首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
The effects of dimethyl dicarbonate (DMDC) (200 mg L−1) treatment on microorganisms and quality of Chinese cabbage were investigated. The results indicated that in the different tissues treated by DMDC, a significant reduction (P < 0.05) of total aerobic plate count (TAPC) of the leaf (ca. 4.49 log cfu g−1) and stalk (ca. 4.45 log cfu g−1), as well as the count of total yeasts and molds of the leaf (ca. 3.02 log cfu g−1) and stalk (ca. 3.62 log cfu g−1), was obtained in comparison with the control (sterile water dip). However, in the flower bud and/or flower treated by DMDC, the reduction of TAPC (ca. 2.74 log cfu g−1) and counts of total yeasts and molds (ca. 2.26 log cfu g−1) were much lower. DMDC treatment affected appearance and texture early in storage, but an impact on the nutritional composition of Chinese cabbage during storage was not found. Additionally, DMDC treatment significantly (P < 0.05) inhibited the activity of polyphenol oxidase (PPO) and peroxidase (POD) late during storage. Therefore, DMDC is a new and effective alternative for sanitation of Chinese cabbage where a protective measure of appearance quality needs to be adopted.  相似文献   

2.
The influence of the first and second cutting at harvest on the physiological response of four baby leaf Brassica species was studied. The species were salad rocket (Eruca vesicaria), wild rocket (Diplotaxis tenuifolia), mizuna (Brassica rapa L. ssp. nipposinica) and watercress (Nasturtium officinale) stored at 1, 4, 8 and 12 °C. In addition, the microbial and metabolic behaviours of baby leaves were evaluated after different washing treatments including water, ozonated water (10 mg L−1 total dose), ozonated water activated with ultraviolet C light (UV-C) and heat shock wash (50 °C, 1 min). Temperature had a significant effect on both respiration rate and post-cutting life. The production of CO2 increased between 2- and 4-fold when temperature increased from 1 to 12 °C. Minor differences in leaf respiration rate between the first and second leaf cutting were observed for salad rocket and wild rocket, while leaves from the second cutting of mizuna and watercress leaves had a higher respiration rate than from the first cutting. Ozone, and ozone combined with UV-C, were the most efficient washing treatments in reducing total mesophilic counts, while heat shock treatment did not affect them. Additionally, naturally occurring Listeria spp. were controlled well in wild rocket and mizuna (<1 log cfu g−1) when the ozone treatments were applied. On the other hand, respiration rates of the Brassica species were not substantially affected by the washing treatments when stored at 4 °C. Maximum CO2 production was observed immediately after washing but decreased during the first 24 h of storage. Baby leaves washed with cold water consistently showed a lower respiration rate than the other washing treatments. Heat shock was the washing treatment that most influenced the increase in the respiration rate of baby leaves during storage at 8 °C.  相似文献   

3.
Pantoea agglomerans CPA-2 is an effective biocontrol agent of postharvest diseases of citrus and pome fruit. A monitoring technique was developed for its identification and to quantify its populations. The methodology used consisted of (i) searching for a semi-selective medium, (ii) identification of molecular markers and (iii) monitoring population dynamics in a commercial trial. As a semi-selective medium, Malonate Broth Agar supplemented with tetracycline hydroxychloride and incubation at high temperature (max. of 40 °C) facilitated the selective recovery of P. agglomerans CPA-2 colonies. The RAPD technique was applied to a collection of 13 strains of P. agglomerans, including CPA-2. Among the 12 primers tested, OPL-11 amplified a fragment (about 720 bp) specific to strain CPA-2. On the basis of this fragment, two SCAR markers were amplified using a primer pair derived from OPL-11 elongation. A first SCAR marker of 720 bp was specifically amplified for the strain CPA-2 and a second one of 270 bp was obtained for all P. agglomerans strains tested, including CPA-2. Commercial trials demonstrated a significant reduction of decay with the treatment of formulated cells of P. agglomerans CPA-2. Population dynamics of CPA-2 in commercial trials were determined on fruit surfaces and in the environment using both the classical plating technique and PCR with SCAR primers. In general, no significant differences were observed between results obtained from the two methods. On fruit surfaces, 1 day after CPA-2 applied its population by classical methods was 4.37 × 106 cfu wound−1 and at the end of the experiment the population increased to 5.8 × 105 cfu wound−1. The percentages of colonies identified as P. agglomerans CPA-2 at these sampling times using SCAR primers were 90 and 95%, respectively. Population dynamics in the environment to evaluate the environmental fate of P. agglomerans CPA-2 showed that it has a limited persistence and limited capacity for dispersion.  相似文献   

4.
In this study, the changes in vitamin C, l-ascorbic acid (AA) and l-dehydroascorbic acid (DHA) levels in broccoli flower buds were examined during pre-storage and storage periods, simulating refrigerated transport with wholesale distribution and retail, respectively. Broccoli heads were pre-stored for 4 or 7 days at 0 °C or 4 °C in the dark and then stored for 3 days at 10 °C or 18 °C. During storage the broccoli heads were exposed for 12 h per day to three different levels of visible light (13, 19 or 25 μmol m−2 s−1) or a combination of visible light (19 μmol m−2 s−1) and UV-B irradiation (20 kJ m−2 d−1), or they were stored in the dark. The vitamin C content in broccoli flower buds during storage was significantly affected by pre-storage period and temperature. Higher vitamin C levels in flower buds after storage were observed for broccoli heads pre-stored for 4 days or at 0 °C as compared to those pre-stored for 7 days or at 4 °C. Storage temperature also affected vitamin C in broccoli flower buds, with higher levels observed for broccoli stored at 10 °C than at 18 °C. Hence, vitamin C in broccoli flower buds was demonstrated to decrease together with increasing pre-storage period, pre-storage temperature and storage temperature. AA in broccoli flower buds was influenced mainly by storage temperature and to a minor extent by pre-storage temperature. The DHA level and DHA/AA ratio were stable in flower buds of broccoli pre-stored for 7 days, whereas increasing tendencies for both DHA level and ratio were observed after pre-storage for 4 days. These results indicate a shift in the ascorbate metabolism in broccoli flower buds during storage at low temperatures, with its higher rate observed for broccoli pre-stored for shorter time. There were no effects of the light and UV-B irradiation treatments on vitamin C, AA and DHA levels in broccoli flower buds.  相似文献   

5.
Decreasing the corn (Zea mays L.) gap between the potential yield and farm yield and reducing the risk of grain yield of drought are very important for corn production in the Corn Belt of Northeast China (CBNC). To achieve a high and stable corn yield, the effects of supplementary irrigation on yield, water use efficiency (WUE) and irrigation water use efficiency (IWUE) were studied using a modelling approach. The Root Zone Water Quality Model 2 was parameterized and evaluated using two years of experimental data in aeolian sandy soil and black soil. The evaluated model was then used to investigate responses to various irrigation strategies (rainfed, full irrigation and 12 single irrigation scenarios) using long-term weather data from 1980 to 2012. Full irrigation guarantees a high and stable corn grain yield (12.92 Mg ha−1 and has a coefficient of variation (CV) of 14.8% in aeolian sandy soil; 12.30 kg Ma−1 and CV of 11.1% in black soil), but has a low water use efficiency (19.92 and 21.81 kg ha−1 mm−1) and a low irrigation water use efficiency (10.01 and 11.03 kg ha−1 mm−1). A single irrigation can increase corn yields by 3–35% for aeolian sandy soil and 5–35% for black soil over different irrigation dates compared with no irrigation. The most suitable single irrigation date was during late June to early July for aeolian sandy soil (yield = 10.73 Mg ha−1 and WUE = 27.94 kg ha−1 mm−1) and early to mid-July for black soil (yield = 11.20 Mg ha−1 and WUE = 27.70 kg ha−1 mm−1). The lowest yield risk of falling short of the yield goal of 8, 9, and 10 Mg ha−1 were 9.1%, 18.2%, and 33.33% in aeolian sandy soil and 3.0%, 15.25, and 21.2% in black soil when an optimized single irrigation was applied in late June or early July, respectively. Therefore, an optimized single irrigation should be applied in late June to early July with the irrigation amount to refill soil water storage of root zone to field capacity in CBNC.  相似文献   

6.
Freshly cut slices of apple (Malus x domestica Borkh cv. Granny Smith) were fumigated with nitric oxide (NO) gas at concentrations between 1 and 500 μl l−1 in air at 20 °C for up to 6 h followed by storage at 0, 5, 10 and 20 °C in air. Exposure to nitric oxide delayed the onset of browning on the apple surface with the most effective treatment being fumigation with 10 μl l−1 NO for 1 h. While nitric oxide inhibited browning in slices held at all temperatures, it was relatively more effective as the storage temperature was reduced with the extension in postharvest life over the respective untreated slices increasing from about 40% at 20 °C to about 70% at 0 °C. In a smaller study on ‘Royal Gala’, ‘Golden Delicious’, ‘Sundowner’, ‘Fuji’ and ‘Red Delicious’ slices stored at 10 °C, 10 μl l−1 NO for 1 h was found to be effective in inhibiting surface browning in all cultivars.  相似文献   

7.
We investigated the effects of nitric oxide (NO) fumigation on fruit ripening, chilling injury, and quality of Japanese plums cv. ‘Amber Jewel’. Commercially mature fruit were fumigated with 0, 5, 10, and 20 μL L−1 NO gas at 20 °C for 2 h. Post-fumigation, fruit were either allowed to ripen at 21 ± 1 °C or were stored at 0 °C for 5, 6, and 7 weeks followed by ripening for 5 d at 21 ± 1 °C. NO-fumigation, irrespective of concentration applied, significantly (P  0.5) suppressed respiration and ethylene production rates during ripening at 21 ± 1 °C. At 21 ± 1 °C, the delay in ripening caused by NO-fumigation was evident from the restricted skin colour changes and retarded softening in fumigated fruit. NO treatments (10 and 20 μL L−1) delayed the decrease in titratable acidity (TA) without a significant (P  0.5) effect on soluble solids concentration (SSC) during ripening. During 5, 6, and 7 weeks of storage at 0 °C, NO-fumigation was effective towards restricting changes in the ripening related parameters, skin colour, firmness, and TA. The individual sugar (fructose, glucose, sucrose, and sorbitol) profiles of NO-fumigated fruit were significantly different from those of non-fumigated fruit after cold storage and ripening at 21 ± 1 °C. CI symptoms, manifest in the form of flesh browning and translucency, were significantly lower in NO-fumigated fruit than in non-fumigated fruit after 5, 6, and 7 weeks storage followed by ripening for 5 d at 21 ± 1 °C. NO-fumigation was effective in reducing decay incidence in plums during ripening without storage and after cold storage at 0 °C for 5, 6, and 7 weeks. In conclusion, the postharvest exposure of ‘Amber Jewel’ plums to NO gas (10 μL L−1) delayed ripening by 3–4 d at 21 ± 1 °C, and also alleviated chilling injury symptoms during cold storage at 0 °C for 6 weeks.  相似文献   

8.
Lilium cv. Brindisi inflorescences were stored at 2.5 °C for 5, 10, 15 or 20 d, comparing dry storage with storage of the stem ends in water. Prior to storage, inflorescences were treated with 20 or 100 g L−1 sucrose in water, for 20 h at 20 °C. After storage the inflorescences were individually placed in water at 20 °C. The floral buds were still closed at the end of cold storage. In experiments carried out in summer, the time to bud opening was hastened by storage at 2.5 °C in water, more so after a longer period of cold storage. The time to tepal senescence after cold storage in water decreased with the time of storage. The time to tepal abscission was about 1 day longer than the time to tepal senescence. Repeat experiments in late fall and winter additionally showed early leaf yellowing after cold storage. Compared to the experiments in summer, more desiccated floral buds were found in the fall. Pulse treatment with 100 g L−1 sucrose prior to cold storage reduced the number of desiccated buds. However, leaf yellowing was aggravated by the 100 g L−1 sucrose pulse treatment. Compared to cold storage in water, dry storage at 2.5 °C further hastened the time to bud opening and also further hastened tepal senescence and abscission. Dry storage also produced more buds that desiccated or opened poorly. Sucrose treatment (100 g L−1) alleviated the effects of dry storage on tepal senescence and bud desiccation. The data showed that lily cv. Brindisi inflorescences are prone to chilling injury, but can be stored, depending on the treatment, for 5–10 d, during most of the year.  相似文献   

9.
Fresh carrots were treated with or without 1.0 μL L−1 1-methylcyclopropene (1-MCP) at 10 °C for 16 h, and then exposed to 300 or 1000 nL L−1 ozone at 10 °C for 0, 1, 2, or 4 days. The carrots were stored at 0 °C for up to 24 weeks and evaluated every 4 weeks for resistance to challenge inoculations of Botrytis cinerea and Sclerotinia sclerotiorum. Quality attributes and stress and flavor volatiles were also quantified. Decay resistance to B. cinerea was induced by treatments with 1000 nL L−1 ozone for 2 or 4 days, however no lasting resistance to S. sclerotiorum was induced. Firmness was reduced in carrots treated with either 300 or 1000 nL L−1 ozone for 4 days. Treatment with ozone for 1, 2, or 4 days resulted in 60–90% greater respiration rates than controls, but this effect diminished within 4 weeks of storage. Ozone treatments stimulated the production of the stress volatiles ethanol and hexanal, which were, respectively, 43- and 11-times greater than the controls immediately after a 4-day exposure to 1000 nL L−1, but this effect diminished with storage time. Sucrose concentrations were reduced, but terpene concentrations were increased. Treatment with 1-MCP reduced B. cinerea resistance induced by the ozone treatments. Respiration rates, loss of sucrose, and increase in glucose and fructose during storage were also reduced by 1-MCP treatment. Treatment with 1-MCP had no effect on weight loss or firmness. In general, the concentrations of pre-storage ozone that induced resistance to B. cinerea also reduced carrot quality and therefore are not likely of commercial value.  相似文献   

10.
This study investigated the impact of pulsed light treatments on microbial quality, enzymatic browning, texture and antioxidant properties of fresh-cut mushrooms. The reduction of the native microflora of sliced mushrooms ranged from 0.6 to 2.2 log after 15 days of refrigerated storage by flashing at 4.8, 12 and 28 J cm−2. Pulsed light treatments allowed extension of the microbiological shelf life of fresh-cut mushrooms by 2–3 days in comparison to untreated samples, while providing a high quality product. The use of high pulsed light fluencies (12 and 28 J cm−2) dramatically affected the texture of sliced mushrooms due to thermal damage induced by the treatments. Enzymatic browning was also promoted by an increase in polyphenol oxidase activity when the highest dose of pulsed light was applied. At 28 J cm−2, phenolic compounds, vitamin C and antioxidant capacity were significantly reduced. Our results suggest that the application of pulsed light at doses of 4.8 J cm−2 could extend the shelf life of fresh-cut mushrooms without dramatically affecting texture and antioxidant properties.  相似文献   

11.
Chrysanthemum (White, Yellow, and Daisy), carnation (Master and Barbara), rose (Carola, Black magic, Diana, Champagne, and Avalanche), and Chinese rose (Golden Medallion, Diplomat, Marina, and Athena) are the main Chinese cut flower species produced for exportation. Cut flowers infested with quarantine pests need methyl bromide (MB) fumigation to satisfy phytosanitary requirements of importing countries. Phosphine (PH3) is a potential alternative to methyl bromide. Development of phosphine as a phytosanitary treatment requires information regarding its phytotoxicity to cut flowers. Therefore phosphine fumigation at 24 °C and 2 °C was investigated to evaluate its effects on the postharvest quality of cut flowers. Phosphine fumigation for 6 h with dosages as high as 12.2 mg L−1 at 24 °C produced no adverse effects on flower color, diameter, vase life, and other damage indices (DI) for all cultivars. However, different adverse effects on some cultivars were observed after 12 d fumigation at 2 °C. There were significant changes for color values of Carola, Black magic, Diana, Champagne, Avalanche, and Diplomat; significant decrease in flower diameter and vase life of Diana, Champagne, and Avalanche at 3.04 mg L−1, white Chrysanthemum and Diploma at 1.52 and 3.04 mg L−1; significant increase in DI of Champagne and Avalanche at 3.04 mg L−1, and White chrysanthemum, Diana, and Diploma at 1.52 and 3.04 mg L−1. In combination with information on phosphine toxicity to insect pests at ambient and low temperatures in the literature, it is suggested that phosphine fumigation could be a viable replacement of MB fumigation for quarantine treatment of these four cut flower species.  相似文献   

12.
Radiation treatment in a dose range of 0.5–2.5 kGy in combination with low temperature storage (4–15 °C) was attempted for improvement in shelf life of ready-to-cook (RTC) ash gourd (Benincasa hispida). Parameters such as microbial load, color, firmness and sensory attributes were monitored during storage. Optimum processing conditions (2 kGy; 10 °C) resulted in improved shelf life of seven days compared to the non-irradiated controls. Total bacterial count of 1.57 × 103 CFU/g was recorded at the end of storage period (12 d). Higher total phenolic content and total antioxidant activity was observed in irradiated samples as compared to control. Irradiated samples had total phenolic content of 103.3 ± 5.2 mg kg−1 and total antioxidant activity of 384.2 ± 9.7 mg kg−1 while corresponding values for control samples were 67.8 ± 5.4 and 115.5 ± 7.0 mg kg−1 at the end of storage period. Irradiated samples (2 kGy) showed excellent sensory and visual qualities during entire storage period.  相似文献   

13.
The effects of neutral electrolysed water (NEW), ultraviolet light C (UV-C) and superatmospheric O2 packaging (HO), single or combined, on the quality of fresh-cut kailan-hybrid broccoli for 19 days at 5 °C were studied. As controls, washing with water and sanitation with NaClO were both used. Electrolyte leakage, sensory, microbial and nutritional quality changes throughout shelf-life were studied. At day 15, the combined treatments achieved lower mesophilic and psychrophilic growth compared to the single ones. Single treatments produced higher ascorbate peroxidase (APX) reductions just after its application, while superoxide dismutase (SOD) showed the opposite behaviour. After 5 days at 5 °C, a great increase of APX and guaiacol peroxidase (GPX) activity was observed, NEW + UV-C + HO and HO-including treatments achieving the highest and the lowest APX increases, respectively. UV-C-including treatments produced the highest α-linolenic acid (ALA) decreases ranging 35–38% over control contents on the processing day. NEW-including treatments greatly reduced, throughout shelf-life, ALA and stearic acid (SA) content by 27–44% and 31–61%, respectively. Total phenolic content and antioxidant capacity (1415 mg ChAE kg−1 fw and 287 mg AAE kg−1 fw, respectively) remained quite constant during shelf-life. In general, the treatments and their possible combinations seem to be promising techniques to preserve, or even enhance, the quality of fresh-cut kailan-hybrid broccoli and, probably, other vegetables.  相似文献   

14.
Guava (Psidium guajava L. cv. ‘Allahabad Safeda’) fruit harvested at the mature light-green stage were exposed to 300 and 600 nL L−1 1-methylcyclopropene (1-MCP) for 6, 12 and 24 h at 20 ± 1 °C, and held in either cold storage (10 °C) for 25 days or ambient conditions (25–29 °C) for 9 days. Most of the physiological and biochemical changes during storage and ripening were affected by 1-MCP in a dose dependent manner. Ethylene production and respiratory rates were significantly suppressed during storage as well as ripening under both the storage conditions depending upon 1-MCP concentration and exposure duration. 1-MCP treatment had a pronounced effect on fruit firmness changes during storage under both the conditions. The reduced changes in the soluble solids contents (SSC), titratable acidity (TA) and vitamin C content showed the effectiveness of 1-MCP in retarding fruit ripening. Vitamin C content in 1-MCP-treated fruit was significantly higher than in non-treated fruit, and those treated with 300 nL L−1 1-MCP for 6 h. The development of chilling injury symptoms was ameliorated to a greater extent in 1-MCP-treated fruit during cold storage and ripening. A significant reduction in the decay incidence of 1-MCP-treated fruit was observed under both the storage conditions. 1-MCP at 600 nL L−1 for 12 h, in combination with cold storage (10 °C) seems a promising way to extend the storage life of guava cv. ‘Allahabad Safeda’ while 1-MCP at 300 nL L−1 for 12 and 24 h or 600 nL L−1 for 6 h, may be used to provide 4–5 days extended marketability of fruit under ambient conditions.  相似文献   

15.
Papaya fruit ripening processes involve the coordinated action of several hydrolases that causes cell wall degradation. Endoxylanase participates in xylan or arabinoxylan modifications and its importance has been related to papaya softening. However, endoxylanase has been not fully characterized biochemically and kinetically. Semipurified endoxylanase from ripe ‘Maradol’ papaya fruit had an optimal temperature from 45 °C to 50 °C, a pH optimum of 5.5 against Remazol brilliant blue-xylan (RBB-Xylan) and enzymatic activity remained stable during 36 h at 45 °C. The activation energy of the enzyme was 25.5 kJ mol−1, and the Vmax at 32, 37 and 42 °C was 788.9, 888.9 and 1085.6 μg kg−1 s−1, respectively. The Km did not change as a function of temperature and was measured as 1.8 g L−1 and was within the range reported for other xylanases. Total proteins were extracted from color-break, half-ripe and ripe fruit. A pre-endoxylanase at 63.9 kDa was identified in the color-break fruit and an active endoxylanase at 32.5 kDa that was only found in ripe fruit, when the highest enzymatic activity was obtained. Immunodetection on two-dimensional gel electrophoresis (2DE) protein blots showed three isoforms of the pre-endoxylanase at color-break and ripe stages and, four isoforms in ripe fruit that were absent in color-break fruit. The biochemical and kinetic characteristics of the endoxylanase are crucial to our understanding papaya fruit softening.  相似文献   

16.
The antifungal activities of cinnamon extract (CE), piper extract (PE) and garlic extract (GE) were evaluated on banana crown rot fungi (Colletotrichum musae, Fusarium spp. and Lasiodiplodia theobromae) in vitro. The assay was conducted with extracts of CE, PE and GE with concentrations of 0, 0.1, 0.5, 1.0, 5.0, 10.0 and 0.75 g L−1 of carbendazim (CBZ) on potato dextrose agar at room temperature. CE completely inhibited conidial germination and mycelial growth of all fungi at 5.0 g L−1. PE totally suppressed mycelial growth of all fungi at 5.0 g L−1 and conidial germination at 10.0 g L−1 except for Fusarium spp. GE had no significant effects but low concentrations (0.1 and 0.5 g L−1) enhanced germ tube elongation of the three fungi. The ED50 values were higher for mycelial growth than for conidia except for Fusarium spp. Combined treatments were investigated on crown rot development in banana fruit (Musa AAA group ‘Kluai Hom thong’). Treatments included 5.0 g L−1 CE, 1% (w/v) chitosan solution, hot water treatment (HWT, 45 °C for 20 min), CE plus chitosan, CE plus HWT and 0.75 g L−1 of CBZ, applied before and after inoculation of the fruit. Crown rot development was assessed during storage at 13 °C for 7 weeks. Disease development was least (25%) on CE treated fruit after inoculation compared to CBZ but was higher when CE was applied before inoculation. Chitosan significantly delayed ripening as in terms of peel color, firmness, soluble solids and disease severity. CE showed no negative effects on quality of fruit. CE plus HWT caused unacceptable peel browning.  相似文献   

17.
‘Raf’ tomato fruit were harvested at the mature-green stage and treated with 1-methylcyclopropene (1-MCP) at 0.5 (for 3, 6, 12 or 24 h) or 1 μl l−1 for 3 or 6 h. Fruit were stored at 10 °C for 7 days and a further 4 days at 20 °C for a shelf life period. All 1-MCP treatments reduced both ethylene production and respiration rate and in turn retarded the changes in parameters related to fruit ripening, such as fruit softening, colour (a*) change, and increase in ripening index (TSS/TA ratio). These effects were significantly higher when 1-MCP was applied at 0.5 μl l−1 for 24 h. In order to obtain the maximum benefit from 1-MCP, this treatment would be the most suitable for commercial purposes.  相似文献   

18.
Green mould (caused by Penicillium digitatum) is a major cause of postharvest losses in citrus. Residue loading of thiabendazole (TBZ) with application methods typically used in South African packhouses and green mould control was studied. TBZ was applied curatively and protectively in dip, drench and wax coating treatments and fruit were inoculated with a TBZ-sensitive or a TBZ-resistant isolate of P. digitatum. The dip treatments consisted of TBZ concentrations of 0–2000 μg mL−1; fruit were dipped for 60 s at 22 °C at a pH of 7. Residues differed between fruit batches and ranged from 0.5 to 1.7 μg g−1 at 1000 μg mL−1 TBZ. Curative dip treatments almost completely controlled green mould (>96% at 1000 μg mL−1 TBZ). The residue level needed for 75% curative control ranged from 0.06 to 0.22 μg g−1, depending on citrus type. Protective treatments were unreliable and control varied from 17% to 97.9% at 1000 μg mL−1 TBZ between fruit batches. Drench treatments consisted of exposure times of 30, 60 and 90 s with 1000 or 2000 μg mL−1 TBZ. Average TBZ residues were 2.14 μg g−1 for Clementine mandarin fruit and 3.50 μg g−1 for navel orange fruit. Green mould control on navel orange fruit resulted in 66–92%, 34–90% and 9–38% control for curative treatments after 6 and 24 h and protective treatments, respectively, depending on fruit batch. Wax with 4000 μg mL−1 TBZ was applied at 0.6, 1.2 and 1.8 L wax ton−1 fruit. Chilling injury was evaluated after fruit storage at −0.5 °C for 40 days. Average TBZ residues loaded was 1.3, 1.3 and 2.7 μg g−1 at the recommended 1.2 L ton−1 for Satsuma mandarin, Clementine mandarin and Valencia orange fruit, respectively. Protective treatments showed lower infection levels (14–20%) than curative treatments (27–40%) for Valencia orange fruit. The same trend was observed with Satsuma (92–95% curative; 87–90% protective) and Clementine mandarin fruit (82–90% curative; 59–88% protective), but control was relatively poor. TBZ application in wax exceeded 5 μg g−1 at higher wax loads (1.2 and 1.8 L ton−1). Wax treatments showed a significant reduction in chilling injury; TBZ had an additive effect. TBZ resistant isolates could not be controlled.  相似文献   

19.
Brown rot caused by Monilinia spp. is the most important postharvest disease of stone fruit. From preliminary studies, the combination of 0.25% hydrogen peroxide, 0.02% peracetic acid (PAA) and 0.075% acetic acid, corresponding to 300 mg L−1 of PAA, was selected to control Monilinia fructicola. Brown rot control was similarly controlled when the same concentration of PAA was applied with a PAA-based commercial product. In order to reduce PAA concentration, combinations of different concentrations and temperatures were evaluated. A treatment of 200 mg L−1 of PAA at 40 °C for 40 s was selected to control pre-existing and future infections, different inoculum concentrations of M. fructicola and to control brown rot on naturally infected fruit. Brown rot was completely controlled with the selected treatment when peaches and nectarines were inoculated 0 h before the treatment but it was not controlled when infection time was increased to 24, 48 and 72 h. Also, the treatment significantly controlled brown rot at all inoculum concentrations evaluated (103, 104, 105 and 106 conidia mL−1) in both peaches and nectarines, but no protection against future infections was observed. In naturally infected fruit, brown rot incidence was slightly but significantly reduced to 61 and 36% in ‘Roig d’Albesa’ and ‘Placido’ peaches, respectively, but not in nectarines. Immersion for 40 s in 200 mg L−1 of PAA at 40 °C provides an alternative treatment to control only recent infections of Monilinia spp. whatever their concentration without generally affecting fruit quality.  相似文献   

20.
The effects of radiation and temperature during the seed set period (SSP) on pod number per square metre (PN m−2) and seed number per square metre (SN m−2) and those of temperature during grain filling on unit seed weight (USW, milligram per seed) of field pea (Pisum sativum L.) were examined in experiments involving irrigated crops of three or more cultivars of contrasting maturity sown on two or more dates per year from 1996 to 1998 at Buenos Aires, Argentina. The duration of the seed-setting phase was estimated from records of the progress of flowering on the main stem and an estimate (obtained using an optimisation procedure) of the thermal time from flowering at which the uppermost reproductive node reached the final stage of seed abortion (FSSA). The FSSA at a particular node was assumed to be achieved 200 °C day (Tb=4 °C) after flowering at the same node. The grain-filling phase was assumed to run from the achievement of FSSA at the first reproductive node through to 200 °C day (Tb=0 °C) after the date of achievement of the FSSA by the second flowering node.The treatments (cultivar, sowing date, year) produced important ranges of above-ground biomass (AGB) at maturity (271–782 g m−2), seed yield (SY, 119–331 g m−2), SN (1062–3698 seeds m−2) and USW (67–150 mg seed−1). Seed yield was strongly correlated with SN, and there was full compensation between SN and USW in large-seeded cultivars in the high SN range, but not at lower values of SN or in small-seeded cultivars. Both PN (r=0.83) and SN (r=0.87, P<0.0005) were strongly correlated with the mean daily value of the photothermal quotient (PQ=incident radiation/(mean temperature − base temperature)) for the seed-setting phase. Large- and small-seeded cultivars had PN/PQ and SN/PQ relationships with slopes which did not differ among categories but with significantly different intercepts. When the effects of low temperatures during flowering and early grain growth were allowed for, outliers on the PN/PQ and SN/PQ relationships for unstressed crops fell within the confidence limits of the respective linear regressions. Unit seed weight showed a negative response to mean temperature during the grain-filling phase in large- and small-seeded cultivars. We conclude that the relationships established in these experiments, taken together with previous work by other authors, constitute a robust basis for modelling the yield of unstressed field pea crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号