首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Isoflurane (ISO) is the most commonly administered feline inhalant anesthetic in North America. A newer agent, sevoflurane (SEVO), may provide faster induction and recovery from anesthesia based on its physical characteristics. Accordingly, we compared some induction and recovery characteristics of ISO and SEVO in healthy cats. Six female DSH cats (17.9 ± 9.0 (mean ± SD) months, 3.7 ± 0.3 kg) received four randomly assigned treatments: ISO for 1 hour (IS), SEVO for 1 hour (SS), ISO for 5 hours (IL), and SEVO for 5 hours (SL). Anesthesia was induced in a chamber into which ISO or SEVO was delivered at 2.7 times the individual's MAC (determined previously) in 6 L minute?1 O2. Measured (Rascal II, Ohmeda) anesthetic concentration was reported after correction using a multiple gas, standard‐defined calibration curve. For induction, time (seconds) from introduction of inhalant to onset of incoordinated movement (IM), recumbency with movement (RM), recumbency without movement, loss of pedal reflex (PD), and intubation (ET) were recorded. Following intubation, anesthesia was maintained for the required time at 1.25 times the individual's MAC. For recovery, time (seconds) from discontinuation of the inhalant (with continuation of O2) to first movement, extubation (EXT), start of incoordinated movement, head‐lift, sternal recumbency (SR), crawl, stand/walk with incoordination, and jump without incoordination were recorded. Esophageal normothermia was maintained. Data were analyzed by paired t‐test (induction) or One‐way Repeated Measures anova followed, when appropriate, by Tukey's test (recovery). p < 0.05 was regarded as significant. For induction, IM was not significantly different between ISO and SEVO (118 ± 28 seconds vs. 104 ± 28 seconds). All other induction times were significantly shorter with SEVO vs. ISO, e.g. RM (181 ± 31 seconds vs. 213 ± 31 seconds), PD (426 ± 68 seconds vs. 504 ± 70 seconds), and ET (434 ± 66 seconds vs. 515 ± 69 seconds). For recovery, there were no differences between ISO and SEVO for any stage of recovery, e.g. EXT (IS 588 ± 163 seconds vs. SS 425 ± 109 seconds), SR (IS 735 ± 215 seconds vs. SS 655 ± 337 seconds), and IL (710 ± 658 seconds vs. SL 807 ± 465 seconds). We concluded that quantitative recovery characteristics did not depend on whether cats are anesthetized with equipotent amounts of SEVO or ISO, but some induction end‐points were reached more quickly with SEVO.  相似文献   

2.
Minimum alveolar concentration (MAC) of an inhalant is an indicator of its anesthetic potency. Individuals vary in their sensitivity to anesthetic agents as demonstrated by different individual MAC values. We hypothesized that individual animal sensitivity would be maintained with different inhalant anesthetics. As part of separate studies, six female DSH cats, aged 24 ± 2.5 (mean ± SD) months and weighing 3.5 ± 0.3 kg, were studied similarly on three separate occasions over a 12‐month period to determine the MAC of isoflurane (ISO), sevoflurane (SEVO), and desflurane (DES), respectively. In each study, chamber induction was followed by orotracheal intubation, and anesthesia was maintained via a nonrebreathing circuit. ECG, pulse oximetry, Doppler systolic blood pressure, end‐tidal gases, and esophageal temperature were monitored. End‐tidal gases were hand‐sampled from a catheter whose tip lay level with the distal end of the ET tube. Gases were analyzed by Raman spectrometry and, for each agent, the analyzer was calibrated with at least three gas standards. MAC was determined in triplicate using standard tail‐clamp technique. Data were analyzed by two‐way anova followed by Tukey's test and significant differences were found. Average MACs (%) for ISO, SEVO, and DES were 1.90 ± 0.18, 3.41 ± 0.65, and 10.27 ± 1.06, respectively. Body temperatures, Doppler systolic blood pressure, and SpO2 were recorded at the time of MAC determinations for ISO, SEVO, and DES were 38.3 ± 0.3, 38.6 ± 0.1, 38.3 ± 0.35 °C; 71 ± 8, 75 ± 16, 88 ± 12 mm Hg; 99 ± 1, 99 ± 1, 99 ± 1%, respectively. Both the anesthetic agent and the individual cat had significant effects on MAC (p = 0.0001 and 0.0185, respectively). MAC varied between individuals and cats were consistent in their order of sensitivity to inhalant anesthetics across the three agents. Within this group of cats, the relationship of individual MAC to the group MAC for each of the three inhalant agents was maintained. This suggests that any individual may be consistently more or less sensitive to a variety of inhalant agents.  相似文献   

3.
Non‐steroidal anti‐inflammatory drugs may potentiate the opioid induced reduction in volatile anaesthetic requirements ( Gomez de Segura et al. 1998 ). This study determined the reduction in the MAC of isoflurane (ISO) produced by ketoprofen (KETO) in dogs anaesthetized with fentanyl (FENT) and ISO. Six healthy female crossbred dogs, weighing 13.5 ± 1.3 (mean ± SD) kg and aged 3.0 ± 0.9 years were studied. Approval of the study was obtained from the institutional ethics committee. Anaesthesia was induced in all dogs via a facemask with 5% ISO in 5 L minute?1 oxygen. The dogs' trachea were intubated and lungs were ventilated to maintain normocapnia (Pe ′CO2 4.7–6 kPa, 35–45 mm Hg). A heating pad was used to maintain body temperature. The animals were anaesthetized four times at one week intervals with the following anaesthetic and analgesic protocols randomly administered. Study 1, MAC (ISO); Isoflurane MAC. Study 2, MAC (ISO + FENT); dogs anaesthetized with ISO received a loading dose of 30 µg kg?1 FENT IV over 20 minutes followed by a maintenance infusion of 0.2 µg kg?1 minute?1 FENT. Study 3, MAC (ISO + FENT + KETO1); as study 2 plus 1 mg kg?1 KETO. Study 4, MAC (ISO + FENT + KETO2); as study 2 plus 2 mg kg?1 KETO. The MAC was determined in duplicate by applying a standard electrical stimulus (50 V, 50 H2 over 60 seconds via two needles placed SC over the tarsus). The stimulus was applied 15 minutes after every step change in anesthetic concentration. The Wilcoxon test was applied to data to determine significant differences among MAC measurements. Fentanyl significantly decreased MAC (ISO) from 1.27% ± 0.02% to 0.73% ± 0.08%, a reduction of 42% (p < 0.05). Ketoprofen 1 mg kg?1 further decreased the MAC value (although not statistically significantly) with a reduction of 47% from MAC (ISO) (0.67% ± 0.13%) and 8% from MAC (ISO + FENT). When KETO 2 mg kg?1 was given, the reduction in MAC was 50% compared to MAC (ISO) (0.63% ± 0.08%; p < 0.05) and 14% compared to MAC (ISO + FENT) p < 0.05. Administration of KETO further reduces MAC (ISO) compared to levels observed with FENT alone. The observed reduction may have clinical advantages.  相似文献   

4.
Objective To investigate the changes in serum enzymes considered as biochemical indicators of hepatobiliary function in dogs following 5 hours of anaesthesia with isoflurane (ISO) or sevoflurane (SEVO). Study design Experimental randomized crossover study, with intervals of at least 15 days between successive treatments. Animals Eight healthy adult mongrel dogs, four male, four female, weight 13.6–21.6 kg. Methods Treatments consisted of anaesthesia with ISO or SEVO at 1 or 1.5 minimum alveolar concentration (MAC) delivered in oxygen. MAC was taken as 1.39% for ISO and 2.36% for SEVO. Anaesthesia was induced by mask then, after endotracheal intubation, maintained according to the treatment protocol using a small animal circle system. Cardiopulmonary monitoring was carried out. Venous blood samples, obtained by needle puncture, were taken at 24 hours and 2, 7 and 14 days post anaesthesia. Serum concentrations of total protein, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase, (LDH), alkaline phosphatase (ALP), gamma‐glutamyltransferese and total bilirubin were measured. Changes with time and with treatment were compared by Friedman analysis, Wilcoxon Signed test and Kruskal‐Wallis test as relevant. p‐ value < 0.05 was considered significant. Results Compared to base‐line values, at 24 hours post‐anaesthesia there were significant increases in AST, ALT, ALP and LDH following one or more of the treatments, but by 2 days residual changes were not significant. At 24 hours, AST for treatment 1.5 MAC ISO was higher than 1 MAC ISO (p < 0.002), and LDH higher for 1.5 MAC SEVO than 1 MAC SEVO. Conclusion and clinical relevance Both ISO and SEVO, at concentrations used for clinical anaesthesia, produce transient moderate effects on some hepatobiliary enzyme concentrations in dogs.  相似文献   

5.
Objectives To evaluate the circulatory, respiratory and behavioral effects of isoflurane (ISO) anesthesia in llamas during mechanical ventilation and spontaneous breathing. Design Prospective randomised study. Animals Six adult, neutered male llamas (10 ± 1 years [mean ± SD], 179 ± 32 kg). Materials and methods Animals in which the minimum alveolar concentration (MAC) had been previously determined were anesthetized with ISO in oxygen. Inspired and end‐tidal (ET) ISO were sampled continuously. Arterial blood pH, respiratory and circulatory variables, and clinical signs of anesthesia were recorded at three doses (1.0, 1.5 and 2.0 times the individual animal's MAC; mean MAC value 1.13%) of ISO during spontaneous and controlled ventilation. A series of Latin squares was used to determine order of dose. Controlled ventilation (CV) (target PaCO2 38 ± 5 mm Hg [5.0 ± 0.6 kPa]) preceded spontaneous ventilation (SV) at each dose. Animals breathed spontaneously for approximately 10 minutes prior to data collection. Body temperature was maintained at 37 ± 0.6 °C. Circulatory and respiratory data were analysed with a mixed model, least squares analysis of variance, for repeated measures taken at equally spaced intervals. p < 0.05. Results Dose and mode of ventilation had significant influences on measured variables. For example, heart rate increased as dose increased; 67 ± 14 beats minute?1 at 1.0 MAC‐CV versus 77 ± 6 beats minute?1 at 2 MAC‐CV. Conversely, mean arterial pressure decreased with increasing dose; 82 ± 13 mm Hg at MAC‐CV versus 52 ± 15 mm Hg at 2 MAC‐CV. Arterial CO2 increased with increasing dose during SV; 45 ± 5 mm Hg [6 ± 0.6 kPa] at MAC versus 53 ± 4 mmHg [7 ± 0.5 kPa] at 2 MAC. Reflex activity (e.g. palpebral reflex) and muscle tone (e.g. jaw tone) decreased while eyelid aperture increased with increasing anesthetic dose. Conclusions and Clinical Relevance The influence of ISO dose and mode of ventilation on circulatory and respiratory variables in llamas is qualitatively similar to that reported in other species. Changes in reflex activity and muscle tone may be used to guide appropriate anesthetic delivery in ISO‐induced llamas.  相似文献   

6.
Anemon I is a new monitoring system that can be used to evaluate autonomic nervous system reactivity in real time by showing a simple, easily interpretated quantitative index (0–200), the Anemon Index (AI) ( Junke et al. 2000 ). This study used the AI to evaluate the quality of analgesia during sevoflurane and fentanyl anaesthesia in pigs. Six healthy pigs, weighing 24.76 ± 3.40 kg, were induced to anaesthesia with 5% sevoflurane (SEVO) in 5 L minute?1 oxygen. After endotracheal intubation SEVO was given at 1 MAC (2.66%) in 3 L minute?1 oxygen. Fentanyl was infused IV at 50 µg kg?1 hour?1 for the first 30 minutes of anaesthesia, discontinued for 30 minutes, and then infused at 100 µg kg?1 hour?1 for another 30 minutes. Three mechanical noxious stimuli (needle prick, pin‐prick and pressure on the abdomen) were applied for 15 seconds at 30, 60 and 90 minutes. The AI, ECG, invasive mean arterial blood pressure (MAP), heart rate (HR), SpO2 by pulse oximetry, tidal volume, Fe′sevo , Fe ′CO2 and respiratory rate were recorded before induction (baseline), after induction, after intubation and extubation, and before and during noxious stimulation at 30, 60 and 90 minutes. Recovery times were recorded. Statistically significant differences were determined by anova . Spearman rank‐correlation was used to evaluate the relationship between AI and hemodynamic variables. A p‐value of < 0.05 was considered significant. A significant (p < 0.01) decrease in AI was recorded after anaesthetic induction, from 82.3 ± 21.1 to 52.7 ± 20.3. After intubation, AI increased slightly, but not significantly, to 71.7 ± 27.1. A significant (p < 0.05) increase of AI occurred after extubation. Nociceptive stimuli did not have any measurable effect either on AI or on recorded cardiovascular variables. There was no movement, respiratory changes, or any other visible response to noxious stimulation. The AI did not change significantly with the different doses of fentanyl. Respiratory depression and apnoea were seen in all animals during the fentanyl infusion; therefore, pigs received intermittent positive pressure ventilation. Anaesthesia with sevoflurane and fentanyl resulted in a significant (p < 0.001) decrease in MAP. Heart rate did not change significantly. There was no correlation between AI and cardiovascular variables (HR and MAP). Endotracheal intubation caused an increase and extubation a greater significant increase in the AI. This suggests that intubation and extubation may represent stressful events during general anaesthesia, although further studies are needed to validate the use of the AI in pigs. Sevoflurane anesthetic induction may not prevent the sympathetic stimulus caused by endotracheal intubation in pigs, as indicated by the increased AI values.  相似文献   

7.
Minimum alveolar concentrations (MAC) are determined using one of the different noxious stimuli (clamping, electrical stimulation, or surgical incision), based on a study conducted in the 1960s with three dogs. This study compares different noxious stimuli applied in a randomized order in dogs (n = 10) anesthetized with isoflurane (I) and halothane (H), and in rabbits (n = 10) anesthetized with I. Anesthesia was induced with the anesthetic in oxygen and maintained with mechanical ventilation. End‐tidal anesthetic (Fe ′A) and CO2 (Pe ′CO2) concentrations were monitored with a calibrated infrared gas analyzer. Pe ′CO2 and body temperature were maintained within normal limits. Noxious stimuli included skin incision on the lateral chest (SI), clamping of the tail (TC), fore‐ (FC) and hindlimb paw (HC), and electrical current (50 V at 50 cycles second for 10 msecond pulses) applied to the fore‐ (FE) and hindlimb (HE), and oral mucosa (OE) (except rabbits). SI was applied first and only for the first two consecutive measurements using the up–down method for sequential sampling of quantal‐response data. After an initial equilibration period of at least 20 minutes at an Fe ′A of 1.4% (H) or 1.7% (I), the Fe ′A was decreased in the first animal to 0.85% of H (dog) or 1% of I (dog and rabbit) and maintained for at least 20 minutes before the noxious stimuli. If the animal responded or did not respond, the stimuli were then tested at an Fe ′A 0.1% higher or lower, respectively. The new Fe ′A was kept constant for at least 20 minutes and the noxious stimuli repeated until purposeful movement ceased or returned, respectively. MAC was defined as the Fe ′A mid‐way between the value permitting and preventing purposeful movement. Data were analyzed using an anova . MAC for I in dogs was 1.27 ± 0.047 (mean ± SEM) for TC, FC, and HC; 1.36 ± 0.035 for OE; 1.35 ± 0.040 for FE and HE; and 0.99 for SI. MAC for H in dogs was 0.97 ± 0.028 for TC; 0.96 ± 0.032 for FC and HC; 1.04 ± 0.033 for OE, FE, and HE; and 0.73 for SI. MAC for I in rabbits was 2.08 ± 0.021 for TC, FC, and HC; 2.04 ± 0.023 for FE and HE; and 0.90 for SI. MAC for SI was significantly lower than the other methods. In conclusion, electrical current and clamping resulted in similar MAC values.  相似文献   

8.
Lidocaine decreases minimum alveolar concentration (MAC) of inhalational anesthetics. This study determined the influence of a low dose, 50 µg kg?1 minute?1 (LDI) and high dose, 200 µg kg?1 minute?1 (HDI) constant rate infusion of lidocaine on the MAC of isoflurane (I) in dogs. Ten mongrel dogs were anesthetized with I in oxygen and mechanically ventilated. End‐tidal anesthetic (Fe ′A) and CO2 (Pe ′CO2) concentrations were monitored at the endotracheal tube adaptor with an infrared gas analyzer calibrated before each experiment with a standardized calibration gas mixture designed for the analyzer. Pe ′CO2 and body temperature were maintained within normal limits. Noxious stimuli included clamping the hindlimb paw (HC) and electrical current (50 V at 50 cycles second?1 for 10 milliseconds pulse?1) applied subcutaneously to the forelimb (FE) at the level of the ulna. After an initial equilibration period of at least 40 minutes at an Fe ′A of 1.7%, the Fe ′A was decreased to a value close to the estimated MAC for dogs. MAC was defined as the Fe ′A mid‐way between the value permitting and preventing purposeful movement. Following baseline MAC, a loading dose of 2 mg kg?1 of lidocaine IV was administered over 3 minutes followed by the LDI, and MAC determinations for the combination started after 30 minutes of infusion. Once determined, the lidocaine infusion was stopped for 30 minutes and the dog maintained at the ETC that prevented movement without the lidocaine. Following this period, a second loading dose of lidocaine was given (2 mg kg?1) over 3 minutes followed by the HDI, and the MAC determination procedure repeated after 30 minutes of infusion. Data were analyzed using an anova for repeated measures. MAC of I was 1.34 ± 0.035% (mean ± SEM) for both the FE and HC stimuli. The LDI significantly decreased MAC to 1.09 ± 0.043% (18.7% reduction) and HDI to 0.76 ± 0.030% (43.3% reduction). In conclusion, lidocaine infusions decreased the MAC of isoflurane in a dose‐dependent manner.  相似文献   

9.

Objective

To determine the effect of oral trazodone on the minimum alveolar concentration (MAC) of isoflurane in dogs.

Study design

Prospective blinded, single-observer, randomized crossover experimental study.

Animals

Six adult (age 6.8 ± 1.6 months) healthy dogs (three males and three females), weighing 24.8 ± 3.4 kg (mean ± standard deviation).

Methods

Each dog was anesthetized twice with a minimum of 7 days between anesthetic episodes. Dogs were randomly assigned to be administered two treatments in a crossover design: premedication with trazodone (8 mg kg?1; TRAZ–ISO) orally 2 hours prior to an anesthetic episode or no (ISO). Dogs were anesthetized with intravenous propofol (6 mg kg?1) and isoflurane in >95% oxygen. Isoflurane MAC was determined using an iterative bracketing technique with electrodes placed in the buccal mucosa. Hemodynamic variables were compared at the lowest end-tidal isoflurane concentration at which each dog did not respond. A paired t test was used to assess the effect of treatment on outcome variables with significance set to a value of p < 0.05.

Results

The MAC concentration (mean ± standard deviation) in dogs administered TRAZ–ISO was 0.85 ± 0.17% compared with 1.02 ± 0.11% in those administered ISO (p = 0.01, 95% confidence interval ?0.25 to ?0.05), resulting in a mean MAC reduction of 17 ± 12%. There were no differences in hemodynamic variables between treatments.

Conclusions and clinical relevance

Premedication of dogs with oral trazodone (8 mg kg?1) 2 hours prior to anesthetic induction has a significant isoflurane MAC sparing effect with no significant observed hemodynamic benefit.  相似文献   

10.
ObjectiveTo describe the anesthetic and adverse effects of an injectable anesthetic protocol in dogs as part of a high-volume sterilization program under field conditions in Belize.Study designProspective, observational, field study.AnimalsA total of 23 female and eight male dogs (14.2 ± 7.7 kg; age ≥ 8 weeks).MethodsUsing a volume per kg-based dose chart, dogs were administered ketamine (4.5 mg kg−1), medetomidine (0.04 mg kg−1) and hydromorphone (0.09 mg kg−1) intramuscularly. After induction of anesthesia, an endotracheal tube was inserted and dogs were allowed spontaneous breathing in room air. Monitoring included peripheral oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), respiratory rate, rectal temperature and end-tidal carbon dioxide (Pe′CO2). Meloxicam (0.2 mg kg−1) was administered subcutaneously after surgery. Data were analyzed with linear models and chi-square tests (p < 0.05).ResultsOnset of lateral recumbency (3.4 ± 2 minutes) was rapid. Desaturation (SpO2 < 90%) was observed at least once in 64.5% of dogs and was more frequent in large dogs (p = 0.019). Hypercapnia (Pe′CO2 ≥ 50 mmHg; 6.7 kPa) was observed in 48.4% of dogs. MAP was 111 ± 19 mmHg, mean ± standard deviation. Hypertension (MAP ≥ 120 mmHg), bradycardia (HR ≤ 60 beats minute−1) and tachycardia (HR ≥ 140 beats minute−1) were observed in 45.2%, 16.1% and 3.3% of dogs, respectively. Hypotension and hypothermia were not observed. Sex was not significantly associated with any complication. Return of swallowing reflex and time to standing were 71 ± 23 and 152 ± 50 minutes after injection, respectively. Return of swallowing was significantly longer in large dogs.Conclusions and clinical relevanceAt the doses used, ketamine–medetomidine–hydromorphone was effective in dogs for high-volume sterilization. In this field setting, adverse effects included hypoventilation, hypoxemia and prolonged recovery.  相似文献   

11.
Objective A dog model was developed to study visceral pain by stimulating the ovarian ligament. Study design Prospective experimental trial. Animals Twelve 1‐year old female hound dogs weighing 25.7 ± 3.6 kg. Methods Dogs were anesthetized with sevoflurane. The right ovary was accessed via laparoscopy. A suture was placed around the ovarian ligament and exteriorized through the abdominal wall for stimulation. The noxious stimulus consisted of pulling the ovary and ovarian ligament with a force transducer. The response to noxious stimulation was determined using the anesthetic minimum alveolar concentration requirement (MAC) for sevoflurane. The ovarian MAC was compared to the standardized somatic noxious stimulation tail clamp MAC. The results are depicted as mean ± SD and corrected to sea‐level. Results The stimulus–response curve during ovarian stimulation in three dogs was hyperbolic and best represented by a three‐parameter logistic growth curve model. The curve plateaued at 7.12 ± 4.19 N. From the stimulus‐response curve, we chose 6.61 N to test the consistency and repeatability of the model in nine dogs. The ovarian stimulation MAC for sevoflurane in these dogs was 2.16 ± 0.46%. The ovarian stimulation confidence interval and limits are comparable to the results from tail stimulation MAC. The tail stimulation MACs before and after laparoscopy surgery were not different (1.86 ± 0.28% and 1.77 ± 0.38% respectively; p > 0.05) but lower when compared to the ovarian MAC (p < 0.01). The dogs recovered from anesthesia without complications. Conclusions and clinical relevance The ovarian stimulation model is an adequate and repeatable means of producing visceral stimulation to determine MAC. The model may provide a humane mechanism to study the effectiveness of analgesics for acute ovarian pain.  相似文献   

12.
Dexmedetomidine and midazolam have synergistic interaction for the sedative/hypnotic and analgesic effects. The purpose of this study was to assess the type of interaction between dexmedetomidine and midazolam for the immobilizing effect in terms of MAC reduction of either halothane (HAL) or isoflurane (ISO). Fifty‐six rats were randomly allocated into one of eight groups (n = 7): SAL + HAL group received saline solution and halothane, SAL + ISO group received saline solution and isoflurane, DEX + HAL group received an intravenous continuous infusion of dexmedetomidine (0.25 μg kg–1minute–1) and halothane, DEX + ISO group received an intravenous continuous infusion of dexmedetomidine (0.25 μg kg–1 minute–1) and isoflurane, MID + HAL group received an intravenous bolus of midazolam (1 mg kg–1) and halothane, MID + ISO group received an intravenous bolus of midazolam (1 mg kg–1) and isoflurane, DEX +MID + HAL group received dexmedetomidine (0.25 μg kg–1 minute–1), midazolam (1 mg kg–1) and halothane and DEX + MID + ISO group received dexmedetomidine (0.25 μg kg–1 minute–1), midazolam (1 mg kg–1) and isoflurane. The tail clamp method was used for MAC determination. Heart rate, invasive arterial blood pressure, respiratory rate and rectal temperature were continuously monitored. Arterial blood gases were analyzed at the end of each experiment. Data were analyzed using a one‐way anova and a Tukey‐Kramer test for multiple comparisons. A p < 0.01 value was considered statistically significant. MAC values were adjusted to the barometric pressure at sea level. Control MACbar values expressed as mean ± SD were 1.31 ± 0.11% for HAL and 1.46 ± 0.05% for ISO. Percentages of MAC reduction were 72 ± 17% for HAL and 43 ± 14% for ISO in DEX groups, 26 ± 11% for HAL and 20 ± 9% for ISO in MID groups, and 90 ± 5% for HAL and 78 ± 5% for ISO in DEX + MID groups. The interaction between dexmedetomidine and midazolam in terms of MAC reduction can be described as additive with halothane and synergistic with isoflurane.  相似文献   

13.
ObjectiveTo determine the effect of experimentally induced hypothyroidism on isoflurane (ISO) minimum alveolar concentration (MAC) in dogs.Study designProspective experimental study.AnimalsEighteen adult female mongrel dogs, age 2–4 years and weighing 8.2–13.1 kg.MethodsHypothyroidism was induced in nine dogs by the intravenous administration of 1 mCi kg−1 of 131Iodine. The remaining nine dogs served as controls. Dogs were studied 9–12 months after the induction of hypothyroidism. Anesthesia was induced with ISO in oxygen via a mask. The trachea was intubated, and anesthesia was maintained using ISO in oxygen using a semi-closed rebreathing circle system. The dogs were mechanically ventilated to maintain an end-tidal carbon dioxide concentration between 35 and 45 mmHg. End-tidal ISO concentrations were measured with an infrared gas analyzer. The MAC was determined in duplicate using a tail clamp technique. The mean values for the groups were compared using a two sample t-test.ResultsThe mean ± SD MAC of isoflurane in the hypothyroid and euthyroid dogs was 0.98 ± 0.31% and 1.11 ± 0.26%, respectively. The mean MAC of isoflurane in hypothyroid dogs was not significantly different from the mean MAC of isoflurane in the control dogs (p=0.3553).Conclusion and clinical relevanceThe MAC of ISO in dogs was not significantly affected by experimentally induced hypothyroidism. The dose of ISO in dogs with hypothyroidism does not need to be altered.  相似文献   

14.
Objective To quantitate the dose‐ and time‐related magnitude of the anesthetic sparing effect of, and selected physiological responses to detomidine during isoflurane anesthesia in horses. Study design Randomized cross‐over study. Animals Three, healthy, young adult horses weighing 485 ± 14 kg. Methods Horses were anesthetized on two occasions to determine the minimum alveolar concentration (MAC) of isoflurane in O2 and then to measure the anesthetic sparing effect (time‐related MAC reduction) following IV detomidine (0.03 and 0.06 mg kg?1). Selected common measures of cardiopulmonary function, blood glucose and urinary output were also recorded. Results Isoflurane MAC was 1.44 ± 0.07% (mean ± SEM). This was reduced by 42.8 ± 5.4% and 44.8 ± 3.0% at 83 ± 23 and 125 ± 36 minutes, respectively, following 0.03 and 0.06 mg kg?1, detomidine. The MAC reduction was detomidine dose‐ and time‐dependent. There was a tendency for mild cardiovascular and respiratory depression, especially following the higher detomidine dose. Detomidine increased both blood glucose and urine flow; the magnitude of these changes was time‐ and dose‐dependent Conclusions Detomidine reduces anesthetic requirement for isoflurane and increases blood glucose concentration and urine flow in horses. These changes were dose‐ and time‐related. Clinical relevance The results imply potent anesthetic sparing actions by detomidine. The detomidine‐related increased urine flow should be considered in designing anesthetic protocols for individual horses.  相似文献   

15.
ObjectiveTo determine the effect of maropitant, an NK-1 receptor antagonist on the minimum alveolar concentration (MAC) of sevoflurane after intravenous and epidural administration to dogs.Study designProspective experimental study.AnimalsSeven, adult, spayed-female dogs (24.8 ± 1.9 kg).MethodsEach dog was anesthetized twice with sevoflurane in oxygen, with at least 10 days separating the anesthetic events. The minimum alveolar concentration (MAC) of sevoflurane was determined using the tail-clamp technique. During the first anesthetic event, the MAC of sevoflurane was determined initially and again after intravenous administration of maropitant (5 mg kg?1) and an infusion (150 μg kg?1 hour?1). During the second anesthetic event, an epidural catheter was advanced to the 4th lumbar vertebra and MAC was determined after administration of saline and maropitant (1 mg kg?1) epidurally. All MAC determinations were done in duplicate. The MAC values were adjusted to sea level and compared using student's t-test.ResultsThe baseline MAC for sevoflurane was 2.08 ± 0.25%. Intravenous maropitant decreased (p < 0.05) MAC by 16% (1.74 ± 0.17%). In contrast, epidural administration of either saline or maropitant did not change (p > 0.05) the MAC (2.17 ± 0.34% and 1.92 ± 0.12%, respectively).Conclusion and clinical relevanceMaropitant decreased the MAC of sevoflurane when administered intravenously to dogs but not after epidural administration.  相似文献   

16.
A central eyeball position is often required during sedation or anaesthesia to facilitate examination of the eye. However, use of neuromuscular blockade to produce a central eye position may result in depressed ventilation. This study evaluated the eyeball position, muscle relaxation and changes in ventilation during general anaesthesia after the IV administration of 0.1 mg kg?1 rocuronium. With client consent, 12 dogs of different breeds, body mass 27.2 ± 11.8 kg, aged 5.6 ± 2.8 years (mean ± SD) were anaesthetized for ocular examination. Pre‐anaesthetic medication was 0.01 mg kg?1 medetomidine and 0.2 mg kg?1 butorphanol IV. Anaesthesia was induced with propofol to effect and maintained with 10 mg kg?1 hour?1 propofol by infusion. The dogs were placed in left lateral recumbency, their trachea intubated and connected to a circle breathing system (Fi O2 = 1.0). All dogs breathed spontaneously. The superficial peroneal nerve of the right hind leg was stimulated every 15 seconds with a train‐of‐four (TOF) stimulation pattern and neuromuscular function was assessed with an acceleromyograph (TOF‐Guard). Adequacy of ventilation was measured with the Ventrak 1550. After 10 minutes of anaesthesia to allow stabilisation of baseline values, 0.1 mg kg?1 rocuronium was administered IV. Minute volume (Vm ), tidal volume (Vt ), respiratory rate (RR), Pe ′CO2 and maximal depression of T1 and TOF ratio were measured. Data were analysed using a paired t‐test. The changes in the eyeball position were recorded. A total of 100 ± 33 seconds after the injection of rocuronium, T1 was maximally depressed to 62 ± 21% and the TOF ratio to 42 ± 18% of baseline values. Both variables returned to baseline after 366 ± 132 seconds (T1) and 478 ± 111 seconds (TOF). There was no significant reduction in Vm (2.32 ± 1.1 L minute?1), Vt (124.1 ± 69.3 mL) and RR (10 ± 3.8 breaths minute?1) and no increase in Pe ′CO2 (6.5 ± 2.1 kPa (48.8 ± 16.1 mm Hg)) throughout the procedure. The eyeball rotated to a central position 35 ± 7 seconds after rocuronium IV and remained there for a minimum of 20 ± 7 minutes in all dogs. We conclude that rocuronium at a dose of 0.1 mg kg?1 can be administered to dogs IV with minimal changes in ventilatory variables. The eyeball is fixed in a central position for at least 20 minutes, which greatly facilitates clinical examination.  相似文献   

17.
ObjectiveClinical experience suggests that dachshunds are prone to bradycardia during general anaesthesia (GA). The study investigated mean heart rates in anaesthetized dachshunds and other breeds of dog.Study DesignRetrospective clinical study.AnimalsSixty one dachshunds and 62 dogs of other breeds met inclusion criteria.MethodsClinical records of small breed dogs undergoing GA for spinal Magnetic Resonance Imaging between September 2008 and March 2010 were identified and examined. Data collected included drugs administered, baseline heart (HR) and respiratory (fR) rates and rectal temperature. The following information was noted from anaesthetic records: HR, fR, mean non-invasive arterial pressure and end-tidal carbon dioxide (Pe′CO2) and anaesthetic agent (Fe′agent) during the first 60 minutes of anaesthesia; rectal temperature at a time closest to the cessation of anaesthesia, ventilatory mode (spontaneous/mechanical) and fluid infusion rate. Univariate analysis with Student t-test and Fisher's test identified parameters significant in predicting a lowered HR. A multivariate analysis investigated their effect on the mean HR during GA.ResultsNo differences were found between groups regarding: age, baseline HR, baseline temperature, incidence of hypotension, Fe′agent, mean Pe′CO2 and fluid infusion rate. Body mass was smaller for dachshunds (6.7 ± 1.5 kg) compared to other breeds (7.8 ± 1.8 kg) (p = 0.0005). The lowest HR recorded was lower in dachshunds (64 ± 19 beats minute?1) compared to other breeds (72 ± 21 beats minute?1) (p = 0.03). Mean HR was lower in dachshunds (75 ± 21 beats minute?1) compared to other breeds (84 ± 21 beats minute?1) (p = 0.02). Post-procedural temperature (°C) was lower in dachshunds (35.5 ± 1.1) compared to other breeds (36.1 ± 1.2) (p = 0.007) and anticholinergics were also administered more frequently (p = 0.026). Multivariate analysis identified that breed and mean Pe′CO2 affected mean HR during anaesthesia.ConclusionThis study supported our hypothesis that dachshunds have a lower mean HR under GA than other small breed dogs.  相似文献   

18.

Objective

To compare the cardiopulmonary effects of low and high doses of fentanyl before and after the correction of bradycardia in isoflurane-anesthetized dogs.

Study design

Prospective, randomized crossover trial.

Animals

Eight healthy male Beagle dogs weighing 11.1 ± 1.3 kg [mean ± standard deviation (SD)] and aged approximately 1 year.

Methods

The dogs were anesthetized with isoflurane [1.3 × minimum alveolar concentration (MAC)] on two occasions and fentanyl was administered intravenously; either low-dose fentanyl, loading dose (33 μg kg–1) and infusion (0.2 μg kg–1 minute–1) or a high-dose, loading dose (102 μg kg–1) and infusion (0.8 μg kg–1 minute–1). Cardiopulmonary variables were measured at three time points in equipotent isoflurane concentrations (1.3 MAC): before fentanyl administration (ISO), during fentanyl-induced bradycardia (ISO–F) and after administration of glycopyrrolate normalized heart rate (ISO–FNHR). Data are mean ± SD.

Results

Heart rate and cardiac index (CI) decreased and systemic vascular resistance index (SVRI) increased at ISO–F in both treatments. Bradycardia and vasoconstriction at ISO–F were greater in high than in low-dose fentanyl (42 ± 7 versus 57 ± 15 beats minute–1 and 3457 ± 1108 versus 2528 ± 968 dyne second cm–5 m–2), respectively. Oxygen delivery index (DO2I) decreased only during high-dose fentanyl. CI and DO2I were higher in both treatments at ISO–FNHR than at ISO–F; however, they were higher only during the high-dose fentanyl than at ISO. SVRI was higher at ISO–F than at ISO and ISO–FNHR in both treatments, and was higher at ISO–F in the high than in the low-dose treatment.

Conclusions and clinical relevance

An overall improvement in cardiovascular function of dogs anesthetized with equipotent isoflurane doses (1.3 MAC) was observed after the treatment of bradycardia only with the high-dose fentanyl.  相似文献   

19.
Objectives To determine whether moderate hypothermia during anesthesia significantly affects the serum concentration of transdermally delivered fentanyl and whether halothane or isoflurane affect these concentrations. Study Design Randomized cross‐over experimental trial. Animals Six mature, healthy Beagles (three males, three females) weighing 10.6 ± 0.43 kg. Methods A 50‐µg hour?1 fentanyl patch was applied 36 hours prior to anesthesia. Anesthesia was induced at time 0 (t = 0). Each dog received four treatments: isoflurane + normothermia (ISO‐NORM), isoflurane + hypothermia (ISO‐HYPO), halothane + normothermia (HAL‐NORM), and halothane + hypothermia (HAL‐HYPO). Dogs were intubated and maintained at 1.5 times MAC. Animals in the hypothermia treatments were cooled to 35 °C during anesthesia. Serum fentanyl analysis was performed at ?36, ?24, ?12, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 18, and 26 hours. Direct arterial blood pressures and arterial blood gases were monitored. Results The mean body temperatures (±SEM) during the anesthetic period for the four treatments were: ISO‐NORM = 37.7 ± 0.07 °C, ISO‐HYPO = 35.8 ± 0.1 °C, HAL‐NORM = 37.7 ± 0.06 °C, and HAL‐HYPO = 35.8 ± 0.13 °C. The mean (±SEM) serum fentanyl concentrations (SFC) for both hypothermia treatments were significantly lower than baseline concentrations at t = 1 hour and persisted for the duration of anesthesia for the ISO‐HYPO treatment but only from t = 1 to 2 hours for the HAL‐HYPO treatment. Serum fentanyl concentrations returned to baseline within one hour of the end of anesthesia, regardless of body temperature. There were no significant differences between treatments for systolic or diastolic blood pressure but mean blood pressures were higher during normothermia versus hypothermia during the last hour of anesthesia. Conclusions and clinical relevance Hypothermia during inhalation anesthesia produced a significant reduction in SFC using transdermal administration and was more protracted with isoflurane than halothane anesthesia. While significant reductions in SFC occurred, the SFC were still within the range believed to confer analgesia.  相似文献   

20.
ObjectiveTo evaluate the effects of intravenous lidocaine (L) and ketamine (K) alone and their combination (LK) on the minimum alveolar concentration (MAC) of sevoflurane (SEVO) in dogs.Study designProspective randomized, Latin-square experimental study.AnimalsSix, healthy, adult Beagles, 2 males, 4 females, weighing 7.8 – 12.8 kg.MethodsAnesthesia was induced with SEVO in oxygen delivered by face mask. The tracheas were intubated and the lungs ventilated to maintain normocapnia. Baseline minimum alveolar concentration of SEVO (MACB) was determined in duplicate for each dog using an electrical stimulus and then the treatment was initiated. Each dog received each of the following treatments, intravenously as a loading dose (LD) followed by a constant rate infusion (CRI): lidocaine (LD 2 mg kg−1, CRI 50 μg kg−1minute−1), lidocaine (LD 2 mg kg−1, CRI 100 μgkg−1 minute−1), lidocaine (LD 2 mg kg−1, CRI 200 μg kg−1 minute−1), ketamine (LD 3 mg kg−1, CRI 50 μg kg−1 minute−1), ketamine (LD 3 mgkg−1, CRI 100 μg kg−1 minute−1), or lidocaine (LD 2 mg kg−1, CRI 100 μg kg−1 minute−1) + ketamine (LD 3 mg kg−1, CRI 100 μg kg−1 minute−1) in combination. Post-treatment MAC (MACT) determination started 30 minutes after initiation of treatment.ResultsLeast squares mean ± SEM MACB of all groups was 1.9 ± 0.2%. Lidocaine infusions of 50, 100, and 200 μg kg−1 minute−1 significantly reduced MACB by 22.6%, 29.0%, and 39.6%, respectively. Ketamine infusions of 50 and 100 μg kg−1 minute−1 significantly reduced MACB by 40.0% and 44.7%, respectively. The combination of K and L significantly reduced MACB by 62.8%.Conclusions and clinical relevanceLidocaine and K, alone and in combination, decrease SEVO MAC in dogs. Their use, at the doses studied, provides a clinically important reduction in the concentration of SEVO during anesthesia in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号