首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Purpose

Water management affects the bioavailability of cadmium (Cd) and arsenic (As) in the soil and hence their accumulation in rice grains and grain yields. However, Cd and As show opposite responses to soil water content, but information, particularly on irrigation, is missing on a field scale. The purpose of the present study was therefore to find a water management regime that can lower accumulation of both Cd and As in grain without yield loss.

Materials and methods

Two rice (Oryza sativa L.) cultivars, A16 and A159, with different grain Cd accumulation capacities were employed in field plot experiments with four water management regimes comprising aerobic, intermittent, conventional practice and flooded. The dynamics of Cd and As bioavailability in the soil and Cd and As concentrations in roots, straw and grains were determined at the early tillering, full tillering, panicle initiation, filling and maturity stages of crop growth.

Results and discussion

The lower water content regimes (aerobic and intermittent) mostly led to higher soil HCl-extractable Cd than the higher soil water content regimes (conventional and flooded). HCl-extractable As in contrast was favoured by the higher soil water content treatments. Conventional and flooded irrigation accordingly gave higher plant As concentrations but lower Cd compared to aerobic and intermittent irrigation. Cd concentrations in roots and straw of both varieties increased with growth stage, especially in aerobic and intermittent regimes, while As concentrations in plants showed little change or a slight decrease. As the water irrigation volume increased from aerobic to flooded, brown rice Cd decreased from 1.15 to 0.02 mg?kg?1 in cultivar A16 and from 1.60 to 0.05 mg?kg?1 in cultivar A159, whereas brown rice As increased. Aerobic and flooded treatments produced approximately 10–20 % lower grain yields than intermittent and conventional treatments. Cultivars with low Cd accumulation capacity show higher brown rice grain As than those with high Cd uptake capacity.

Conclusions

Of the four water management regimes, the conventional irrigation method (flooding maintained until full tillering followed by intermittent irrigation) ensured high yield with low Cd and As in the brown rice and so remains the recommended irrigation regime.  相似文献   

2.
Arsenic (As) poisoning of groundwater in Bangladesh has become a major environmental and health issue. The extensive use of groundwater in irrigation of rice has resulted in elevated As in soils and crops. A study was undertaken to determine As concentrations in groundwater, soils, and crops in 16 districts of southwestern Bangladesh. Groundwater samples were collected from shallow-tube and hand-tube wells (STW and HTW) used for irrigation and drinking water. Soil and rice plants were sampled from the command area of the tube wells. Arsenic concentrations were determined using an atomic absorption spectrometer equipped with flow injection hydride generator. Groundwater samples contained <10 to 552 μg As L?1. Arsenic concentrations in 59% of STW samples exceeded 50 μg As L?1, the national standard for As in drinking water. Unlike groundwater, most of the surface water samples contained <10 μg As L?1. Concentrations of As in the soils from the command area of the tube wells ranged from 4.5 to 68 mg kg?1. More than 85% of the soils contained <20 mg As kg?1. The mean As concentration in the rice grain samples was 0.23 mg kg?1, which is much less than the maximum food hygiene standard. A positive relationship was observed between groundwater and soil As, implying that soil As level increases as a result of irrigation with contaminated water. However, irrigation water As did not show any relation with rice grain As. The findings suggest that surface water bodies are a safe source of irrigation water in the As-contaminated areas.  相似文献   

3.
Several silicon (Si) sources have been reported to be effective in terms of their effectiveness on rice growth and yield. Apart from that, it is crucial to understand the bioavailability of silicon from different silicon sources for adequate plant uptake and its performances in varying types of soils. In this point of view, a pot experiment was conducted to assess the bioavailability of silicon from three Si sources and its effect on yield of rice crop in three contrasting soils. Acidic (pH 5.86), neutral (pH 7.10), and alkaline (pH 9.38) soils collected from different locations in Karnataka were amended with calcium silicate, diatomite, and rice husk biochar (RHB) as Si sources. Silica was applied at 0, 250, and 500 kg Si ha?1, and the pots were maintained under submerged condition. There was a significant increase in the yield parameters such as panicle number pot?1, panicle length pot?1, straw dry weight pot?1, and grain weight pot?1 in acidic and neutral soils with the application of Si over no Si treatment, whereas only straw dry weight pot?1 increased significantly with the application of Si sources over control in alkaline soil. Higher Si content and uptake was noticed in neutral soil followed by acidic and alkaline soils. The bioavailability of Si increased with the application of Si sources but varied based on the types of soil. Application of calcium silicate followed by diatomite performed better in acidic and neutral soils whereas RHB was a better source of Si in alkaline soil. A significant difference in plant-available silicon status of the soil was noticed with the application of Si sources over control in all three studied soils.  相似文献   

4.
[目的]阐明不同水氮管理模式下水稻根际内外氧环境变化特征及其对土壤碳氮转化和水稻氮吸收利用的影响,以期从稻田"根际氧环境"调控角度揭示适宜水氮耦合促进水稻生长和提高氮素利用效率的内在机制.[方法]在长期定位试验基础上,采用根箱模拟培养以及Unisense微电极系统和15N同位素示踪相结合的研究方法,以常规粳稻日本晴和常...  相似文献   

5.
Combination of a pre-season wet soil condition and rice straw incorporation just before transplanting, which is typical for a tropical rice double cropping, can induce a flash of methane (CH4) emission shortly after the transplanting. The conventional practice of alternate wetting and drying (AWD) irrigation technique that typically starts at 21 days after transplanting (DAT) can hardly reduce this emission because the soil become methanogenic before the onset of AWD treatment. Field experiments were conducted in Central Luzon, Philippines, during the 2014–2017 dry rice seasons to examine the effects of the timing of rice straw/stubble incorporation on the efficacy of AWD in reducing the CH4 emission. Two treatments of the timing of stubble incorporation were stubbles incorporated during the start of wet land preparation (S1) and stubbles incorporated during the dry fallow tillage (S2). For the water management, we compared two treatments: continuous flooding (CF) and AWD with – 15 cm threshold for irrigation. The AWD under S2 was implemented earlier at 10 DAT. We observed a significant interaction (p < 0.01) between effects of AWD and straw management on CH4 emissions; the seasonal total CH4 emission was reduced by AWD compared with CF by 73% under S2, while the reduction was <20% under S1. The AWD significantly (p < 0.05) increased the nitrous oxide (N2O) emissions by 47 and 48% relative to CF under S1 and S2, respectively. The global warming potential (GWP, CH4 + N2O) and yield-scaled GWP were still substantially lower by 62 and 59%, respectively, in AWD than in CF under S2, but the reduction was not realized under S1 due to the relatively smaller CH4 reduction and increased N2O emission. The results confirm that pre-season aerobic stubble decomposition and earlier implementation of AWD enhanced AWD’s mitigation potential in reducing substantially the CH4 emission from the tropical rice double-cropping system.  相似文献   

6.
Reducing CH4 and N2O emissions from rice cropping systems while sustaining production levels with less water requires a better understanding of the key processes involved. Alternate wetting and drying (AWD) irrigation is one promising practice that has been shown to reduce CH4 emissions. However, little is known about the impact of this practice on N2O emissions, in particular under Mediterranean climate. To close this knowledge gap, we assessed how AWD influenced grain yield, fluxes and annual budgets of CH4 and N2O emissions, and global warming potential (GWP) in Italian rice systems over a 2-year period. Overall, a larger GWP was observed under AWD, as a result of high N2O emissions which offset reductions in CH4 emissions. In the first year, with 70% water reduction, the yields were reduced by 33%, CH4 emissions decreased by 97%,while N2O emissions increased by more than 5-foldunder AWD as compared to PF;in the second year, with a 40% watersaving,the reductions of rice yields and CH4 emissions (13% and 11%, respectively) were not significant, but N2O fluxes more than doubled. The transition from anaerobic to aerobic soil conditions resulted in the highest N2O fluxes under AWD. The duration of flooding, transition to aerobic conditions, water levelabove the soil surface, and the relative timing between fertilization and flooding were the main drivers affecting greenhouse gas mitigation potential under AWD and should be carefully planned through site-specific management options.  相似文献   

7.
This study evaluated the effects of rice straw and water regimes on CH4 and N2O emissions from paddy fields for two rice growing seasons (summer 2014 and spring 2015). Water regimes included alternating wet–dry irrigation (AWD) maintained at three levels (–5 cm, – 10 cm and –15 cm) in comparison to continuous flooding irrigation (CF). Rice straw (5 t ha–1) was incorporated into the top soil (0 – 15 cm), distributed and burned in situ. Results showed that using burned in situ rice straw was found to reduce seasonal cumulative CH4 emission (24–34% in summer; 18–28% in spring), N2O emission (21–32% in summer; 22–29% in spring) and lower rice yield (8–9%) than rice straw incorporation into top soil. AWD methods reduced the amount of CH4 production (22.6–41.5%) and increased N2O emission (25–26%) without any decrease in rice yield. Rice straw incorporation into the top soil with AWD had higher water productivity (23–37%) than rice straw when burned in situ with CF. The results conclude that AWD and rice straw management can be employed as mitigation strategy for CH4 and N2O emissions from paddy fields in Central Vietnam.  相似文献   

8.
The addition of zeolite (Z) to soils is increasingly being recognised as a way to enhance agricultural production and decrease fertilisation requirements and, hence, environmental costs. Meanwhile, the alternate wetting and drying irrigation (AWD) has become widely applied to reduce the water requirements of rice cultivation. However, limited information is available on their impacts on rice’s physicochemical properties. This study investigated an integrated irrigation, nitrogen (N) and Z rice production system and assessed its effects on the milling, appearance, nutrition, taste and cooking qualities of the rice grain produced. Compared with conventional flooding irrigation (CF), AWD-grown rice had slightly decreased milling and appearance qualities. Addition of Z increased rice protein content and slightly decreased eating quality without affecting milling, appearance and cooking qualities. The highest yields achieved under AWD (9.8 t ha?1) and CF (8.9 t ha?1) were achieved using 105 kg N and 10 t Z ha?1, and 105 kg N and 5 t Z ha?1, respectively. Compared with the flooding untreated control (using 157.5 kg N ha?1 and no Z), these two treatment regimens required 27.8% and 8.1% less water, 33.3% less N fertiliser and increased yields by 10.6% and 0.6%, respectively, without measurably affecting rice grain quality.  相似文献   

9.
Sun  Qin  Ding  Shiming  Zhang  Liping  Chen  Xiang  Liu  Qing  Chen  Musong  Wang  Yan 《Journal of Soils and Sediments》2019,19(4):1830-1838
Purpose

Phosphorus influence on arsenic bioavailability in soils and its toxicity to plants is widely recognized. This work compares competitive influence of P on As bioavailability in dry and flooded soils.

Materials and methods

Pot experiments were carried out in dry and flooded soils, respectively. Bioavailable As in soils was measured using diffusive gradients in thin films (DGT), soil solution concentration, and three single chemical extraction methods.

Results and discussion

P concentration at 50 mg/kg promoted wheat growth in dry soil. At concentrations above 50 mg/kg, P competition inhibited wheat growth and enhanced As toxicity. In flooded soil, the rice height and biomass decreased with the increase of P addition. P concentrations above 800 mg/kg were lethal to the rice. The content of As absorbed by wheat and rice roots as well as shoots increased with the increase of P concentration. The bioavailability of As in wheat- and rice-grown soils, determined by all methods, also increased with the increase of P concentration. The correlation analysis between the bioavailable As measured by the all three methods and the content of As in plants showed a significant positive correlation. The Pearson correlation coefficient for the DGT method was higher comparing to all other methods. DGT-induced fluxes in soils (DIFS) modeling further showed sharp decreases of Tc (the characteristic time to reach equilibrium between available solid As pool and soil solution As from DGT perturbation) and increases of desorption and adsorption rate constants (k1 and k?1) of As in P-amended soils, reflecting that the kinetic release of As from available solid As pools became much easy from P competition.

Conclusions

P competition in both dry and flooded soils could significantly increase bioavailability of As and further increase its toxicity. Competition effect was more pronounced in flooded soil. DGT is a more accurate method for As bioavailability evaluation in both dry and flooded soils.

  相似文献   

10.
Arsenic (As), which is present in all living tissues, water, and soil, is considered toxic to humans and animals. Because of the presence of arsenic-contaminated sites throughout the world, there is a renewed interest in studying the status of As in water, soil, and plants. Concentrations of As above the permissible limit have been reported in Lower Ganges Plains (West Bengal in India and Bangladesh). The present investigation aimed to examine the concentration of As in water, soil, and rice plants in the Upper/Trans-Ganges Plains covering Punjab in northwestern India. In total, 200 water samples were collected from different locations in Punjab. Corresponding soil, rice grain, and straw samples were collected from the same locations as the water samples had been collected. In addition to deep tube well water (>125 m deep), water samples from shallow hand pumps (<50 m deep) and canals were also collected. The samples were analyzed for total As concentration using an atomic absorption spectrophotometer equipped with a hydride generating system (AAS-HG). The concentration of As in tube well water samples varied from 5.33 to 17.27 μg As L–1, with about 40% samples having As concentrations greater than the permissible limit (10 μg As L–1). None of the hand pump and canal water samples had As concentrations greater than permissible limits. The As concentration of surface soils varied from 1.09 to 2.48 mg As kg–1. There was no trend in the distribution of As with depth of soil. The concentration of As in rice straw varied from 4.05 to 15.06 μg As kg–1 and that of grain from 1.48 to 6.87 μg As kg–1. The concentration of As was lower in edible grain than in inedible straw. There was a positive and significant correlation between As concentration in tube well water and As concentration in surface soils. The buildup of As in soils was directly related to the As concentration of tube well waters. There was a significant correlation between As in water and As in plants. However, a nonsignificant correlation existed between As in soil and As in plants. This indicates that plants absorbed more As from irrigation water than that from soil. This also suggests that irrigation with such waters over a longer period of time may have detrimental effects on soil and on plants, animals, and humans. There is thus a need to continuously monitor the As concentration in undergroundwater.  相似文献   

11.
Published information, both theoretical and experimental, on As chemical behavior in soils is reviewed. Because of many emission sources, As is ubiquitous. Thermodynamic calculations revealed that As(V) species (HAsO 4 2- >H2AsO 4 - at pH 7) are more abundant in soil solutions that are oxidized more than pe+pH>9. Arsenic is expected to be in As(III) form (HAsO 2 0 =H3AsO 3 0 >AsO 2 - =H2AsO 3 - at pH 7) in relatively anoxic soil solutions with pe+pH<7. Adsorption on soil colloids is an important As scavenging mechanism. The adsorption capacity and behavior of these colloids (clay, oxides or hydroxides surfaces of Al, Fe and Mn, calcium carbonates, and/or organic matter) are dependent on ever-changing factors, such as hydration, soil pH, specific adsorption, changes in cation coordination, isomorphous replacement, crystallinity, etc. Because of the altering tendencies of soil colloids properties, adsorption of As has become a complex, empirical, ambiguous, and often a self contradicting process in soils. In general, Fe oxides/hydroxides are the most commonly involved in the adsorption of As in both acidic and alkaline soils. The surfaces of Al oxides/hydroxides and clay may play a role in As adsorption, but only in acidic soils. The carbonate minerals are expected to adsorb As in calcareous soils. The role of Mn oxides and biogenic particles in the As adsorption in soils appears to be limited to acidic soils. Kinetically, As adsorption may reach over 90% completion in terms of hours. Precipitation of a solid phase is another mechanism of As removal from soil solutions. Thermodynamic calculations showed that in the acidic oxic and suboxic soils, Fe-arsenate (Fe3(AsO4)4)2) may control As solubility, whereas in the anoxic soils, sulfides of As(III) may control the concentrations of the dissolved As in soil solutions. In alkaline acidic oxic and suboxic soils, precipitation of both Fe- and Ca-arsenate may limit As concentrations in soil solutions. Field observations suggest that direct precipitation of discrete As solid phases may not occur, except in contaminated soils. Chemisorption of As oxyanions on soil colloid surfaces, especially those of Fe oxide/hydroxides and carbonates, is believed to a common mechanisms for As solid phase formation in soils. It is suggested that As oxyanions gradually concentrate on colloid surfaces to a level high enough to precipitate a discrete or mixed As solid phase. Arsenic volatilization is another As scavenging mechanism operating in soils. Many soil organisms are capable of converting arsenate and arsenite to several reduced forms, largely methylated arsines which are volatile. These organisms may generate different or similar biochemical products. Methylation and volatilization of As can be affected by several biotic (such as type of organisms, ability of organism for methylation, etc.) and abiotic factors (soil pH, temperature, redox conditions, methyl donor, presence of other ions, etc.) factors. Information on the rate of As biotransformations in soils is limited. In comparison to the biologically assisted volatilization, the chemical volatilization of As in soils is negligible.  相似文献   

12.
ABSTRACT

The properties of secondary salt-affected soils developed from improper irrigation and drainage management and their effects on rice growth and yield are well documented. However, relevant information on coastal reclaimed tideland (RTL) soils, which are classified as primary salt-affected soils developed through salt-accumulated sediments is lacking. In this paper, we reviewed the physical and chemical properties of RTL soils in comparison with non-RTL soils and analyzed the relationship between rice production and soil salinity in RTL to suggest agricultural management practices for sustainable rice production and soil carbon sequestration in RTL. Similar to the secondary salt-affected soils, RTL soils were characterized by high alkalinity, salinity, and sodicity, and rice yield was negatively correlated with salinity. However, it was also found that lower fertility (e.g., organic matter and phosphorus) of RTL soils than non-RTL soils might also hamper rice growth and thus carbon input via plant residues in RTL soils. Correlation between years after reclamation and soil properties of RTL showed that cultivation of rice with annual fertilization and organic matter inputs increased soil fertility but salinity and sodicity did not show a significant tendency of change, suggesting that natural desalinization in RTL soils is hard to be achieved with conventional rice cultivation. Therefore, it is suggested that fertilization management as well as salinity management via drainage, gypsum application, tillage, and proper irrigation may be necessary to improve rice production and carbon sequestration in RTL soils.  相似文献   

13.
ABSTRACT

Water and rice straw (RS) management practices can potentially affect the accumulation of soil organic carbon (SOC) in agricultural soils. Field experiments were conducted in two consecutive rice-growing seasons (wet and dry) to evaluate SOC stocks under different water (continuous flooding [CF], alternate wetting and drying [AWD]) and RS management practices (RS incorporation [RS-I], RS burning [RS-B], without RS incorporation and burning [WRS]) in a double-cropped paddy field. RS-I under AWD had higher volumetric water content than the same RS management under CF at tillering in both growing seasons. Total SOC was significantly higher under AWD at tillering in both wet and dry seasons and after harvesting in the dry season compared with CF. The same trend was also observed for C:N ratio at tillering and after harvesting in the dry season. RS-B plots had lower SOC stocks than RS-I and WRS plots across most of the measuring periods regardless of the growing seasons. SOC stocks were 33.09 and 39.31 Mg/ha at RS-B and RS-I plots, respectively, in the wet season, whereas the respective values were 21.45 and 24.55 Mg/ha in the dry season. Incorporation of RS enhanced SOC stocks under AWD irrigation, especially in the dry season before planting. Soil incorporation of RS in combination with AWD could be a viable option to increase SOC stocks in the double-cropped rice production region as it is strongly linked with soil fertility and productivity. However, the environmental consequences of RS incorporation in irrigated lowland rice production system should be taken into consideration before its recommendation for paddy field on a large scale.  相似文献   

14.
Abstract

A laboratory study was used to simulate the pattern of diffusion of ammonium and nitrate ions in flooded soil. Ammonium, deep incorporated in a submerged irrigation system, diffused upward from the anaerobic to the aerobic layer where biochemical oxidation nitrified it to NO2 and NO3. These oxidized N species diffused downward from the aerobic layer to the anaerobic layer where most or at least partly, was lost as gaseous end products. Three crops of rice were grown in a glasshouse experiment to estimate N use efficiency under various combinations of irrigation and N management practices. Overall N use efficiency averaged 45%. Under continuous flooding, almost two thirds of the applied fertilizer N (647% use efficiency) was recovered by the rice crop. Under alternate flooding and drying, the response was very poor, with only about one fourth (26% use efficiency) of the applied fertilizer N being recovered by the crop. This demonstrated importance of the proper combination of irrigation and fertilizer management in paddy soils to maximize N utilization.  相似文献   

15.
A greenhouse study was conducted to evaluate and compare arsenic accumulation from four arsenic contaminated soils by two arsenic hyperaccumulators, Pteris vittata and Pteris cretica. After growing in soils for six weeks, the plants were harvested and separated into above- and below-ground biomass. Total As, P, Ca, K, glutathione and biomass were measured for the plants, and total As, Mehlich-3 P and As, exchangeable K and Ca, and arsenic fractionation were performed for the soils. Pteris vittata had significantly higher total biomass (14 g/plant) and As accumulation than P. cretica. Arsenic accumulation in both ferns followed the arsenic concentrations in the soil. The P/As molar ratio in the fronds, growing in arsenic contaminated soils, ranged from 80 to 939 in P. vittata and 130 to 421 in P. cretica. Plant arsenic concentrations were significantly positively correlated with Mehlich-3 arsenic in the soils. Soil pH was also significantly correlated with Mehlich-3 arsenic before and after plant uptake. Plant As uptake was significantly correlated with exchangeable potassium in the soil before plant uptake. Glutathione availability was not implicated as a major detoxification mechanism in these ferns. Though both plants were effective in taking up arsenic from various arsenic contaminated soils, P. vittata was overall a better candidate for phytoremediation of arsenic contaminated soils.  相似文献   

16.
Possible mechanisms of the effects of silicon (Si) on arsenic (As) uptake were explored using a wild‐type rice and its low‐Si mutant (lsi1). Hydroponic experiments were carried out to investigate the effects of internal and external Si on the As accumulation and uptake by rice in excised roots (28 d–old seedlings) and xylem sap (61 d–old plants). The presence of Si significantly decreased the As concentrations in both shoots and roots of the wild type but not in the mutant with 13.3 μM–arsenite or 10/20 μM–arsenate treatments. The Si‐defective mutant rice (lsi1) also showed a significant reduction in arsenite or arsenate uptake. Moreover, As concentrations in xylem sap of the wild type were reduced by 51% with 1 mM Si– and 15 μM–arsenate treatments, while Si had no effect on As concentrations in the xylem sap of the mutant. Arsenic‐species analysis further indicated that the addition of 1 mM Si significantly decreased As(III) concentrations but had little effect on As(V) concentrations in the xylem sap of the wild type with 15 μM–arsenate treatments. These results indicated that external Si‐mediated reduction in arsenite uptake by rice is due to the direct competition between Si and arsenite during uptake. This is because both share the same influx transporter Lsi1. In addition, internal Si‐mediated reduction in arsenite uptake by rice is due to competition of the Si/arsenite efflux transporter Lsi2 during the As(III)‐transportation process. Silicon also inhibited arsenate uptake by rice. It is proposed that this could actually be due not to the inhibition of arsenate uptake per se but rather the inhibition of arsenite transformed from arsenate, either in the external solution or in rice roots.  相似文献   

17.

Purpose

Soil properties are the main explanation to the different toxicities obtained in different soils due to their influence on chemical bioavailability and the test species performance itself. However, most prediction studies are centred on a few soil properties influencing bioavailability, while their direct effects on test species performance are usually neglected. In our study, we develop prediction models for the toxicity values obtained in a set of soils taking into account both the chemical concentration and their soil properties.

Materials and methods

The effects on the avoidance behaviour and on reproduction of the herbicide phenmedipham to the collembolan Folsomia candida is assessed in 12 natural soils and the Organisation for Economic Co-operation and Development (OECD) artificial soil. The toxicity outcomes in different soils are compared and explanatory models are constructed by generalised linear models (GLMs) using phenmedipham concentrations and soil properties.

Results and discussion

At identical phenmedipham concentrations, the effects on reproduction and the avoidance response observed in OECD soil were similar to those observed in natural soils, while effects on survival were clearly lower in this soil. The organic matter and silt content explained differences in the avoidance behaviour in different soils; for reproduction, there was a more complex pattern involving several soil properties.

Conclusions

Our results highlight the need for approaches taking into account all the soil properties as a whole, as a necessary step to improve the prediction of the toxicity of particular chemicals to any particular soil.  相似文献   

18.
Arsenic occurs in the earth's crust in various chemical forms as a result of both natural and anthropogenic sources. Soil chemical extractions may help understand As availability, as well as the possibility of As entry into the food chain. Phytoextraction has been proposed as a technology for remediation of As-contaminated soils. The study was carried out to assess the bioavailability of As by extractants and to compare the performance of castor bean and sunflower for As removal from soils. Two soils were contaminated with Na2HAsO4.7H2O adding 35 and 150 mg As dm−3 soil. Arsenic availability was assessed using the following extractants: tri-distilled water, ammonium sulfate, ammonium phosphate, ammonium oxalate + oxalic acid, organic acids mixture, Mehlich-1, and United States Environmental Protection Agency 3051. The roots and shoots of 35-day-old plants were collected and dry matter yield as well as As concentration were determined. The accumulation of As in shoot was also calculated in order to evaluate the plants potential for As phytoextraction. The extractants tested were efficient to assess the concentration of available As in soil. Addition of As to the soils did not cause severe toxicity in plants, although the dose 150 mg As dm−3 soil decreased shoot and root yield in both species. Castor bean was less sensitive to As than sunflower, but none of the species had hyperaccumulation characteristics. These species can be used for revegetation of areas contaminated with As up to safe limit of 150 mg As dm−3 soil, as proposed by CONAMA for industrial areas in Brazil.  相似文献   

19.
采集中国红壤、黑土、褐土、棕壤和黄壤五种典型土壤,经一个月老化制备成浓度为600 mg·kg–1的砷污染土壤样品,利用体外(in vitro)试验方法(PBET-UF模型)研究经口部摄入的土壤砷在人体胃肠道的生物可给性/生物有效性,并评估其健康风险,进而从土壤性质角度(包括土壤基本理化特性及砷的赋存形态)综合地探讨砷的生物可给性/生物有效性的影响因素,以分析不同土壤间差异的原因。结果表明,土壤砷在胃阶段的生物可给性为37.2%~71.8%,小肠阶段的生物可给性为49.0%~73.3%,小肠阶段的生物有效性为48.6%~72.1%,各类型土壤间差异极显著;土壤砷从胃到小肠是一个逐步被消化溶出的过程,且小肠中溶解态砷均可透过模拟小肠上皮细胞的专用超滤膜;各类型土壤经口部摄入的砷健康风险存在极显著差异,致癌风险和非致癌风险分别超过相应可接受限值两个数量级和一个数量级;此外,土壤砷的生物可给性/生物有效性与土壤pH、游离氧化铁铝含量、迁移系数S及迁移系数W存在显著或极显著相关性,迁移系数S是影响土壤砷在胃阶段的生物可给性的主导因子,土壤pH为影响其在小肠阶段的生物可给性/生物有效性的主导因子,...  相似文献   

20.
稻田干湿交替对水稻氮素利用率的影响与调控研究进展   总被引:5,自引:2,他引:3  
稻田干湿交替(alternate wetting and drying,AWD)是提高水稻水、氮利用率的重要水分管理措施。水稻品种、生态环境、氮肥运筹和土壤落干强度是影响AWD下水稻氮素利用率(nitrogen use efficiency,NUE)的主要因素。AWD通过改变土壤水-气环境而影响土壤中生物化学过程,进而影响土壤氮素营养的有效性。轻度AWD促进水稻根系的生长和活力,促进水稻氮素的吸收、同化和转移而提高NUE。轻度AWD不仅提高水稻光合作用,还促进干物质向籽粒的分配,从而提高水稻产量和氮素利用率。AWD还引起植物激素的变化,植物激素也可能参与了对水稻氮素利用的调控。该文从根际氮素营养与环境、根系形态功能、氮素同化和再转移,以及碳同化和分配、植物激素调控等方面综述了 AWD对水稻氮素利用率的影响与调控,并提出了一些值得深入探讨的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号