首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
One of the methods for increasing productivity of water consumed in agriculture is by improved water supply management. This paper presents results from an optimization study of the Malampuzha irrigation project of the Bharathapuzha river basin of Kerala in India. The objective of this study is to determine whether significant improvements might be realized from optimization of operation of the reservoir system. To do this a mixed integer linear programming (MILP) model is developed and five different management strategies are tested. The result indicates that a management strategy with deficit irrigation by supplying less water in non-critical growth period and maximum water during stress sensitive periods is a best viable solution for better performance. A MILP model, rather than a linear programming (LP) model, is used to ensure that the reservoir does not spill before reaching its capacity.  相似文献   

2.
The non-uniformity of soils, weather, fields, cropping pattern and canal systems in most surface irrigation schemes makes irrigation water management complex, but optimum performance is important particularly in irrigation schemes with limited water supply. This paper focuses on the performance of irrigation water management during the area and water allocation with a case study of an irrigation scheme in the semi-arid region of India. Often the irrigation managers or authorities of these heterogeneous irrigation schemes also need to deal with different allocation rules. The allocation plans and the corresponding water delivery schedules during the allocation process were estimated with the help of a simulation–optimisation model for different allocation rules based on cropping distributions (free and fixed), water distributions (free and fixed-area proportionate), irrigation depth (full, fixed depth and variable depth irrigation) and irrigation interval (from 14 to 35 days). The performance measures of productivity (in terms of net benefits and area irrigated), equity (in water distribution), adequacy and excess were assessed for these different allocation plans and schedules. These were further compared with the performance measures of the existing rule (fixed depth irrigation at a fixed interval). The analysis revealed that these performance measures are in some cases complimentary and in other cases conflicting with each other. Therefore, it would be appropriate for the irrigation managers to understand fully the nature of the variation in performance measures for different allocation rules prior to deciding the allocation plans for the irrigation scheme.  相似文献   

3.
A multiobjective optimization model has been presented for allocating irrigation waters in a rice paddy area. Water-saving practices conducted on the field-plot basis are considered and expressed in the optimal water allocation problem in the regional scale. Irrigation water allocated to the blocks of paddy fields is divided into two components of a basic amount and a safety margin in order to mitigate the effect of hydrological and hydraulic uncertainties on the study area. Four competing management objectives with regard to total rice yield, total water-saving cost, equity of water allocation, and safety of water supply are defined in the linear programming formulation so that noninferior solutions can be procured which are informative and persuasive in decision-making. Applicability of the optimization model is examined using water allocation problems for a hypothetical irrigation system. It is demonstrated that the optimization model can provide satisficing solutions where the four objectives are harmonized under substantial variations of total water supply to the irrigation system.  相似文献   

4.
It is important to promote efficient use of water through better management of water resources, for social and economical sustainability in arid and semi-arid areas, under the conditions of severe water shortage. Based on the developments in deficit irrigation research, a recurrence control model for regional optimal allocation of irrigation water resources, aiming at overall maximum efficiency, is presented, with decomposition-harmonization principles of large systems. The model consists of three levels (layers). The first level involves dynamic programming (DP) for optimization of crop irrigation scheduling. The second level deals with optimal allocation of water resources among various crops. The last level concerns optimal allocation of water resources among different sub-regions. As a test, this model was applied to the combined optimal allocation of multiple water resources (surface, ground and in-take from the Weihe river) of Yangling, a semi-arid region on the Loess Plateau, China. Exemplary computation showed that not only are the results rational, but the method can also effectively overcome possible “dimensional obstacles” in dynamic programming of multiple dimensions. Furthermore, each sub-model is relatively independent by using various optimization methods. The model represents a new approach for improving irrigation efficiency, implementing water-saving irrigation, and solving the problem of water shortage in the region studied. The model can be extended in arid and semi-arid areas for better water management.  相似文献   

5.
This paper focuses on irrigation schemes under rotational water supply in arid and semiarid regions. It presents a methodology for developing plans for optimum allocation of land area and water, considering performance measures such as productivity, equity and adequacy. These irrigation schemes are characterized by limited water supply and heterogeneity in soils, crops, climate and water distribution network, etc. The methodology proposed in this paper, therefore, uses a previously developed simulation–optimization model (Area and Water Allocation Model, AWAM) that considers the heterogeneity of the irrigation scheme in the allocation process, and modifies this to take account of equity and adequacy of supply to irrigated areas. The AWAM model has four phases to be executed separately for each set of irrigation interval over the irrigation season: 1. generation of irrigation strategies for each crop–soil–region combination (CSR unit), 2. preparation of irrigation programmes for each irrigation strategy, 3. selection of specified number of irrigation programmes for each CSR unit and 4. optimum allocation of land area and water to different parts of the irrigation scheme (allocation units) for maximizing productivity. In the modified AWAM model, the adequacy is included at Phase-2 (by including only the irrigation programmes for full irrigation of each CSR unit) and equity is included at Phase-4 (by including the constraints for equity). The paper briefly discusses the applicability of the modified AWAM model for a case study of Nazare medium irrigation scheme in Southern India. The results of the case study indicated that the performance measures of productivity, equity and adequacy conflict with each other.  相似文献   

6.
A weekly irrigation planning LP model is formulated for determining the optimal cropping pattern and reservoir water allocation for an existing storage based irrigation system in India. Objective of the model is maximization of net annual benefit from the project. In an irrigation planning of a storage based irrigation system, initial storage of the reservoir at the beginning of the reservoir operation, expected inflows into the reservoir during each intraseasonal period, capacity of channels, crop calendar and yield response to water deficit in each growth stage of crop play a vital role in deciding acreage and water allocation to each crop. The planning model takes into account yield response to water deficit in each intraseasonal period of the crop, expected weekly inflows entering into the reservoir, storage continuity of reservoir, land and water availability, equity of water allocation among sub areas and proportionate downstream river release. One year comprising of 52 weeks is considered as planning horizon. To account for uncertainty in water resources availability, the model is solved for four levels of reliability of weekly inflows entering into the reservoir (90%, 85%, 80% and 75%). Alternative optimal cropping patterns and weekly releases to crops grown in each sub area under each main canal are obtained for various states of initial storage at the beginning of reservoir operation and for various levels of weekly inflows into the reservoir. Results reveal the importance of initial state of reservoir storage for feasible solution and shows the impact on cropping pattern with the change in initial storage of reservoir for different levels of reliability of weekly inflows.  相似文献   

7.
灌区灌溉用水时空优化配置方法   总被引:1,自引:0,他引:1  
将传统的灌溉水量在作物间的优化分配模型和建立的渠系工作制度多目标优化模型与地理信息系统相集成,提出了基于空间决策支持系统的灌区灌溉用水优化配置的新方法.综合考虑了灌区内作物、土壤、气象站点、渠系布置的空间差异、年季间气象以及作物不同生育阶段对应参数的时间差异.与传统优化方法相比,该方法可根据管理者对优化精度的要求,灵活选择优化尺度,同时,简化了求解时空优化配水问题的繁琐程度,结果表现形式更加丰富.在此基础上建立的空间决策支持系统界面友好,运行效率高,可移植性和通用性强.经实例验证,优化后的配水方案与原配水方案相比较,灌溉总用水量减少296%,产量增加243%,水分生产率提高05 kg/m3,灌溉净效益增加168%.优化后配水方案具有将有限的水资源向经济价值较高作物转移的趋势.该方法为灌区灌溉用水优化配置提供了新思路.  相似文献   

8.
Water management for irrigation in areas with high water scarcity includes not only domestic wastewater treatment but also practices for the reuse of drainage water during the irrigation period. The main problem that concerns the reuse of drainage water for irrigation is the accumulation of salts due to the effluents existing in the soil. In this paper an optimization technique is proposed for the management of drainage water that uses, in combination, a soil-water-plant model (SWAP) and a mixed 0-1 linear programming method. The optimization routine was applied to the irrigation network of Alfeios River in Western Greece, an area that is characterized by high precipitation imbalances between winter and summer months.  相似文献   

9.
针对西北干旱区灌区生态环境脆弱、水资源短缺、复杂不确定性等问题,以石羊河流域红崖山灌区为例,耦合2型模糊集、模糊可信度约束规划和多目标规划等理论方法,构建了基于2型模糊集的多目标农业-生态水土资源优化配置模型。模型以灌溉水损失最小、生态植被灌溉水满意度最大、生态植被灌溉水费用最小和主要粮食作物经济效益最大为目标,对红崖山灌区10个决策单元的地表水、地下水和粮食作物种植面积进行优化配置。求解模型得到不同可信度水平和不确定性程度下的水土资源优化配置方案。结果表明:耦合2型模糊集的模型能够提供丰富的配置方案,水量对可信度水平的敏感性高于不确定性程度,作物种植结构对可信度水平不敏感。以不确定性程度参数为0.5、可信度水平为0.7时为例,生态植被均通过地表水灌溉,作物通过地表水、地下水联合灌溉,玉米的产量和经济效益均大于小麦。相比前人研究,本研究考虑生态植被灌溉需求,优化结果更加真实合理。本研究可为决策者提供较为符合灌区实际的配置方案,为西北干旱区灌区现代化建设提供科学指导。  相似文献   

10.
山东禹城引黄灌区非充分灌溉配水模型   总被引:3,自引:0,他引:3  
为了制定有多种作物且灌溉水源为动态变化的灌区的配水计划,提出了由充分灌溉和非充分灌溉2级模型组成的配水模型。其中非充分灌溉配水模型包括优化模型和模拟模型2部分,优化模型的方案具有较好的经济效益,而模拟模型的方案便于实施。模型中联合运用引黄水和地下水,可减少因黄河缺水对农业造成的重大损失。在此基础上编制的山东禹城灌溉配水管理决策支持系统界面友好,实用性强,基本上可灌溉灌区的管理需要。  相似文献   

11.
考虑不同层次利益主体的灌溉水资源优化配置   总被引:3,自引:0,他引:3       下载免费PDF全文
李茉  姜瑶  郭萍  李江 《农业机械学报》2017,48(5):199-207
针对灌溉水资源优化配置中存在的非线性和不确定性等特点,同时考虑灌区不同层次决策主体利益,分别构建考虑上层管理者利益的区间线性分式规划(ILFP)模型以获得最大的灌溉水生产力和考虑下层农民利益的区间二次规划(IQP)模型以获得最大的产量。在此基础上,将灌区上、下层利益主体作为整体,构建线性分式二次双层规划(LFQBP)模型,以协调灌区不同层次决策主体利益,促进灌区可持续发展。将所构建模型应用于盈科灌区的粮食作物配水中。通过配水结果的比较来分析各模型的性质,结果表明ILFP模型和LFQBP模型更适用于干旱地区。所构建模型从不同角度反映灌溉配水的实际问题,其优化结果有助于灌区管理者权衡各层决策主体间的利益。  相似文献   

12.
As water resources are limited and the demand for agricultural products increases, it becomes increasingly important to use irrigation water optimally. At a farm scale, farmer's have a particularly strong incentive to optimize their irrigation water use when the volume of water available over a season is production limiting. In this situation, a farmer's goal is to maximize farm profit, by adjusting when and where irrigation water is used. However, making the very best decisions about when and where to irrigate is not easy, since these daily decisions require consideration of the entire remaining irrigation season. Future rainfall uncertainty further complicates decisions on when and which crops should be subjected to water stress. This paper presents an innovative on-farm irrigation scheduling decision support method called the Canterbury irrigation scheduler (CIS) that is suitable when seasonal water availability is limited. Previous optimal scheduling methods generally use stochastic dynamic programming, which requires over-simplistic plant models, limiting their practical usefulness. The CIS method improves on previous methods because it accommodates realistic plant models. Future farm profit (the objective function) is calculated using a time-series simulation model of the farm. Different irrigation management strategies are tested using the farm simulation model. The irrigation strategies are defined by a set of decision variables, and the decision variables are optimized using simulated annealing. The result of this optimization is an irrigation strategy that maximizes the expected future farm profit. This process is repeated several times during the irrigation season using the CIS method, and the optimal irrigation strategy is modified and improved using updated climate and soil moisture information. The ability of the CIS method to produce near optimal decisions was demonstrated by a comparison to previous stochastic dynamic programming schedulers. A second case study shows the CIS method can incorporate more realistic farm models than is possible when using stochastic dynamic programming. This case study used the FarmWi$e/APSIM model developed by CSIRO, Australia. Results show that when seasonal water limit is the primary constraint on water availability, the CIS could increase pasture yield revenue in Canterbury (New Zealand) in the order of 10%, compared with scheduling irrigation using current state of the art scheduling practice.  相似文献   

13.
黄河流域典型灌区灌溉节水管理模型研究   总被引:2,自引:0,他引:2  
以黄河流域上下游2个典型灌区为背景,针对灌区有其农业水管理现状,开发了灌溉节水策略分析决策支持系统(DSS)原型。DSS是一个规划工具,通过对不同策略下田间配水及供水系统的模拟分析及综合决策,寻求最优的策略集合,以达到节约灌溉用水量、提高农业用水效率及维持农业可持续发展的目的。该DSS系统主要用于黄河流域灌区提高农业水管理水平的策略分析,也可用于评估灌区续建配套及土地最佳利用方案等方面。  相似文献   

14.
There is a wide gap between an ideal situation and actual conditions existing in the field of irrigation management in any tank irrigation system in India. To bridge this gap, a near real time analysis through LP modeling of the existing situation and the best allocation policy is attempted for the Aralikottai tank system. The actual conditions are simulated at each sluice command level whereas the best operational policy is attempted for the entire system as a whole. The analysis is conducted separately for a drought year (1988) and a surplus year (1990) with the available five year data from 1988 to 1992. The major conclusions indicate that the late transplantations of the rice crop and the excess water application during the periods of water availability (leading to water stress during the last stages of crop maturity) are the causes of the meagre benefits in a drought year. Also, in a surplus year the excess water application over the entire cropping season resulted in under utilization of land resources and moderate benefits. The existing status of irrigation can be improved to obtain the maximum benefits from the tank command area based on the quantification done.  相似文献   

15.
In this paper the results of an assessment of the hydrological and economic implications of reallocating water in the Musi sub-basin, a catchment within the Krishna Basin in India, are reported. Policy makers identified a number of different but plausible scenarios that could apply in the sub-basin, involving; supplying additional urban demand from agricultural allocations of water, implementing a number of demand management strategies, changing the timing of releases for hydropower generation, changing the crops grown under irrigation, reducing existing stream flows and allowing for more environmental flows. The framework chosen to undertake this assessment was a simulation model that measures and compares the economic values of water allocation scenarios determined from a water allocation model that accounts for supplies of groundwater and surface water across a number of regions and over a variety of uses. Policy makers are provided with the range of measures on the security of the supply of water and the social costs and benefits of reallocating water between sectors and across regions within the sub-basin. Taking water from agriculture to supply urban users has a greater impact on irrigation supplies during dry years. It was also found that changing the allocation of water between sectors, by taking it away from agriculture had a large positive economic impact on the urban sector. Yet the costs involved in undertaking such a strategy results in a significant loss in the net present value of the scheme. Stream flow reductions, if significantly large (at around 20%), were found to have a large physical and economic impact on the agricultural sector. Implementing water saving strategies in Hyderabad was found to be more cost effective than taking water from agriculture, if rainwater tanks are used to achieve this. Changing the timing of hydropower flows resulted in best meeting of irrigation demand in NSLC and NSRC. Under this scenario, the crops grown under irrigation were found to have a significant economic impact on the sub-basin, but not as large as farmers undertaking crop diversification strategies, ones which result in farmers growing less rice. The security of supplying water to different agricultural zones has significantly improved under this scenario. Finally, releasing water for environmental purposes was found to have only a minor impact on the agricultural sector.  相似文献   

16.
针对复杂灌区的水资源具有维数高、关系复杂、因素众多等特点,利用大系统分解协调原理,建立了最优规划的二层递阶网络流规划模型,并利用逐次线性化与OKA法相结合来求解上下层网络模型。该模型可充分发挥网络流规划模型计算速度快、占用内存小的优点。文中最后以湖北省宜昌市东风渠灌区为实例进行了应用研究。  相似文献   

17.
灌溉优化模型旨在求解干渠各出水口运行时流量调度的最优组合方案,对于提高灌区灌溉管理技术水平和实施农业高效节水有着重要的意义。在“等流量、变历时”的轮灌分组的优化模型上,采用遗传算法进行了优化,选用了高斯适应度函数,并根据约束条件的特点,提出了二维编码并对选择、交叉和变异过程进行了改进,仿真结果表明该改进的遗传算法效果起好,说明该算法设计是可行的。  相似文献   

18.
作物优化灌溉制度理论与方法研究进展   总被引:1,自引:0,他引:1  
重点论述了国内外作物优化灌溉制度理论与方法的研究进展,其中问题有:在单一作物模型中基于SPAC理论的研究不够充分,作物需水时间划分不够具体;多种作物水资源优化配置注重经济效益而在面向生态的综合效益研究较少。文中还比较了在模型设计中多种方法的优缺点,提出了在今后作物灌溉制度研究中应运用多种模型组合优化方法,加强学科交流以解决灌溉决策支持系统的问题,以期为解决区域内不同节水模式下作物优化灌溉制度和面向生态的水资源配置提供灵活可行的科学依据。  相似文献   

19.
《Agricultural Systems》1998,58(4):529-554
An integrated approach to reservoir, irrigation, and cropping management which links four different models—a hydrologic model (PRMS), a crop growth simulation model (EPIC), an economic model based on linear programming, and a dynamic programming model—is developed and demonstrated. The demonstration is based on an irrigation district located in a subhumid climate with an irrigation reservoir large enough for over-year storage. The model is used to make repeated simulations for various planning horizons. Two different types of results are presented. The first provides the probability that each of the various farm plans (land/crop/water allocation) will be chosen as the optimum in the first year of the planning horizon. The second approach provides probability distributions of accumulated revenues over a chosen length of planning horizon. Each distribution is associated with an initial reservoir level and a particular farm plan in the first year of the planning horizon. The consequence of selecting certain farm plans at the beginning of a specified planning horizon is therefore quantified in a probabilistic way. Based on families of probability–revenue curves, an irrigation manager can simultaneously evaluate crop, irrigation, and reservoir management options.  相似文献   

20.
In this study, an inexact two-stage water management (ITWM) model is developed for planning agricultural irrigation in the Zhangweinan River Basin, China. The ITWM model is derived from the incorporation of interval-parameter programming (IPP) within a two-stage stochastic programming (TSP) framework. It can reflect not only uncertainties expressed as probability distributions but also interval numbers. Moreover, it can provide an effective linkage between conflicting economic benefits and the associated penalties attributed to the violation of the predefined policies. Four decision scenarios associated with different water-resources management policies are examined. Targeted incomes, recourse costs, and net system benefits under different scenarios are analyzed, which indicates that different policies for agricultural irrigation targets correspond to different water shortages and surplus, and thus lead to varied system benefit and system-failure risk. The results are valuable for supporting the adjustment or justification of the existing irrigation patterns and identify a desired water-allocation plan for agricultural irrigation under uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号