placed at 15/24, 18/25, or 20/26 ± 2 °C night/day temperatures. For this study, the optimum production temperature for Linaria was 10/16 °C as the cut stems produced at 15/21 °C were unmarketable and production time was excessively long at 5/11 °C. At 10/16 °C, Linaria seedlings should be transplanted at the 2–3 leaf stage to maximize stem number, stem length and profitability. For Lupinus the optimum temperature was 15/24 °C due to long stems and high profitability per plant. Lupinus seedlings should be transplanted at the 2–3 leaf stage when grown at 15/24 °C to obtain the longest and thickest stems; however, $/m2 week was higher for plants transplanted at the 8–9 leaf stage due to less time in finishing production space. For Papaver, the 15/21 °C temperature was optimal as that temperature produced the longest stems in the shortest duration, resulting in the highest $/m2 week. At 15/21 °C Papaver plants should be transplanted at the 2–3 leaf stage. Supplemental HID lighting had no effect on any of the species.  相似文献   

18.
The goal of this study was to evaluate the effect of cold cathode fluorescent lamps (CCFLs) on the growth of Gerbera jamesonii var. ‘Rui Kou’ plantlets in vitro in six different light quality ratios: 100% red CCFL (R), 80% R + 20% blue CCFL (B), 70% R + 30% B, 60% R + 40% B, 100% B and white CCFLs (W). Control radiation was provided by conventional heat-generating plant growth fluorescent lamps (PGFLs). Plantlets under CCFLs showed better plantlet height, SPAD value (i.e., leaf chlorophyll content) and root activity (as assessed by root dehydrogenase activity) than those growing under PGFLs while all other growth parameters were comparable with plants under conventional lighting systems.  相似文献   

19.
In this study we implemented a potted water supply experiment for 100 days by a completely random sole-factored design with five treatments: 100% (W100), 80% (W80), 60% (W60), 40% (W40) and 20% (W20) of water holding capacity (WHC), corresponding to the soil volumetric water content (SVWC) maintained at 38.8 ± 0.3%, 31.6 ± 1.7%, 25.6 ± 1.3%, 16.5 ± 0.7%, and 8.1 ± 1.1%, respectively. The objective was to evaluate the ability of the 2-month-old Campylotropis polyantha (Franch.) Schindl. seedlings to tolerate drought and to explore the mechanism resisting drought. We monitored the growth process of seedling height and leaf number monthly and further investigated those changes in plant growth, dry mass accumulation and allocation, water-use efficiency (WUE), leaf functional traits, chlorophyll a fluorescence and pigment contents across the water deficit gradient. We found that the seedlings presented optimal growth, dry mass production, and physiological activity only at the W100 and W80 treatments and afterwards significantly decreased with progressive water deficit; the WUE was improved under moderate water stress (W60 and W40) but reduced under severe stress (W20). The serious leaf shedding, growth stopping and seedling death under the W20 condition revealed that the current-year shrub seedlings could not withstand severe drought. Water stress-induced decrease in total plant leaf area due to a combination of limited expansion of younger leaves and shedding of old leaves caused the leaf area ratio reduction under drought. The reduced mesophyll cell was a major anatomical response of leaves along the water stress gradient. The progressive water stress significantly damaged light harvesting complex and reduced photochemical processes and PSII activity. Our results clearly showed that the current-year shrub seedlings took the avoidance and tolerance mechanisms to withstand progressive drought stress and around 25.6% SVWC and around 12.3% SVWC separately are thresholds to limit the optimal growth and dry mass production and to last growing and surviving for the current-year shrub seedlings.  相似文献   

20.
The regenerability of three ornamental species—Lysimachia christinae, Lysimachia rubinervis and Lysimachia nummularia ‘Aurea’, were investigated using in vitro leaves and shoot tips. 6-Benzylaminopurine (BAP) and α-naphthalene acetic acid (NAA) added to Murashige and Skoog (MS) medium were tested for their effect on organogenesis. On the medium, shoot regeneration occurred directly without callus formation. In these species, L. christinae developed the highest regeneration rate and numbers of shoots/explant from shoot tips (100%, 12.25) and leaf bases (100%, 13.01) on the MS medium containing 3.0 mg l−1 BAP and 0.1 mg l−1 NAA. For L. rubinervis, the highest shoot induction rate and number of shoots/explant were obtained from shoot tip (100%, 16.87–17.20) on the MS medium with 0.1 mg l−1 NAA and 3.0–5.0 mg l−1 BAP. L. nummularia ‘Aurea’, however, showed the highest regeneration rate and number of shoots/explant (100%, 12.73) from leaf bases on MS medium supplemented with 1.0 mg l−1 BAP and 0.1 mg l−1 NAA. All in vitro shoots rooted well on half macronutrient MS medium containing 0.1 mg l−1 NAA. After acclimatization, transplanted plantlets grew normally and flowered in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号