首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]探究林龄对华北落叶松林枯落物水文效应的影响。[方法]于2017年6月在宁夏六盘山香水河小流域选择4种林龄阶段(16、25、34、43a)的华北落叶松人工林样地,调查林分结构和测量林下枯落物蓄积量、厚度、持水量等指标,分析不同林龄华北落叶松枯落物层持水能力差异。[结果]研究表明:(1)华北落叶松枯落物厚度介于4.5~6.0 cm,总蓄积量在29.08~33.21 t·hm~(-2),且半分解层蓄积量高于未分解层蓄积量,4种林龄枯落物厚度与蓄积量均表现为成熟林近熟林中龄林幼龄林。(2)各龄林枯落物最大持水量介于79.47~110.05 t·hm~(-2),成熟林最大;最大持水率变动在273.32%~341.27%,中龄林最大。(3)各龄林枯落物持水量、吸水速率与浸水时间动态变化均类似,枯落物持水过程表现为浸水0.5 h内吸水速率最大,4 h之后吸水速率趋于平缓,10 h后枯落物持水量基本饱和,持水量与浸水时间均呈明显对数关系(R~20.92)。(4)各龄林枯落物有效拦蓄量在43.64~70.52 t·hm~(-2)之间,成熟林拦蓄能力最强。[结论]综合分析4种林龄枯落物水文效应,成熟林枯落物层水文功能最强。  相似文献   

2.
为探究密度调控措施对冀北山区油松人工林枯落物水文特征的影响,以冀北山区油松人工林为研究对象,采用样地调查和室内浸泡法分析4种林分密度油松人工林未分解层和半分解层枯落物储量、枯落物持水特征、枯落物持水量、吸水速率及其与持水时间的关系。结果表明:(1)油松人工林4种林分密度的枯落物储量由大到小排序依次为1 785株/hm2(24.40t/hm2)、1 365株/hm2(24.03t/hm2)、1 050株/hm2(23.20t/hm2)、2 100株/hm2(21.00t/hm2);(2)枯落物的最大持水量为32.20~41.80t/hm2,最大持水率的范围为202.82~243.57t/hm2,有效拦蓄量在23.35~16.44t/hm2之间;半分解层枯落物持水量均大于未分解层,4种密度调控处理对枯落物未分解层持水过程影响并不显著,1 365株/hm2的半分解层枯落物持水能力明显高于其他3种林分密度;(3)4种林分密度油松人工林土壤的平均容重0.93~1.10g/cm3,按其排序4种密度由大到小依次为1 365株/hm2、1 785株/hm2、1 050株/hm2、2 100株/hm2;土壤总孔隙度51.83%~53.83%,按其排序4种密度由大到小依次为1 365株/hm2、1 785株/hm2、1 050株/hm2、2 100株/hm2;(4)油松人工林4种林分密度下土壤的有效持水量130.92~138.71t/hm2,按其排序4种密度由大到小依次为1 365株/hm2、1 785株/hm2、1 050株/hm2、2 100株/hm2,土壤最大持水量的变化范围为648.91~671.05t/hm2。  相似文献   

3.
内蒙古土石山区油松林枯落物层水文生态功能研究   总被引:1,自引:0,他引:1  
为探究林分密度对土石山区油松林枯落物持水特性的影响,以内蒙古大青山南坡4种不同林分密度的油松林为研究对象,通过样地调查与室内浸水实验相结合的方法,对其枯落物蓄积量以及持水特性等进行研究。结果表明:(1)4种不同密度油松人工林枯落物层厚度范围为1.94~3.85 cm,枯落物储量范围为8.49~19.94 t·hm^-2,厚度与储量均随着林分密度的增大而增大;(2)4种不同密度油松人工林枯落物最大持水量范围为23.82~45.81 t·hm^-2,大小顺序为2564株·hm^-2>3189株·hm^-2>1828株·hm^-2>1473株·hm^-2;最大持水率范围为225.11%~287.16%,大小依次为1473株·hm^-2>1828株·hm^-2>2564株·hm^-2>3189株·hm^-2;(3)不同林分密度枯落物持水量与浸水时间呈对数函数关系:W=aln(t)+b;枯落物持水速率与浸水时间呈幂函数关系:V=ktn。综上所述,密度为2564株·hm^-2的油松林,其枯落物持水特性表现最好,水源涵养能力最强,建议在相似立地条件下,油松林营建应向此范围调控。  相似文献   

4.
不同密度毛竹林枯落物层水文特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对黄山区4种密度毛竹纯林枯落物层的储量、最大持水量、最大持水率、吸水速率、有效拦蓄量等水文特性参数进行了研究。结果表明:(1)不同密度毛竹林枯落物储量、厚度及自然含水率均存在较大差异;不同林分枯落物储量为3.98 6.00 t·hm-2,其中,以3 000株·hm-2的林分枯落物储量最高。(2)4种密度毛竹林下枯落物最大持水率为317.09%347.58%,密度为3 000株·hm-2时,毛竹林枯落物层最大持水量达到20.70 t·hm-2。(3)4种密度毛竹林枯落物层持水量(S)与浸泡时间(t)的关系为S=alnt+b(a为方程系数,b为方程常数项),其吸水速率(V)与浸泡时间(t)的关系为V=ctd(c为方程系数,d为方程指数);在0 4 h内枯落物吸水速率急剧下降,4 h后明显减缓。(4)密度对毛竹林枯落物水文特性有一定影响,选择适宜的营林密度对于提高毛竹林枯落物层水文生态功能具有重要的作用。  相似文献   

5.
以阴山山地苏木山林场华北落叶松人工林为研究对象,利用野外调查和数据分析的方法,对凋落物年凋落量、组成、月动态变化及现存量进行研究。结果表明:华北落叶松人工林凋落物年凋落总量为4.74 t·hm~(-2),其中,落叶2.64 t·hm~(-2),落枝1.53 t·hm~(-2),落果0.50 t·hm~(-2),落皮0.07 t·hm~(-2),分别占总凋落量的55.69%、32.28%、10.55%和1.48%。各组分中,落叶在10月份凋落量最大,为1.56 t·hm~(-2),落枝和落果5月份凋落量最大,分别为0.28 t·hm~(-2)和0.10 t·hm~(-2)。林地凋落物现存量为5.04 t·hm~(-2),其中,未分解层3.67 t·hm~(-2),半分解层1.37 t·hm~(-2)。研究结果可为华北落叶松人工林物质循环和林地养分平衡研究提供参考依据。  相似文献   

6.
冀北山地落叶松林枯落物层水文效应研究   总被引:1,自引:0,他引:1  
采用样方法对冀北山地落叶松林的枯落物层进行了调查,并对其水文效应进行了研究。结果表明:(1)冀北山地落叶松林枯落物厚度为3.6~4.2cm,生物量的变化范围为8.41~11.46t·hm~(-2),阴坡枯落物的积累量较大。(2)枯落物最大持水量20.8~29.1t·hm~(-2),最大持水率284%~346%;对枯落物的持水量与浸水时间进行回归分析,符合Q=aln(t)+b的对数关系;枯落物在前0.25h内的吸水速率最大,6h左右速率明显降低。(3)枯落物的半分解层拦蓄能力高于未分解层,以样地C(海拔1180~1310m,西北坡,坡度25-30°)的枯落物拦蓄能力最强。  相似文献   

7.
不同密度油松人工林水源涵养功能研究   总被引:1,自引:0,他引:1  
为探讨油松人工林不同林分密度水源涵养功能,以辽西地区35年生油松人工林为研究对象,对4种不同林分密度(1449株·hm-2、1949株·hm-2、2429株·hm-2、3418株·hm-2)油松人工林的土壤容重、土壤孔隙度、土壤总贮水量、非毛管持水量、枯落物蓄积量、最大持水量等指标进行了测试。结果表明:不同密度油松人工林土壤容重在0~10 cm层随密度增大而增大,以1449株·hm-2林分最小,10~20 cm层变化规律不明显;0~10 cm层土壤总孔隙度、非毛管孔隙度、土壤总贮水量、毛管持水量,随林分密度增加而减小,以1449株·hm-2林分最高,10~20 cm层变化规律不明显;枯落物总蓄积量、枯落物层最大持水率和最大持水量均以密度2429株·hm-2的林分最大,密度3418株·hm-2的林分最小,密度1449株·hm-2林分处于中等水平。综合试验结果,辽西地区油松人工林密度在1449株·hm-2其水源涵养功能多项指标优于其他林分。  相似文献   

8.
小兴安岭南坡4种林分类型枯落物水文特性研究   总被引:3,自引:0,他引:3  
对小兴安岭南坡的红松林、落叶松人工林、杨树林和白桦林的枯落物储量、持水量、吸水速率等水文特征参数进行调查分析研究及其持水特性试验,结果表明,红松林下枯落物储量最大53.89 t/hm^2,其后依次为杨树林42.66 t/hm^2、落叶松人工林30.54 t/hm^2、白桦林最小20.03 t/hm^2。在这4种林分枯落物中,红松林的有效拦蓄量为最大,相当于14.56 mm的降雨。经数据分析拟合,得到林下枯落物未分解层和半分解层吸水速率与浸水时间之间存在显著的负指数相关性(R〉0.99)。  相似文献   

9.
利用野外观测与室内分析相结合的方法,对湘西北小流域4种植被类型的枯落物层持水特性进行了研究。结果表明:不同植被类型均以叶为主要积累凋落物方式,其次是枝条,碎屑最小,而坡耕地有别于各森林植被类型,坡耕地碎屑排第三,最小的是落果积累的方式。不同植被类型枯落物总厚度以枫樟混交林最大,坡耕地的最小;枯落物总储量马尾松林最大,为18. 75 t·hm~(-2);其次是枫樟混交林,为13. 59 t·hm~(-2);坡耕地的最小,仅为5. 81 t·hm~(-2);未分解层和半分解层枯落物储量均表现为马尾松林枫樟混交林杜仲林坡耕地。4种植被类型枯落物最大持水量范围在5. 59~21. 05 t·hm~(-2)之间,枫樟混交林最大持水量最大,为21. 05 t·hm~(-2),其次为杜仲林、马尾松林,坡耕地的最大持水量最小,为5. 59 t·hm~(-2)。不同植被类型最大持水率均值表现为杜仲林枫樟混交林马尾松林坡耕地;枯落物最大持水率中半分解层表现为杜仲林(249. 07%)马尾松林(234. 29%)枫樟混交林(203. 27%)坡耕地(195. 92%),未分解层表现为杜仲林(301. 10%)枫樟混交林(268. 01%马尾松林(192. 56%)坡耕地(102. 94%);不同植被类型最大持水率表现为半分解层(220. 64%)未分解层(216. 15%),说明半分解层的枯落物持水能力大于未分解层。不同植被类型枯落物持水量与浸泡时间呈现明显的对数关系(R0. 93),枯落物吸水速率与浸泡时间呈现明显的幂函数关系(R0. 99)。  相似文献   

10.
【目的】本研究选取落叶松-人参复合系统,并与落叶松人工林及天然次生林进行比较,定量分析林下种植人参对生物多样性和碳汇功能这2种重要生态系统服务功能的影响。【方法】以落叶松-人参复合系统为对象,选择与其立地特征相似的落叶松人工林和天然次生林2种林分作为对照,通过样地调查、采样和试验,对比分析3种林分类型的乔木和草本植物多样性,并对不同林分类型中的乔木、林下灌草、枯落物和木质物残体以及0~30 cm土壤的碳储量进行分析。【结果】落叶松-人参复合系统下,人参重要值达到0.33,具有明显优势;对于Shannon-Wiener多样性指数(H')、Margalef丰富度指数(R)和Pielou均匀度指数(E)3种植物多样性指数,乔木物种均表现为天然次生林落叶松-人参复合系统落叶松人工林,草本物种均表现为天然次生林落叶松人工林落叶松-人参复合系统;落叶松-人参复合系统草本植物的S,H'和R'值分别为16,1.91和1.83,均低于落叶松人工林下草本植物的17,2.1和2.04,但差异并不显著;而落叶松-人参复合系统的E值为0.87,显著低于落叶松人工林系统的0.91;对于不同林分类型的碳储量而言,32年生的落叶松近熟人工林平均碳储量为192.81 t·hm-2,略高于天然次生林碳储量(188.85 t·hm-2),2者均显著高于落叶松-人参复合系统(155.56 t·hm-2);3种林分类型不同层次碳储量均表现为土壤层乔木层枯落物和木质物残体层林下灌草层,且土壤层和乔木层碳储量之和均占到总碳储量的90%以上,此外,落叶松-人参复合系统的4个层次碳储量均显著低于落叶松人工林系统;对于不同林分类型,在0~30 cm土层随土壤深度增加,土壤碳储量逐渐降低。【结论】落叶松-人参复合经营对乔木植物多样性没有显著影响,但对草本植物多样性影响较大,同时其还会显著降低森林碳储量。因此,今后林参复合经营应注重深入研究,合理规划,正确引导,兼顾经济和生态效益,从而保障森林资源的可持续利用和林参复合经营的可持续发展。  相似文献   

11.
选取麦积山风景区5种典型林分为研究对象,对林下枯落物层水文效应进行研究。结果表明:就蓄积量而言,油松林枯落物最大,为9.65 t·hm~(-2);白皮松林最小,为5.31 t·hm~(-2)。在所有的蓄积量中,占比最多的是白皮松林未分解层,比例接近50%;油松+锐齿栎林所占比例最小,为35.452%;半分解层油松+锐齿栎林比例最大,为64.48%;锐齿栎最小,为51.85%。未分解层和半分解层最大拦蓄率和有效拦蓄率均表现为锐齿栎最大,白皮松最大拦蓄率和有效拦蓄率最小;油松群落最大拦蓄率和有效拦蓄量最大。将这些枯落物浸泡在水中,刚开始2 h内,它们的持水量都得到了显著上升,2 h后持水量明显下降;浸泡6 h以后,未分解层枯落物的持水量最高;连续将半分解层枯落物在水中一直浸泡12 h后,半分解层枯落物的蓄积水量达到最大值;这些枯落物最初浸泡1 h内,枯落物半分解层的吸水率比其他枯落物的吸水率要高,连续浸泡达到6 h时,这5种林分枯落物吸水率数值图最终几乎完全重合。  相似文献   

12.
以江汉平原石首市6种不同密度(2 500,1 666,833,625,416,208株·hm~(-2))6 a生的杨树人工林为研究对象,对其林木碳储量、固碳释氧和积累营养物质等生态功能进行研究。研究结果表明:不同密度6 a生杨树人工林林木碳储量变化范围为15.72~73.88 t·hm~(-2),林木固碳量为2.33~10.94 t·hm~(-2)·a~(-1),释氧量为6.24~29.30 t·hm~(-2)·a~(-1),积累营养物质量为0.06~0.27 t·hm~(-2)·a~(-1)。随着林分密度的增加,6 a生的杨树人工林的林木碳储量、固碳释氧和积累营养物质均随之增加。对于生长早期的杨树林,较高的杨树林密度有利于林分尽快郁闭,林木生产力和生物量也较高,有利于其生态功能更好地发挥。  相似文献   

13.
[目的]探究秦岭林区典型森林不同密度时的枯落物持水功能差异,为该区植被建设提供依据。[方法]在秦岭火地塘林区,选取油松林和锐齿栎林3个密度(低、中、高)的样地,利用室内浸水法、熵权法定量分析和综合评价枯落物层持水功能。[结果](1)油松林、锐齿栎林枯落物层厚度分别变化在3.48~5.14 cm、6.54~9.48 cm,枯落物蓄积量均为中密度时最大,分别为9.09、5.61 t·hm-2,其中油松林枯落物蓄积量以半分解层为主(56.5%~60.55%),锐齿栎林以未分解层为主(63.58%~74.53%);(2)油松林枯落物的最大持水量在中密度最高(24.55 t·hm-2),而锐齿栎林枯落物的最大持水量则在高密度时最大,达到17.8t·hm-2;油松林和锐齿栎林枯落物吸持水分的主要贡献者分别为半分解层和未分解层;(3)枯落物的累积持水率在浸水后10 min内迅速增大,且锐齿栎林的增速大于油松林;枯落物吸水速率随浸水时间增加先快速降低后逐渐降低并趋于0;枯落物的持水率(量)、吸水速率与浸水时间分别呈较好的对数和幂函数关系...  相似文献   

14.
油松人工林碳汇功能的研究   总被引:2,自引:0,他引:2  
对木兰林管局油松人工林19块标准地分林木层、灌木层、草本植物层、枯落物层和土壤层进行了生物现存量的实测与碳储量的研究,结果表明林木层和土壤层的碳储量构成了林分碳储量的主体.分配次序为土壤层>林木层>地表枯落物层>草本层>根桩>灌木层,林木层碳储量分配次序为干>枝>根>叶.建立了林木蓄积与生物量、碳储量的回归模型,认为幂函数形式有较好的适用性.以林龄(A)和3株优势木平均高(H)建立了土壤有机碳密度(Soc)拟合方程,可用于具体小班土壤碳密度的估测.木兰林管局油松人工林林分碳密度为76.586 2~284.417 8t/hm2,平均值为143.1 t/hm2,其中林木平均碳密度为30.454 5t/hm2,土壤平均碳密度为110.773 5t/hm2;现有油松人工林碳储量估测结果为983 314.0 t,其中林木碳储量为208 923.0 t,占总碳储量的21.25%,土壤碳储量为760 881.0 t,占总碳储量的77.38%.  相似文献   

15.
对内蒙古大青山古路板林场半阴坡生长的30年生油松人工林,选取5种不同密度林分,采用生物量法测定、估算碳密度,系统研究.结果表明:当林分密度大于2 940株/hm2,油松人工林生态系统碳密度随着林分密度的增加而增加,不同密度油松林生态系统碳密度范围为70.47~81.09 t/hm2,平均碳密度为75.61t/hm2,油松林碳密度主要由3个部分组成:植被层、枯落物层和土壤层,平均碳密度分别为27.27 t/hm2、6.13t/hm2、42.21 t/hm2,其空间分布为土壤层>植被层>枯落物层.  相似文献   

16.
对云南丽江拉市海汇水区面山上6种不同森林群落的枯落物储量和持水性能进行了测定,结果表明:不同森林群落的枯落物储量和持水性差别较大,其枯落物储量从最大的黄背栎林(22.45 t·hm-2)到最小的云南松林(6.54 t·hm-2),均是半分解与分解层的储量大于未分解层的储量;6种森林枯落物的最大持水量,除滇杨林外均是半分解与分解层的大于未分解层的,其最大总持水量排序为黄背栎林(60.77 t·hm-2)丽江云杉林(36.42 t·hm-2)云南松+黄背栎+杜鹃混交林(33.18 t·hm-2)川滇高山栎林(29.23 t·hm-2)滇杨林(18.82 t·hm-2)云南松林(13.72 t·hm-2)。各层枯落物的吸水速率均随浸水时间的延长而逐渐降低,在2 4 h后明显减缓,最终趋于零;且半分解与分解层的吸水速率均大于未分解层。6种森林枯落物的拦蓄水量也表现出半分解与分解层大于未分解层的规律,从大到小依次为黄背栎林(66.94 t·hm-2)丽江云杉林(41.24 t·hm-2)云南松+黄背栎+杜鹃混交林(36.80 t·hm-2)川滇高山栎林(32.99 t·hm-2)滇杨林(21.18 t·hm-2)云南松林(16.59 t·hm-2),降雨拦蓄量深分别为6.70、4.12、3.68、3.30、2.12、1.66 mm。  相似文献   

17.
四川香椿人工林生物量与碳储量研究   总被引:1,自引:0,他引:1  
探讨了不同发育阶段香椿人工林生物量和碳储量的变化规律。对四川省香椿人工林生物量和碳储量进行了调查。研究表明:3 a~24 a生香椿乔木层生物量的变异范围为1.38 t·hm~(-2)~130.89 t·hm~(-2),碳储量的变异范围为0.68 t·hm~(-2)~64.62 t·hm~(-2),1 a~20 a生香椿生物量和碳储量动态变化波动较大,20 a之后呈快速增长趋势,香椿生物量和碳储量均在香椿成熟期达到最大;模拟构建了香椿的树高、胸径和单株立木生物量模型(X表示年龄):H=-0.26X2+1.4338X+0.80936,D=0.01057X2+1.5977X-0.06318,W=0.00315X2-0.03525X+0.09871,其拟合相关系数分别为0.8313、0.9788、0.9971。香椿生物量和碳储量动态变化过程划分了3个阶段,1 a~10 a为香椿幼龄林生物量和碳储量缓慢上升期,11 a~20 a为香椿中龄林生物量和碳储量中速上升期,21 a~30a为为香椿成熟林生物量和碳储量快速上升期;本文还为香椿人工林碳汇功能提出了合理的林分密度,香椿幼龄期按照初植密度1 666株·hm~(-2)种植,香椿速生期抚育间伐密度保存在405株·hm~(-2),香椿成熟期抚育间伐密度保存在240株·hm~(-2)为宜。该研究为香椿人工林群落碳汇功能与林分经营管理提供基础资料。  相似文献   

18.
为了研究不同密度华北落叶松人工林胸径与树高增长情况,以北沟林场东沟作业区3种密度华北落叶松人工林作为研究对象,利用树木解析的方法对3种林分进行生长分析,从而确定该林龄的林分适宜的密度。结果表明:林分密度越大的,其胸径平均生长量越小;密度越小,其胸径平均生长量越大。不同的林分密度,其树高的平均生长量有一定的差异,3个林分密度树高平均生长量的大小排序为975株·hm~(-2)750株·hm~(-2)1 200株·hm~(-2)。  相似文献   

19.
以北京山区典型小流域为研究区域,以主要林分类型油松林分为研究对象,对其枯落物层的蓄积量及持水特性进行定量分析,结果表明:1)研究区油松林分枯落物层平均蓄积量为21.86t/hm~2,其中未分解层蓄积量7.04t/hm~2(32.20%),半分解层蓄积量14.82t/hm~2(67.80%),半分解层蓄积量明显高于未分解层;2)油松林分枯落物蓄积量受林分叶面积指数影响明显,随叶面积指数的增大而增加;3)枯落物持水过程表现为"迅速吸水—缓慢吸水—逐渐饱和"的过程,吸水速率随浸水时间的增加而减小,两者呈一定的幂函数关系(V=kt~n)。研究结果可为小流域森林经营管理及其涵养水源功能监测提供参考。  相似文献   

20.
以大兴安岭地区天然兴安落叶松白桦林为研究对象,对不同林型、林龄及密度的天然兴安落叶松白桦林碳储量进行了比较研究。结果表明:混交林碳储量高于纯林,其排列顺序为白桦落叶松林(158.14 t/hm~2)落叶松白桦林(137.62 t/hm~2)白桦林(132.23 t/hm~2)兴安落叶松林(110.62 t/hm~2);天然兴安落叶松白桦林碳储量随着林龄的增长而增加,30~34年、35~39年和40~45年林分碳储量依次为136.01、145.04和161.61 t/hm~2;天然兴安落叶松白桦林碳储量随着林分密度的增加呈递减趋势,其碳储量从大到小的顺序是2 000~2 499株/hm~2(179.42 t/hm~2)、2 500~2 999株/hm~2(135.95 t/hm~2)、3 000~3 499株/hm~2(133.09 t/hm~2)、≥3 500株/hm~2(131.16 t/hm~2)。基于组内方差分析所得结果差异均不显著,因此林龄介于30~45年之间、平均林分密度1 450~3 850株/hm~2的大兴安岭地区天然兴安落叶松白桦林在进行碳汇计量时可以划分为同一碳层进行测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号