首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful experimental challenge of dogs with canine parvovirus-2.   总被引:1,自引:1,他引:0       下载免费PDF全文
Withholding food from dogs for 24 hours prior to, and for 48 hours following oral challenge with a gut mucosal homogenate of canine parvovirus-2, was a successful means of reproducing gastroenteric signs of canine parvovirus-2 infection. Twenty-one of 24 dogs, which had previously received various vaccine preparations of mink enteritis virus or were unvaccinated, and which were starved at challenge, developed soft or liquid feces with large or without large clots of mucus. Altered feces were most frequent on postexposure day 11. Seven dogs passed frank blood in their stools on one or more occasions and seven dogs vomited sporadically. Pyrexia was noted in 71.6% of the dogs on postexposure day 6 and lymphopenia was detected on postexposure day 5 or 6 in 50% of the dogs monitored. In contrast, four dogs not starved at the time of challenge remained free of gastrointestinal signs apart from one dog which passed a soft stool with scant mucus on one day, postexposure day 6. Also four dogs vaccinated with a killed canine parvovirus-2 vaccine preparation and subsequently starved at the time of challenge, remained clinically healthy. Apart from these last mentioned four dogs, all others shed canine parvovirus-2 in their feces following challenge.  相似文献   

2.
Mink virus enteritis, feline panleukopenia and canine parvovirus-2 were inoculated separately into groups of raccoon, mink, red fox and striped skunk. Raccoons were highly susceptible to mink virus enteritis and feline panleukopenia, with animals developing clinical illness, and several dying within six to ten days of inoculation with lesions typical of parvovirus infection. Both viruses were shed in high titre in the feces of infected raccoons, and high antibody titres were stimulated. Raccoons inoculated with canine parvovirus-2 showed no signs; shedding of virus was sporadic though moderate titres of antibody developed. Mink inoculated with mink virus enteritis and feline panleukopenia developed signs and lesions of early parvovirus infection. No signs or significant lesions followed canine parvovirus-2 inoculation. Shedding of virus was heavy (mink virus enteritis) or sporadic (feline panleukopenia and canine parvovirus-2), though good serological responses were elicited to all three viruses. Red fox showed no signs of infection, shed all three viruses only sporadically, and the serological response was strong only to feline panleukopenia. Skunks developed low antibody titres, but no signs, and did not shed virus. Antibody to parvovirus was found in 79.2% of 144 wild red foxes; 22.3% of 112 wild raccoons; 1.3% of 157 wild skunks and 6/7 coyotes in southern Ontario. The likely significance of these viruses to wild and captive individuals and populations of these carnivores is discussed.  相似文献   

3.
OBJECTIVES: To evaluate the ability of a high-cell-passage canine coronavirus vaccine to immunise dogs against challenge with a field isolate of the virus. METHODS: Three dogs that had previously tested seronegative and virus-negative for canine coronavirus were inoculated twice, at 21-day intervals, with the vaccine and kept under observation. Two seronegative and virus-negative dogs served as unvaccinated controls. For safety tests, two additional dogs were inoculated oronasally with 10 times the vaccinal dose and no reactions were observed. Faecal samples were collected daily from the vaccinated dogs after the first and second inoculations. Both vaccinated and control dogs were challenged two weeks after the second vaccination with a field canine coronavirus strain. Blood samples were collected for serological tests before vaccination and at weekly intervals after vaccinations and challenge. RESULTS: Virus was not detected in faecal samples after the first or second vaccinations by virus isolation assays and PCR. Significantly, the vaccinated dogs did not have clinical signs after challenge and no virus shedding was observed. The two unvaccinated control dogs had moderate enteritis, and virus was detected in cell cultures starting from three days postchallenge (dog 1) and two days postchallenge (dog 2), and by PCR for 23 median days. CLINICAL SIGNIFICANCE: This study showed the efficacy of a high-cell-passage canine coronavirus vaccine in preventing infection of dogs by virulent virus and, specifically, its ability to induce sterilising immunity.  相似文献   

4.
The purpose of the study was to evaluate the short- and long-term immunity after intranasal vaccination in pigs with maternally derived antibodies (MDA). In two experiments, 10-week-old pigs with moderate MDA titres against Aujeszky's disease virus (ADV) were vaccinated intranasally with the Bartha strain of ADV to evaluate the protective immunity conferred at 2 weeks, 2 months and 4 months after vaccination. Protection was evaluated on the basis of severity of clinical signs, periods of fever and growth arrest, and duration and amount of virus excreted after challenge with a virulent ADV. During the first 2-3 weeks after vaccination, antibodies to ADV continued to decline as in unvaccinated control pigs. After that, antibody titres stabilized or gradually increased. At 2 weeks, 2 months and 4 months after vaccination, vaccinated pigs were significantly better protected than unvaccinated controls. The vaccinated pigs challenged 2 weeks after vaccination hardly developed any sign of disease. Mild signs of Aujeszky's disease and a growth arrest period of 5 days were observed in vaccinated pigs challenged 2 months after vaccination, whereas vaccinated pigs challenged 4 months after vaccination developed severe signs of disease and a growth arrest period of 13 days. Vaccinated pigs challenged 2 weeks after vaccination did not excrete challenge virus, and pigs challenged 2 or 4 months after vaccination excreted far less virus than unvaccinated controls. The results demonstrate that intranasal ADV vaccination of pigs with moderate MDA titres protected them from 2 weeks to at least 4 months after vaccination. Immunity steadily declined, however, after vaccination.  相似文献   

5.
Four experimental vaccine preparations comprising a strain of mink enteritis virus inactivated by either formalin or beta-propiolactone, and either adjuvanted or nonadjuvanted, failed to stimulate a consistent serum antibody response in 20 vaccinated dogs and failed to protect all but one of these dogs against oral challenge with canine parvovirus-2.  相似文献   

6.
Two different vaccination protocols were compared with regard to the development of hypertrophic osteodystrophy (HOD) (also termed metaphyseal osteopathy) and effectiveness of immunisation in a litter of 10 Weimaraner puppies. Five puppies (group 1) were vaccinated with a modified live canine parvovirus vaccine (CPV) and then two weeks later with a trivalent vaccine containing modified live canine distemper virus and adenovirus type 2 combined with a Leptospira bacterin (DHL). The CPV and DHL vaccine protocols were administered a further two times, at two-week intervals. Group 2 was vaccinated with three consecutive multivalent vaccines containing modified live canine distemper virus, canine parvovirus, parainfluenza and adenovirus type 2 combined with a Leptospira bacterin, at four-week intervals. All puppies were first vaccinated at the age of eight weeks. Three dogs in group 1 developed HOD, while all five dogs in group 2 developed HOD during the study period. Dogs in group 2 had more episodes of HOD than those in group 1. Dogs in group 1 developed higher antibody titres to canine distemper virus and parvovirus compared with those in group 2. Only two out of the 10 dogs developed protective antibody titres to parvovirus. The results of this study suggest that the two different vaccination protocols affected the pattern of appearance of HOD and immunisation in this litter of Weimaraner puppies. The results obtained and the previously reported data suggest that a larger controlled study is needed to further elucidate the effect of different vaccination protocols on HOD and immunisation in Weimaraner puppies.  相似文献   

7.
OBJECTIVE: To determine whether routine vaccination induces antibodies against bovine thyroglobulin and autoantibodies against canine thyroglobulin in dogs. DESIGN: Prospective study. ANIMALS: 20 healthy research Beagles and 16 healthy pet dogs. PROCEDURE: For the research Beagles, 5 dogs were vaccinated with a multivalent vaccine and a rabies vaccine, 5 dogs received only the multivalent vaccine, 5 dogs received only the rabies vaccine, and 5 dogs were unvaccinated controls. The multivalent vaccine was administered at 8, 10, 12, 16, 20, 26, and 52 weeks of age and every 6 months thereafter. The rabies vaccine was administered at 16 and 52 weeks of age and then once per year. Blood was collected from all dogs at 8, 16, and 26 weeks of age and then 4 times yearly. Assays for antibodies directed against bovine and canine thyroglobulin were performed prior to and 2 weeks after each yearly vaccination. For the pet dogs, blood was collected prior to and 2 weeks after 1 vaccination. RESULTS: In the research Beagles, there was a significant increase in anti-bovine thyroglobulin antibodies in all vaccinated dogs, compared with control dogs. There was a significant increase in anti-canine thyroglobulin antibodies in the 2 groups of dogs that received the rabies vaccine but not in the group that received the multivalent vaccine alone. In the pet dogs, there was a significant increase in anti-canine thyroglobulin antibodies after vaccination but no significant change in anti-bovine thyroglobulin antibodies. CONCLUSIONS AND CLINICAL RELEVANCE: Recent vaccination may result in increased anti-canine thyroglobulin antibodies. Whether these antibodies have a deleterious effect on canine thyroid function is unknown.  相似文献   

8.
The ability of dogs vaccinated with a live attenuated CPV type 2 (Nobivac Intervet) vaccine to resist challenge with a current CPV2c isolate was investigated. Six SPF beagle dogs were given the minimum recommended course of vaccination, comprising a single inoculation of vaccine (Nobivac Lepto+Nobivac Pi) at 8-10 weeks of age followed 3 weeks later with a parvovirus vaccine in combination with distemper, adenovirus and parainfluenza virus (Nobivac DHPPi) and a repeat leptospirosis vaccine. Six control dogs were kept unvaccinated. All animals were challenged orally with a type 2c isolate of CPV and monitored for clinical signs, virus shedding, white blood cell fluctuations and serological responses. All vaccinated dogs were fully protected; showing no clinical signs nor shedding challenge virus in the faeces, in contrast to control animals, which displayed all the typical signs of infection with pathogenic CPV and shed challenge virus in the faeces.  相似文献   

9.
Serum antibody titres to canine distemper virus (CDV), canine parvovirus (CPV) and rabies were measured in dogs that had not been revaccinated annually and compared with the titres in a control group of regularly vaccinated animals; 83 per cent (171 of 207) of the dogs vaccinated against CDV one or more years earlier had serum neutralising antibody titres equal to or greater than 16; 64 per cent (136 of 213) of the dogs vaccinated against CPV one or more years earlier had haemagglutination inhibiting titres equal to or greater than 80; and 59 per cent (46 of 78) of the dogs vaccinated against rabies two or more years earlier had serum neutralising antibody titres equal to or greater than 0.5 iu/ml. Three weeks after a single booster vaccination the dogs' antibody titres against CDV had increased above the threshold level in 94 per cent of the dogs, against CPV in 68 per cent, and against rabies in 100 per cent.  相似文献   

10.
Vaccination with modified-live virus (MLV) canine distemper virus (CDV) vaccine has historically been recommended for animals in high-risk environments because of the rapid onset of immunity following vaccination. Recombinant CDV (rCDV) vaccine was deemed a suitable alternative to MLV-CDV vaccination in pet dogs, but insufficient data precluded its use where CDV was a serious threat to puppies, such as in shelters, kennels, and pet stores. In this study, dogs experimentally challenged hours after a single dose of rCDV or MLV vaccine became sick but recovered, whereas unvaccinated dogs became sick and died. Dogs vaccinated with a single dose of rCDV or MLV vaccine 1 week before being experimentally challenged remained healthy and showed no clinical signs. Dogs given one dose of rCDV vaccine hours before being placed in a CDV-contaminated environment did not become sick. These findings support the hypothesis that rCDV vaccine has a similar time-to-immunity as MLV-CDV vaccines and can likewise protect dogs in high-risk environments after one dose.  相似文献   

11.
A challenge-of-immunity study was conducted to demonstrate immunity in dogs 3 years after their second vaccination with a new multivalent, modified-live vaccine containing canine adenovirus type 2 (CAV-2), canine parvovirus (CPV), and canine distemper virus (CDV). Twenty-three seronegative pups were vaccinated at 7 and 11 weeks of age. Eighteen seronegative pups, randomized into groups of six dogs, served as challenge controls. Dogs were kept in strict isolation for 3 years following the vaccination and then challenged sequentially with virulent canine adenovirus type 1 (CAV-1), CPV, and CDV. For each viral challenge, a separate group of six control dogs was also challenged. Clinical signs of CAV-1, CPV, and CDV infections were prevented in 100% of vaccinated dogs, demonstrating that the multivalent, modified-live test vaccine provided protection against virulent CAV-1, CPV, and CDV challenge in dogs 7 weeks of age or older for a minimum of 3 years following second vaccination.  相似文献   

12.
Fifteen influenza-naive Welsh mountain ponies were randomly assigned to three groups of five. A single dose of a recombinant ALVAC vaccine was administered intramuscularly to five of the ponies, two doses, administered five weeks apart, were administered to five, and the other five served as unvaccinated, challenge controls. Two weeks after the completion of the vaccination programme, the ponies were all challenged by exposure to an aerosol of influenza virus A/eq/Newmarket/5/03. Their clinical signs were scored daily for 14 days according to a standardised scoring protocol, and nasal swabs were taken daily for 10 days to monitor the excretion of virus. The challenge produced severe clinical signs of influenza (fever, coughing, nasal discharge and dyspnoea) in all five control ponies, but the vaccinated ponies developed only mild disease, consisting of a serous nasal discharge lasting for only one day. The excretion of virus was almost completely suppressed in the vaccinated ponies, but the control ponies shed the virus for up to seven days after the challenge.  相似文献   

13.
A total of 54 domestic white meat-type geese were included in vaccination/challenge trials to evaluate susceptibility to disease and humoral immune responses using the haemagglutination inhibition (HI) and virus neutralization (VN) tests against Newcastle disease (ND). Two groups of twenty geese, five weeks of age, were conjunctivally vaccinated with either 100 x 10(6) or 2.5 x 10(6) EID50 (egg infectious dose 50 per cent) per bird of live La Sota virus, respectively, and 14 geese remained unvaccinated. At 15 weeks of age all vaccinated geese and seven unvaccinated geese were subcutaneously injected with 0.5 ml of inactivated oil emulsion ND vaccine, whereas seven geese remained as negative controls. At an age of 20 weeks, all 54 geese were challenged with 10(8.0) EID50 per bird of the viscerotropic velogenic NDV strain Herts 33/56. Live virus application as well as the oil emulsion vaccine did not induce discernible clinical signs and have no detrimental effect on body weight gains. At days 1, 3, 5, 8, 13, 16, 20, 23 and 27 after the application of lentogenic vaccine pharyngeal and cloacal swabs were taken, after challenge samples were taken at days 2, 5 and 8. Lentogenic as well as velogenic virus were never reisolated. Low and shortlived antibody responses post vaccination were equally well measured in HI and VN tests. Only two out of seven unvaccinated but challenged geese developed signs of ND whereas all vaccinated/challenged geese remained normal but developed high to moderate levels of HI and VN antibodies. Since domestic geese do not readily excrete NDV's in detectable amounts and since they do not contain detectable amounts of the challenge virus fourteen days post challenge in their tissues the assumption is promoted that geese do not play a major role in the epidemiology of Newcastle disease.  相似文献   

14.
BACKGROUND: Intensive vaccination protocols have been suggested as partially responsible for an increased prevalence of autoimmune diseases in dogs in recent years. The aim of this study was to determine whether repeated routine vaccination in dogs is associated with an increased prevalence of thyroiditis. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a prospective experimental study with 20 healthy purpose-bred Beagles. Five dogs were vaccinated with a multivalent vaccine and a rabies vaccine. Five dogs received only the multivalent vaccine, and 5 dogs received only the rabies vaccine. Five dogs were unvaccinated controls. The multivalent vaccine was administered at 8, 10, 12, 16, 20, 26, and 52 weeks of age and every 6 months thereafter. The rabies vaccine was administered at 16 and 52 weeks of age and then once a year. Blood samples were collected 1 week before euthanasia for evaluation of thyroid profiles and measurement of antibodies directed against canine thyroglobulin. Dogs were euthanized at 5.5 years of age, and the thyroid glands were evaluated histopathologically. Thyroiditis was present in 8 of 20 (40%) dogs at postmortem examination. No association was found between a dog being vaccinated and the prevalence of thyroiditis at postmortem examination. However, the power of the study to detect such an association was low because of the unexpected high prevalence of thyroiditis in the unvaccinated control dogs. Thyroid function tests were abnormal in 2 of 8 dogs with thyroiditis but were normal in all dogs without thyroiditis. CONCLUSIONS/SIGNIFICANCE: There was no evidence to support an association between routine vaccination and thyroiditis at postmortem examination in beagle dogs after repeated vaccination.  相似文献   

15.
Inactivated canine parvovirus (CPV) and inactivated feline panleukopenia virus (FPV) vaccines were evaluated in dogs. Maximal serologic response occurred within 1-2 weeks after vaccination. Antibody titers then declined rapidly to low levels that persisted at least 20 weeks. Immunity to CPV, defined as complete resistance to infection, was correlated with serum antibody titer and did not persist longer than 6 weeks after vaccination with inactivated virus. However, protection against generalized infection was demonstrated 20 weeks after vaccination. In unvaccinated dogs, viremia and generalized infection occurred after oronasal challenge with virulent CPV. In contrast, viral replication was restricted to the intestinal tract and gut-associated lymphoid tissue of vaccinated dogs. Canine parvovirus was inactivated by formalin, beta-propiolactone (BPL), and binary ethylenimine (BEI) in serum-free media; inactivation kinetics were determined. Formalin resulted in a greater loss of viral HA than either BEI of BPL, and antigenicity was correspondingly reduced.  相似文献   

16.
Thirty-two seronegative pups were vaccinated at 8 weeks of age with modified-live canine distemper virus (CDV), canine adenovirus type-2 (CAV-2), and canine parvovirus (CPV) vaccine and at 12 weeks with a modified-live CDV, CAV-2, CPV, and killed rabies virus vaccine. An additional 31 seronegative pups served as age-matched, nonvaccinated controls. All test dogs were strictly isolated for 3 years after receiving the second vaccination and then were challenged with virulent rabies virus. Clinical signs of rabies were prevented in 28 (88%) of the 32 vaccinated dogs. In contrast, 97% (30 of 31) of the control dogs died of rabies infection. These study results indicated that no immunogenic interference occurred between the modified-live vaccine components and the killed rabies virus component. Furthermore, these results indicated that the rabies component in the test vaccine provided protection against virulent rabies challenge in dogs 12 weeks of age or older for a minimum of 3 years following vaccination.  相似文献   

17.
Canine sera, collected from dogs presented to the Ontario Veterinary College between 1976 and 1980, were assessed for canine parvovirus-2 antibody using a microtitre hemagglutination-inhibition test. Special emphasis was made on the period from September 1979 to October 1980 (2892 samples). No antibody was detected in samples collected in 1976 or 1977. The first positive sera were obtained in January 1978. By the end of 1978 antibodies to canine parvovirus-2 were widespread in Ontario dogs and in 1980, 683 of 2191 dogs (31.2%) had antibody. This was before widespread vaccination was being practised and indicates canine parvovirus-2 infection occurred frequently. Evaluation of clinical records of these dogs suggested that most infections had been subclinical.  相似文献   

18.
Meat chickens housed on a commercial broiler farm in Australia were vaccinated once at 10 to 11 days-of-age by aerosol with live V4 Newcastle disease virus (NDV) vaccine. Groups of vaccinated and unvaccinated birds were flown to Malaysia, where they were challenged with a virulent strain of NDV. Survival rates in vaccinated chickens challenged 7, 14, 21 or 31 d after vaccination were 0.47, 0.77, 0.97 and 0.92, respectively. All unvaccinated chickens died due to Newcastle disease (ND) following challenge. Chickens in Australia and Malaysia were bled and the serums tested for haemagglutination-inhibiting (HI) antibody to NDV. Many vaccinated birds with no detectable antibody, and all birds with a log2 titre of 2 or greater, survived challenge. The results showed that this V4 vaccine induced protective immunity in a significant proportion of chickens within 7 d of mass aerosol vaccination. This early immunity occurred in the absence of detectable circulating HI antibody. Non-HI antibody mediated immunity continued to provide protection up to 31 d after vaccination. Almost all vaccinated birds were protected within 3 w of vaccination. It is concluded that the V4 vaccine is efficacious and could be useful during an outbreak of virulent ND in Australia.  相似文献   

19.
Mutations in canine parvovirus (CPV) field isolates have created concerns regarding the ability of vaccines containing CPV-2 to protect against infection with the newly identified antigenic types CPV-2b and CPV-2c. To address this concern, the efficacy of CPV-2 strain NL-35-D currently in use as a commercial vaccine was demonstrated against an oral challenge with CPV-2b and CPV-2c, respectively. Clinically healthy specific pathogen free Beagle dogs were either vaccinated or treated with water for injection first at 8-9 weeks of age and again at 11-12 weeks of age. All dogs were challenged either with CPV-2b or CPV-2c three weeks after the second vaccination. During the two week period following challenge, clinical signs, white blood cell counts, serology by haemagglutination inhibition (HI) and serum neutralisation tests, and virus shedding by haemagglutination test were assessed. All control dogs developed clinical signs of parvovirosis (including pyrexia and leucopenia) and shed virus. Vaccinated dogs seroconverted (HI titres > or =80), remained healthy throughout the study and shed more than 100 times less virus than controls. In conclusion, vaccination with the low passage, high titre CPV-2 strain NL-35-D cross-protects dogs against virulent challenges with CPV-2b or CPV-2c by preventing disease and substantially reducing viral shedding.  相似文献   

20.
Twenty-four specific pathogen-free beagles were randomly allocated into four groups (three vaccinated groups and one control group) and inoculated at nine and 12 weeks of age with one of three commercial inactivated Leptospira vaccines: A (Vanguard 7; Pfizer Santé Animale), B (Dohyvac 7L; Fort Dodge), and C (Nobivac DHPPi + Lepto; Intervet International); the control group received Nobivac DHPPi (Intervet International). Seven weeks after the second vaccination all the dogs were challenged with Leptospira interrogans serogroup canicola. All the vaccinated dogs developed a mild serological response (microscopic agglutination titres) after the booster vaccination. A significant serological response after the challenge was observed, particularly in the controls. The challenge induced fever and clinical disorders in the control group, whereas in the vaccinated groups the clinical signs were mild. Blood cultures became positive in all control dogs, and in one of six dogs vaccinated with vaccine A and two of four dogs vaccinated with vaccine B; none of the six dogs vaccinated with vaccine C was leptospiraemic at any stage of the experiment. Urine cultures were positive in all the control dogs two weeks after the challenge. One of six dogs vaccinated with vaccine A and two of four dogs vaccinated with vaccine B shed bacteria in their urine after the challenge, but none of the dogs vaccinated with vaccine C shed bacteria in their urine at any time during the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号