首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The postharvest life and flavor quality of three strawberry (Fragaria x ananassa D.) cultivars (Aromas, Diamante and Selva) kept at 5 °C in air or air+20 kPa CO2 for up to 15 days were investigated. ‘Diamante’ and ‘Selva’ had better flavor quality than ‘Aromas’ strawberries, as indicated by levels of titratable acidity and total soluble solids, organic acids, sugars and some aroma compounds and by a consumer preference test. Flesh firmness was maintained in ‘Aromas’ and increased in ‘Diamante’ and ‘Selva’ strawberries during storage at 5 °C in both air and air+20 kPa CO2. Fruit color was not affected by CO2 treatments. The postharvest life based on appearance was 7, 9 and 9 days for ‘Aromas’, ‘Diamante’ and ‘Selva’ fruits stored in air and it was extended by 2, 2 and 4 days, respectively, by the CO2-enriched atmosphere. However, the level and proportion of flavor components (sugars, organic acids, aroma compounds) and fermentative metabolites, as well as the results of sensory evaluations, indicated that the flavor life was shorter than postharvest life based on appearance in ‘Aromas’ fruit stored in air (5 vs. 7 days) and in CO2-stored ‘Aromas’ (7 vs. 9 days) and ‘Selva’ (11 vs. 13 days) fruit. ‘Selva’ and ‘Diamante’ strawberries retained their flavor quality during storage at 5 °C in air for 9 days and CO2-stored ‘Diamante’ fruit for 11 days.  相似文献   

2.
The effect of MAP on extending storage life and maintaining fruit quality was studied in ‘Doyenne du Comice’ (Pyrus communis L.) pears at Hood River and Medford, Oregon. Control fruit packed in standard perforated polyethylene liners started to show senescent core breakdown and lost the capacity to ripen at 20 °C after 4–5 months of cold storage in Hood River and after 5.25–6 months in Medford. LifeSpan® L257 MAP achieved steady-state atmospheres of 15.8% O2 + 3.7% CO2 in Hood River and 15.7–17.5% O2 + 3.8–5.7% CO2 in Medford. MAP inhibited ethylene production, ascorbic acid degradation and malondialdehyde accumulation, and extended storage life for up to 6 months with maintenance of fruit flesh firmness (FF) and skin color without commercially unacceptable level of physiological disorders. After 4, 5 and 6 months at −1 °C, MAP fruit exhibited climacteric-like patterns of ethylene production and softened to proper texture with desirable eating quality on day 5 during ripening at 20 °C. After 6 months at −1 °C plus 2 weeks of simulated transit conditions, MAP fruit maintained FF and skin color and had good eating quality at transit temperatures of 2 and 4.5 °C (10.1–11.5% O2 + 4.8–5.2% CO2), but reduced FF substantially and developed internal browning disorder at 7.5 and 20 °C (3.2–7.2% O2 + 7.9–9.5% CO2). The storage life of ‘Doyenne du Comice’ pears with high eating quality could be increased by up to 2 months when packed in MAP as compared with fruit packed in standard perforated polyethylene liners.  相似文献   

3.
Most sweet cherries produced in the US Pacific Northwest and shipped to distant markets are often in storage and transit for over 3 weeks. The objectives of this research were to study the effects of sweet cherry storage O2 and CO2 concentrations on the respiratory physiology and the efficacy of modified atmosphere packaging (MAP) on extending shelf life. Oxygen depletion and CO2 formation by ‘Bing’ and ‘Sweetheart’ cherry fruit were measured. While respiration rate was inhibited linearly by reduced O2 concentration from 21% to 3–4% at 20 °C, it was affected very little from 21% to ∼10% but declined logarithmically from ∼10% to ∼1% at 0 °C. Estimated fermentation induction points determined by a specific increased respiratory quotient were less than 1% and 3–4% O2 for both cultivars at 0 and 20 °C, respectively. ‘Bing’ and ‘Sweetheart’ cherry fruits were packaged (∼8 kg/box) in 5 different commercial MAP box liners and a standard macro-perforated polyethylene box liner (as control) and stored at 0 °C for 6 weeks. MAP liners that equilibrated with atmospheres of 1.8–8.0% O2 + 7.3–10.3% CO2 reduced fruit respiration rate, maintained higher titratable acidity (TA) and flavor compared to control fruit after 4 and 6 weeks of cold storage. In contrast, MAP liners that equilibrated with atmospheres of 9.9–14.4% O2 + 5.7–12.9% CO2 had little effect on inhibiting respiration rate and TA loss and maintaining flavor during cold storage. All five MAP liners maintained higher fruit firmness (FF) compared to control fruit after 6 weeks of cold storage. In conclusion, storage atmospheres of 1.8–14.4% O2 + 5.7–12.9% CO2 generated by commercial MAP, maintained higher FF, but only the MAP with lower O2 permeability (i.e., equilibrated at 1.8–8.0% O2) maintained flavor of sweet cherries compared to the standard macro-perforated liners at 0 °C. MAP with appropriate gas permeability (i.e., equilibrated at 5–8% O2 at 0 °C) may be suitable for commercial application to maintain flavor without damaging the fruit through fermentation, even if temperature fluctuations, common in commercial storage and shipping, do occur.  相似文献   

4.
The effects of controlled atmospheres (CA) on respiration, ethylene production, firmness, weight loss, quality, chilling injury, and decay incidence of three commercially important cultivars of guava fruit were studied during storage in atmospheres containing 2.5, 5, 8, and 10 kPa O2 with 2.5, 5, and 10 kPa CO2 (balance N2) at 8 °C, a temperature normally inducing chilling injury. Mature light green fruit of cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’ and ‘Apple Colour’, were stored for 30 days either in CA or normal air, and transferred to ambient conditions (25–28 °C and 60–70% R.H.) for ripening. CA storage delayed and suppressed respiratory and ethylene peaks during ripening. A greater suppression of respiration and ethylene production was observed in fruit stored in low O2 (≤5 kPa) atmospheres compared to those stored in CA containing 8 or 10 kPa O2 levels. High CO2 (>5 kPa) was not beneficial, causing a reduction in ascorbic acid levels. CA storage was effective in reducing weight loss, and maintaining firmness of fruit. The changes in soluble solids content (SSC), titratable acidity (TA), ascorbic acid, and total phenols were retarded by CA, the extent of which was dependent upon cultivar and atmosphere composition. Higher amounts of fermentative metabolites, ethanol and acetaldehyde, accumulated in fruit held in atmospheres containing 2.5 kPa O2. Chilling injury and decay incidence were reduced during ripening of fruit stored in optimal atmospheres compared to air-stored fruit. In conclusion, guava cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’, and ‘Apple Colour’ may be stored for 30 days at low temperature (8 °C) supplemented with 5 kPa O2 + 2.5 kPa CO2, 5 kPa O2 + 5 kPa CO2, and 8 kPa O2 + 5 kPa CO2, respectively.  相似文献   

5.
Emission of aroma volatile compounds and some related enzyme activities (LOX, PDC, ADH, and AAT) were assessed in ‘Fuji’ apples (Malus × domestica Borkh.) during shelf life at 20 °C following cold storage under air or under three different CA conditions (3 kPa O2:2 kPa CO2; 1 kPa O2:1 kPa CO2; or 1 kPa O2:2 kPa CO2). Data were used for principal component analysis (PCA) and partial least-square regression (PLSR) analysis of results. LOX activity was partly inhibited by hypoxic conditions, and thus could have contributed to differentiation between air- and CA-stored fruit. Accordingly, emission of straight-chain esters was also higher in air- than in CA-stored fruit. In contrast, PDC activity was responsible for part of the differences between low (3 kPa) and ultra-low (1 kPa) O2 storage conditions, probably by providing substrates for AAT action. AAT activity afforded no satisfactory differentiation between samples, and therefore it is suggested that substrate availability is a more decisive factor than enzyme activity for volatile production after storage. The PCA and PLSR models developed in this work were not useful for discrimination between the two studied ultra-low O2 conditions.  相似文献   

6.
The effect of carvacrol and methyl cinnamate vapors incorporated into strawberry puree edible films on the postharvest quality of strawberry fruit (Fragaria × ananassa) was investigated. Fresh strawberries were packed in clamshells and kept at 10 °C for 10 days with 90% RH. Strawberry puree edible films, applied in the clamshell, served as carriers for the controlled release of natural antimicrobial compounds without direct contact with the fruit. Changes in weight loss, visible decay, firmness, surface color, total soluble solids content, total soluble phenolics content and antioxidant capacity of strawberries during storage were evaluated. A significant delay and reduction in the severity of visible decay was observed in fruit exposed to antimicrobial vapors. Carvacrol and methyl cinnamate vapors released from the films helped to maintain firmness and brightness of strawberries as compare to the untreated strawberries. The natural antimicrobial vapors also increased the total soluble phenolics content and antioxidant activity of fruit at the end of the storage period.  相似文献   

7.
The vapours of allyl-isothiocyanate (AITC) were evaluated in in vitro and in vivo trials against Botrytis cinerea, a severe pathogen of strawberries. In in vitro trials AITC activity was assayed on conidial germination and mycelial growth of the fungus. The mycelium appeared less sensitive to AITC than conidia (EC50 values of 1.35 mg L−1 and 0.62 mg L−1, respectively). In addition, AITC had a fungistatic effect against the pathogen, since the values of EC50, for both parameters, increased by around 30% after AITC removal. In in vivo trials, ‘Tecla’ and ‘Monterey’ strawberries (spring-bearing and day-neutral cultivars, respectively) obtained from organic production and naturally infected by B. Cinerea, were exposed for 4 h in an atmosphere enriched by pure AITC or derived from defatted seed meals of Brassica carinata (0.1 mg L−1, in a 0.1 m3 treatment cabinet). After 2 days at 0 °C and another 3–4 days at 20 °C, the fruit were evaluated for grey mould infections. The AITC treatment reduced the decay caused by the pathogen by over 47.4% up to 91.5%, significantly different from the untreated fruit. No significant differences were found between synthetic and glucosinolate-derived AITC. Residue analysis performed on fruit at the end of storage (7 d after treatment) showed values lower than 1 mg kg−1. Total phenolic content and antioxidant capacity estimated in treated and untreated strawberries showed no significant difference between control and AITC treated fruit. Our results show it is possible to reduce the incidence of postharvest grey mould on strawberries with a treatment of AITC (0.1 mg L−1) for 4 h, opening a potential application of biofumigation in the postharvest control of B. cinerea in strawberry.  相似文献   

8.
Blueberries are highly perishable and therefore it is necessary to develop strategies to increase their storage life. Two rabbiteye cultivars (‘Centurion’ and ‘Maru’) were stored at 1.5 °C in either regular air or controlled atmosphere (2.5 kPa O2 + 15 kPa CO2) for up to 6 weeks. Measurements of firmness, soluble solids content, titratable acidity, weight loss, shrivel and blemishes were combined with determinations of antioxidant activities and total phenolic content. Weight loss and shrivel were not affected by storage atmosphere or storage duration. After 28 days, controlled atmosphere storage resulted in only half as much blemished fruit compared with storage in regular air. Additionally, fungal development in ‘Maru’ fruit was minimised by controlled atmosphere storage.Water-soluble extracts from ‘Centurion’ fruit had higher antioxidant activities and total phenolic content than those from ‘Maru’ fruit at harvest and after storage in regular air and controlled atmosphere. The highest increases in antioxidant activity and total phenolic content occurred during the additional 6 days of shelf-life at 20 °C.  相似文献   

9.
Southern hemisphere blueberry producers often export their products through extended supply chains to Northern hemisphere consumers. During extended storage, small variations in temperature or atmosphere concentrations may generate significant differences in final product quality. In addition, relatively short delays in establishing cool storage temperatures may contribute to quality loss. In these experiments a full factorial analysis was done of the effects of three cooling delays (0, 12 or 24 h at 10 °C), three atmosphere concentrations (air, 10% CO2 + 2.5% O2 and 10% CO2 + 20% O2) and two storage temperatures (0 °C and 4 °C) which were assessed for their impact on final quality, measured as weight loss, firmness and rot incidence. Two blueberry cultivars were studied: ‘Brigitta’, a highbush cultivar, and ‘Maru’, a rabbiteye. Delays in cooling had a small effect on final product weight, whereas variation in storage temperature and atmosphere during simulated transport influenced both firmness and rot incidence. Atmospheres with 10% CO2 reduced decay incidence, particularly at low oxygen concentration (2.5% O2), although the latter conditions tended to soften fruit. In order to achieve optimal postharvest storage for blueberries, minimising temperature variability in the supply chain is important, as is finding the potentially cultivar-specific optimal combination of high CO2 and low O2 concentration that results in simultaneously minimising rot incidence and induced softening.  相似文献   

10.
Internal browning (IB) can be a serious problem with the use of modified atmosphere packaging (MAP) for ‘Bartlett’ pears (Pyrus communis L.) grown in the Pacific Northwest during storage and transit to distant markets. To investigate this disorder, ‘Bartlett’ pears harvested at commercial maturity were packed in a commercial MAP (MAPc), an experimental MAP (MAPe) and commercial perforated plastic bags (control) and stored in air at −1.1 °C. After 1 and 3 months of storage, samples of MAPc and control fruit were transferred to rooms at temperatures of 2, 4.5, 7.5, and 10 °C for 3 weeks to simulate transit temperatures and the time required to reach distant markets. MAPc maintained an average internal atmosphere of 12.3% O2 + 5.6% CO2 and significantly extended ‘Bartlett’ pear storage life with high eating quality and without IB and other disorders for up to 4 months at −1.1 °C. The internal gas atmosphere of MAPe equilibrated at 2.2% O2 + 5.7% CO2, which resulted in fruit with 25.5 and 62.3% IB after 3 and 4 months of storage, respectively. During simulated transit conditions of 2, 4.5, 7.5, and 10 °C, the CO2 level in MAPc was maintained at 5.6–7.9%, while O2 was reduced dramatically to 10.5, 5.0, 2.5, and 1.0%, respectively. IB developed at 7.5 and 10 °C but not at 2 and 4.5 °C, regardless of pre-transit storage duration (1 and 3 months) at −1.1 °C. The longer the storage duration and the higher transit temperature, the higher the incidence and severity of IB. The MAP-related IB disorder observed in this study included two types of symptoms: classic pithy brown core and wet brown flesh. The MAPc storage gas atmospheres maintained fruit firmness, color and higher eating quality after ripening, eliminated senescent scald and core breakdown, suppressed the loss of ascorbic acid (AsA) and titratable acidity, and slowed the accumulation of malondialdehyde (MDA) during storage at −1.1 °C for up to 4 months or 3 months + 3 weeks at simulated transit temperatures of 2 and 4.5 °C. In contrast, fruit held in MAP with low O2 levels (1.0–2.5%) developed IB that appeared to be associated with a reduction in AsA, accumulated MDA and exhibited an increase in membrane leakage. MAP inhibited ripening at high CO2 + high O2 but lead to IB when the packaging material or elevated temperatures resulted in high CO2 + low O2 conditions. The incidence of IB closely correlated with lipid peroxidation and appeared to be related to fruit AsA concentration. The MAPc designed for pears appears to be suitable for ‘Bartlett’ fruit stored at −1.1 °C for up to 4 months or storage for 3 months and a transportation duration of up to 3 weeks at 0–4.5 °C during the early season and at 0–2 °C during the late packing season. These conditions yielded fruit of high eating quality and without IB or over-ripening upon arrival at distant markets.  相似文献   

11.
The potential of 1-MCP for controlling ripening in ‘Angeleno’ plum fruit under air and controlled atmosphere (CA) storage was explored, and the possibility that 1-MCP can inhibit development of brown rot caused by Monilinia laxa and internal breakdown in ‘Fortune’ and ‘Angeleno’ plums tested. After harvest, fruit were exposed to 300 and 500 nl l−1 (in 2003) and 500 nl l−1 1-MCP (in 2004) at low temperatures (0–3 °C) for 24 h. After treatment the plums were stored in air at 0 °C and ‘Angeleno’ fruit were also stored in CA storage (1.8% O2 + 2.5% CO2). Following storage, fruit were kept at 20 °C. In ‘Angeleno’ fruit, 1-MCP was effective in delaying the loss of firmness and colour changes during holding at 20 °C. 1-MCP reduced brown rot in fruit stored in CA but no significant reduction was found in air storage. Internal breakdown, a major physiological storage disorder in plums, was inhibited by 1-MCP treatment. Furthermore, since 1-MCP applied in air storage showed better results than the control in CA conditions, an application of 1-MCP before air storage could be the best way to reduce the ripening process for short or medium storage periods (40 and 60 days). CA storage plus 1-MCP treatment could be used for long periods (80 days).  相似文献   

12.
Mature green banana (Musa sapientum L. cv. Cavendish) fruit were stored in 0.5%, 2%, or 21% O2 for 7 days at 20 °C before ripening was initiated by ethylene. Residual effects of low O2 storage in mature green fruit on ripening and ester biosynthesis in fruit were investigated during ripening for up to 6 d at 20 °C. Concentrations of ethanol in mature green fruit did not change during storage in both 21% and 2% O2 atmospheres, but increased in fruit stored in 0.5% O2. The activities of alcohol dehydrogenase (ADH) in 2% and 21% O2 atmospheres remained very low throughout the storage period, but significantly increased with 0.5% O2. After transferring fruit to regular air and trigging ripening with ethylene, yellowing of peel, fruit softening and hydrolysis of starch in fruit stored in low O2 atmospheres were slower than in the control. Fruit stored in low O2 also showed a delayed onset of the climacteric peak. The activities of ADH were lower in the low O2 stored fruit than in the control fruit. Productions of ethyl acetate, isoamyl acetate, and isobutyl acetate were remarkably suppressed by low O2 storage. Alcohol acetyltransferase activity increased gradually with storage time in all treatments, being significantly lower in fruit with low O2 pretreatments. The results indicate that low O2 plus room temperature storage can extend storage life of bananas with the sacrifice of a low production of ester volatiles.  相似文献   

13.
The underlying causes as well as chemical and biochemical alleviation for CO2-induced browning in apple fruit are poorly understood. Ascorbic acid (AsA) dynamics in ‘Braeburn,’ a susceptible cultivar, and ‘Gala’, a resistant cultivar, were evaluated during on-tree development and storage at 0.5 °C in air or controlled atmospheres (CA) containing 1 kPa O2 and 1, 3 or 5 kPa CO2. ‘Braeburn’ fruit treated with diphenylamine (DPA) was also stored for 1 month to determine effects on browning incidence and AsA concentration. ‘Braeburn’ apples had significantly higher (p  0.05) AsA levels than ‘Gala’ during on-tree development, and storage. No correlation between AsA and maturity/ripening indices for ‘Braeburn’ or ‘Gala’ was apparent. Histochemical localization of fruit AsA showed a staining intensity consistent with the quantity analytically determined, and showed that AsA is diffusely distributed throughout the cortex in both cultivars during on-tree development. During storage, AsA was localized to the periphery of brown tissue in ‘Braeburn’ and to the coreline and cortex proximal to the peel in ‘Braeburn’ and ‘Gala’ tissues. DPA decreased browning development during storage, however, no correlation between DPA treatment and AsA quantity in healthy or brown cortex tissue was observed. The results indicate AsA quantity alone is not an indicator of CO2 sensitivity in these two cultivars.  相似文献   

14.
Standard quality parameters, consumer acceptability, emission of volatile compounds and ethylene production of ‘Mondial Gala®’ apples (Malus × domestica Borkh.) were determined in relation to storage atmosphere, storage period and shelf-life period. Fruit were harvested at the commercial date and stored in AIR (21 kPa O2:0.03 kPa CO2) or under three different controlled atmospheres (CAs): LO (2 kPa O2:2 kPa CO2), ULO1 (1 kPa O2:1 kPa CO2), or ULO2 (1 kPa O2:2 kPa CO2). Fruit samples were analysed after 12 and 26 weeks of storage plus 1 or 7 d at 20 °C.Apples stored in CA maintained better standard quality parameters than AIR-stored fruit. The volatile compounds that contributed most to the characteristic aroma of ‘Mondial Gala®’ apples after storage were butyl, hexyl and 2-methylbutyl acetate, hexyl propanoate, ethyl butanoate, ethyl hexanoate, ethyl, butyl and hexyl 2-methylbutanoate. Data obtained from fruit analysis were subjected to principal component analysis (PCA). The apples most accepted by consumers showed the highest emission of ethyl 2-methylbutanoate, ethyl hexanoate, tert-butyl propanoate and ethyl acetate, in addition to the highest titratable acidity and firmness values.  相似文献   

15.
Physiological responses and fruit quality of ‘d’Anjou’ pear fruit from five orchard lots were evaluated after cold storage in air or controlled atmospheres (CA) with the O2 concentration based on assessment of fruit chlorophyll fluorescence (CF) or standard conditions (1.5 kPa O2). The pCO2 for all CA fruit was 0.5 kPa. Softening, acid loss, and peel degreening of all lots were delayed at one or more evaluation dates (2, 4, 6, 8 months) by previous storage at the CF pO2 compared with fruit stored in 1.5 kPa O2 or in air. Superficial scald developed on fruit previously stored in air but not on fruit stored in a CA. Pithy brown core developed on fruit from all lots stored at the CF pO2 and on fruit stored at 1.5 kPa in 3 of the 5 lots. Pithy brown core incidence decreased with advanced harvest maturity. Post-storage ethylene and CO2 production were in most instances lowest for fruit stored at the CF pO2. A significant relationship between fruit ethanol content and pithy brown core incidence was observed. Results indicate low pO2 storage based on CF monitoring slows fruit ripening relative to fruit stored at 1.5 kPa O2, prevents superficial scald development compared with fruit stored in air, however, development of pithy brown core in fruit stored at the CF pO2 was not accompanied by a change in CF.  相似文献   

16.
The effects of high CO2 concentration (10% CO2, 17% O2) on the changes of functional cell wall components (pectic substances, hemicellulose, cellulose, lignin), mechanical properties, content of free soluble sugars (sucrose, glucose, fructose), and respiration activity were studied in harvested white asparagus spears stored at 10 and 20 °C, respectively, for up to 7 d. Spears stored at 2, 10 and 20 °C in air were studied as controls, where the 2 °C condition indicated the effects of cold storage. During storage, respiration activity declined only slightly, irrespective of the CO2 and temperature regime. Spears stored at 20 °C under both CA and normal air became less stiff and more elastic, however, tissue toughness increased significantly. Changes in toughness were associated primarily with the dynamics of lignin and cellulose, revealing a strong correlation (r2 = 0.81). High CO2 concentration inhibited the synthesis of cellulose and, to some extent, lignin accumulation at 20 °C. Additionally, elevated CO2 inhibited the degradation of soluble carbohydrates. In contrast, slightly lower temperatures of 10 °C in combination with high CO2 did not have a pronounced effect on changes in structural carbohydrates (lignin, cellulose, hemicellulose and pectins). The effect low temperature (2 °C) under normal atmosphere conditions resulted in the inhibition of cell wall changes in asparagus spears.  相似文献   

17.
The purpose of this study was to investigate the effect of tee tree oil (TTO) against the main fungal disease in strawberries and a possible mechanism for the effects. TTO vapor exhibited a higher activity against spore germination and mycelial growth of Botrytis cinerea and Rhizopus stolonifer under in vitro conditions. TTO vapors at 0.9 g/L significantly reduced artificially inoculated gray mold and soft rot in vivo, and treated strawberries maintained a fresher quality than untreated strawberries during storage. In addition, this treatment also enhanced the resistance of strawberries against B. cinerea, which caused a higher hydrogen peroxide (H2O2) level and activities of superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD) and β-1,3-glucanase during the first period of incubation. These results indicate that TTO can reduce fruit decay, possibly by inhibiting pathogen growth directly and inducing disease resistance indirectly, and TTO vapor may provide an alternative means of controlling disease in strawberries.  相似文献   

18.
The effects of fruit position within the canopy on the onset of the respiratory climacteric and the rise in ethylene production as well as changes in peel colour and chemical composition were studied in apples (Malus x domestica Borkh. cv. Aroma) during ripening in normal air at 20 °C for 6–8 weeks over two crop seasons. The commencement of the rise in both CO2 and ethylene production was equal independent of fruit position but the peak of ethylene was behind that of CO2 with a lag of several days. While the climacteric ethylene peak was considerably higher in shaded inside apples, the internal ethylene concentration was at the same level independent of canopy position. During maturation on the tree outside fruit developed a red peel colour while inside fruit remained green. Outside fruit had a higher content of dry matter, soluble solids and soluble sugars but a somewhat lower amount of titratable acidity than inside fruit. High summer temperatures in the second year resulted in a significantly higher content of soluble solids and organic acids independent of fruit position but diminished the soluble solids difference between outside and inside fruit and increased the difference in malic and citric acid concentrations. High summer temperatures also increased the difference in peel colour between outside and inside fruit. Independent of canopy position, the soluble solids concentrations remained unchanged during ripening while the amounts of sucrose as well as malic acid and the titratable acidity decreased with a concomitant rise in the cell sap pH. The higher content of soluble sugars and a somewhat lower amount of titratable acidity in outside red-coloured apples probably contribute to improved fruit quality but the difference seems to be strongly dependent on the growing conditions, especially the sum of heat units.  相似文献   

19.
Shiitake (Lentinus edodes) mushrooms were exposed to UV-C light (4 kJ/m2) and stored in modified atmosphere packaging (MAP) prior to 15 days at 1 ± 1 °C and 95% relative humidity plus 3 days at 20 °C. Mushroom firmness, total phenolics, total flavonoids, ascorbic acid and H2O2 contents, superoxide anion (O2) production rate and activities of catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. UV-C treatment resulted in maintenance of a high level of firmness during 15 days at low temperature and reduced the decrease in firmness during shelf-life storage. Furthermore, treated samples showed higher total flavonoids, ascorbic acid, and delayed the increases in both O2 production rate and H2O2 contents. However, no clear treatment effects were seen in total phenolics contents. The treatment also increased the antioxidant enzyme activities of CAT, SOD, APX and GR throughout the storage period. These results indicate that postharvest application of UV-C radiation can delay softening and enhance antioxidant capacity in shiitake mushrooms.  相似文献   

20.
The use of a heterologous fruit microarray system to identify differentially expressed genes between strawberry cultivars with different responses to 20 kPa CO2 (balance air) during storage has been evaluated. Specifically, a tomato cDNA microarray containing approximately 12,000 ESTs (representing 8700 unigenes) was hybridized with strawberry cDNA populations to compare gene expression differences between two cultivars: ‘Jewel’, a cultivar that accumulates acetaldehyde and ethanol in response to elevated CO2 during storage, and ‘Cavendish’ that does not accumulate these compounds under the same storage conditions. A set of 80 tomato gene sequences gave differential hybridization signals between the two strawberry cultivar probes when they were stored in CO2 for 48 h, suggesting homologous strawberry genes with differential expression. Within each cultivar, when RNA from fruit stored in air was compared with that from fruit stored in CO2, 168 sequences suggested differential expression in ‘Jewel’, but only 51 were differentially expressed in ‘Cavendish’ fruit. Strawberry genes with putative homologies to enzymes involved in cell wall metabolism, ethylene action and stress were implicated by the tomato array. This research not only demonstrates the usefulness of using a heterologous microarray platform from a model species (tomato) to study a complex process in strawberry, a crop of economic importance, for which genomic resources are still limited, but also provides a foundation for investigating the molecular basis of responses to elevated CO2 during strawberry postharvest storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号