首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Image analysis to measure strain in wood and paper   总被引:9,自引:1,他引:9  
Summary A fast and accurate strain measurement method was developed to quantify microscopic deformation in wood and paper using video images. Two or more video images, one of which was undeformed and the others of which were deformed, were digitized and compared using the image correlation technique. This digital computer pattern recognition technique permitted the displacement of any point in the image to be measured. Then, strain between any two points in this observation field could be calculated and, hence, normal, shearing strains and Poisson's ratio could be measured directly. Independent strain measurements showed that the method using video images provided accurate strain measurements and could be applied to complex materials like wood and wood products. The strain measurements using the image analysis produced not only normal strains but strain profiles of the normal strains. From the strain profiles, it was possible to detect local areas of strain concentration which might be beyond the elastic range. As it measures displacements and strains from a set of video images using the image correlation technique, the method is non-contact and the observation field can be adjusted easily by changing magnifying power of the optical devices. Thus, the method can be applied to mechanical testing of wood and wood products from the cellular level to full size lumber and will no longer be limited by the fragile nature of the material being tested, industry standards, or equipment restrictions.Authors are grateful to U.S.D.A. for supporting this investigation which is a part of the USDA funded project Initiation and Propagation of Failure in Wood. Authors are also grateful to N. C. Brown Centre for Ultrastructure Studies, CESF, SUNY, Syracuse and Empire State Paper Research Institute, Syracuse for providing research facilities  相似文献   

3.
A quasi-simple shear test, which is the most direct method for examining the shear properties of sheet metals, has been applied to measure the shear moduli of wood. Buna (Fagus crenata Blume) with variously sized shear regions was used for the test specimens. Strain gauges were mounted in the center of the shear regions to measure the shear strains. The shear tests were carried out to determine the shear moduli in the radial and tangential planes. Apparent shear moduli obtained from the experimental results were corrected by finite element method (FEM) simulation of the shear region, where both shearing and bending are produced. It was found that the corrected shear moduli are roughly independent of test conditions, and their values are in good agreement with the data obtained from bending-shear tests. This suggests that the method employed here can effectively estimate the shear moduli of wood.Part of this research was presented at the 50th Annual Meeting of the Society of Materials Science, Osaka, May 2001  相似文献   

4.
We examined the accuracy of the shear properties of wood by the Iosipescu shear test using specimens whose shape was simplified. Quartersawn boards of sitka spruce (Picea sitchensis Carr.) and shioji (Japanese ash,Fraxinus spaethiana Lingelsh.) were used. Two types of specimen for the Iosipescu shear test were compared: a standard specimen whose notch angle is 90° and a keyhole type specimen, which is more easily prepared than the standard type. The shear modulus, yield shear stress, and failure shear stress of the keyhole-type specimen were compared to those of the standard specimen. Shear stress analysis was conducted using the finite element method (FEM). The results obtained were as follows: (1) The failure pattern obtained by the simplified Iosipescu shear test was similar to that seen with the standard Iosipescu shear test. (2) The shear modulus, yield stress, and failure stress obtained by the simplified Iosipescu shear test coincided with those by the standard Iosipescu shear test. (3) The principal strain angle and principal stress angle of the simplified Iosipescu shear test were about 45°. (4) It is recognized that pure stress is applied to the strain-gauge regions in the simplified Iosipescu shear test, and it is expected that the shear properties are independent of the notch angle.  相似文献   

5.
During refining of mechanical pulp, a process occurring at high speed at temperatures of 140–160°C, the flexibility and bonding ability of wood fibres are increased. To understand the mechanical behaviour of the fibres in this operation, deformations at low speed of wet wood specimens at 50°C were studied under two different combinations of shear and compression loadings. The results were compared with the behaviour of wet wood in pure compression. Some features of the deformation that occurred in earlywood were analysed using an image analysis procedure. During pure compression the cell walls bend independently of the shape of the fibre cells and their cell wall thickness. Under combined shear and compression, however, mainly the corners of the fibre cells get deformed. In a second deformation performed in compression, the fibre cells follow the same deformation pattern as given by the first deformation type whether in compression or in combined shear and compression. The interpretation was that permanent defects in the cells themselves were introduced already in the first load cycle of the wood samples. The load combination with lower shear gave the same permanent strain as the case of pure compression but using less energy.  相似文献   

6.
Abstract

Mechanical properties are very important in structural uses of wood. In the case of larch wood, shear strength (SS) may be a limiting property, because the wood is brittle and it splinters easily. In this study, SS of Siberian larch (Larix sibirica) wood was studied in relation to its axial and radial location and to some other wood properties in the part of the trunk that produces logs of good carpentry quality. SS increased by 21–23% from the pith to the outer heartwood at each studied height (butt, 4.5 and 9 m), and it was at its most approximately 7% higher at the butt than at the other studied heights. The main reason for the radial increase in SS was the increase in density caused by wood maturation, but other factors also affected SS, depending on the grouping mode (combined material, radial/axial location). An exception was sapwood, for which no factors affecting SS could be identified. Thus, sapwood may behave differently from heartwood regarding use, even unexpectedly. The results suggest that mature heartwood, but not juvenile wood and sapwood, of Larix sibirica should primarily be used in products that require high SS.  相似文献   

7.
We examined the applicability of the Iosipescu shear test for measuring the shear properties of wood. Quarter-sawn board of sitka spruce (Picea sitchensis Carr.) and shioji (Japanese ash,Fraxinus spaethiana Lingelsh. were used for the specimens. Iosipescu shear tests were conducted with two types of specimen whose longitudinal and radial directions coincided with the loading direction. The shear modulus, yield shear stress, and shear strength were obtained and were compared with those obtained by the torsion tests of rectangular bars. The results are summarized as follows: (1) The Iosipescu shear test is effective in measuring the shear modulus and the yield shear stress. (2) To measure the shear strength properly by the Iosipescu shear test, the configuration of specimen and the supporting condition should be examined in more in detail.  相似文献   

8.
In this paper, we have investigated vibrational properties of compressed Japanese cedar (Cryptomeria japonica D. Don). The test specimens were compressed in the radial direction at 180°C for 5 h. Compression ratios (the ratio of deformation to the initial thickness) were 33% and 67%, and the vibrational properties were measured by free-free flexural vibration test. The contribution of shear deflection was large when the length-to-depth ratio was small and the Youngs modulus to shear modulus ratio was large. The Youngs to shear modulus ratio increased as the compression ratio increased and was larger under vibration in the radial than in the tangential direction. The loss tangent increased when the contribution of shear deflection to total measured flexural deflection increased.  相似文献   

9.
Summary The prolysis of cellulose, hemicelluloses, lignin preparations, and wood was studied by differential calorimetric analysis (DCA) for the range of 25° to 800° C. The test samples included powdered and filter paper celluloses; hardwood xylan; softwood galactoglucomannans, compression wood galactan, and arabinogalactan; a synthetic (DHP), sulfuric acid, Björkman, Brownell, and cellulase lignins; and unextracted and extracted hardwoods and softwoods. Heats of reaction were determined from the DCA thermal transition areas. Distinct differences were found between the thermograms of each hemicellulose and lignin sample. Although wood species could not be separated thermally, hardwood and softwood thermograms differed because of the hemicellulose degradation pattern.Trade names and company names are included for the benefit of the reader and do not imply any endorsement or preferential treatment of the product by the U.S. Department of Agriculture.Formerly Research Technologist, Forest Products Laboratory, Forest Service, U.S. Department of Agriculture. The Laboratory is maintained at Madison, Wis. 53705, in cooperation with the University of Wisconsin. Present address: The Pennsylvania State University, University Park, Pennsylvania 16802.  相似文献   

10.
A modified Iosipescu shear test method is proposed as an alternative for measuring the shear properties of clear wood. The method adopts four-point asymmetric loading procedure in the Iosipescu shear test but with the loading positions shifted to the neutral axis of the specimen. The original V-notched specimen is replaced by a combination of polyvinyl chloride blocks at two ends and a bow-tie-shaped wood specimen in the middle to provide a better stress pattern at failure. The measured shear strength and shear moduli are compared with results from compression test and off-axis tension test. Finite element analysis is also carried out to study the stress distribution in the wood specimen. Results show that the new shear test setup can provide close-to pure shear stress state in the specimen yielding better estimates of the shear properties of wood. The shear strength obtained by the new test setup is slightly lower than that from the off-axis tensile test which is probably due to the relatively thick specimen chosen in this study.  相似文献   

11.
Summary Stress relaxation tests were performed with six tropical American species. Stress relaxation was not found to be a linear function of strain at any level of strain. At qual low levels of strain, stress relaxation in compression was much greater than in tension.A mechanical model consisting of an isolated spring in parallel with a spring and dashpot in series was used as an aid in the derivation of equations describing stress relaxation.An attempt to apply Newtonian viscous theory to the model was unsuccessful in accounting for rate of relaxation. However, when the hyperbolic sine law of viscous flow was applied, mathematically derived curves fitted the data very well.Stress relaxation appears to be related to departure strain which may be obtained readily from static stress strain diagrams.
Zusammenfassung Versuche über die Spannungsrelaxation wurden mit sechs tropischen Holzarten Amerikas durchgeführt. Es erwies sich, daß die Spannungsrelaxation nicht in jedem Bereich der Dehnung eine lineare Funktion dieser Dehnung ist. In vergleichbar niedrigen Dehnungsbereichen zeigte sich zum Beispiel, daß die Spannungsrelaxation bei Druck größer ist als bei Zugbeanspruchung. Mit Hilfe eines mechanischen Modells, bestehend aus einer einzelnen Feder in Parallelschaltung zu einer Feder mit Dämpfungselement wurden Gleichungen zur Beschreibung der Spannungsrelaxation abgeleitet.Der Versuch die Newtonschen Viskositätsgesetze auf dieses Modell anzuwenden, schlug aufgrund der Relaxationsgeschwíndigkeit fehl. Bei Anwendung des hyperbolischen Sinussatzes für viskoses Fließen stimmten jedoch die ermittelten Werte recht gut mit den mathematisch berechneten Kurvenwerten überein.Die Spannungsrelaxation scheint mit der sogenannten Anfangsdehnung zusammenzuhängen, wie man sie stets bei statischen Spannungs-Dehnungsschaubildern erhält.


A condensation of a dissertation submitted to the faculty of the Yale School of Forestry as partial fulfillment of the requirements of the D. For. degree.

This research is part of a comprehensive study being conducted at the Yale School of Forestry in cooperation with the Office of Naval Research, Department of the Navy, under Contract Nonr 609 (13), Project NR 330-001, Properties of Tropical Woods. The author acknowledges the fellowships granted by the Organization of American States, and the Instituto Nacional de la Investigación Científica de México. The author wishes to thank Professor Frederick F. Wangaard for his counsel and assistance, and Professors Robert M. Kellogg and Robert P. Vreeland for encouragement and assistance.  相似文献   

12.
Summary For the preparation of specimens for testing the stress distribution with the photoelastic method, various techniques are applicable. In this paper the so-called glass-transition temperature method is tested on a specimen imitating the layered structure of wood. The observations made on this specimen are compared with those obtained from a specimen with isotropic properties.
Zusammenfassung Für die Herstellung von Modellen zur Untersuchung der Spannungsverteilung mit spannungsoptischen Verfahren gibt es verschiedene Techniken. In dieser Mitteilung wird das sogenannte Glas-Übergangstemperatur-Verfahren an einem Modell, das den Schichtaufbau des Holzes nachahmt, geprüft. Die Beobachtungen, die an diesem Modell gemacht wurden, werden mit jenen verglichen, die sich an einem Modell mit isotropen Eigenschaften ergaben.
  相似文献   

13.
Ultrasonic shear waves were propagated through the breadth direction of a wood beam which was subjected to a bending load such that it was in a plane-stress state. The oscillation direction of the shear waves with respect to the wood beam axis was varied by rotating an ultrasonic sensor, and the relationship between the shear wave velocity and the oscillation direction was examined. The results indicate that when the oscillation direction of the shear wave corresponds to the tangential direction of the wood beam, the shear wave velocity decreases sharply and the relationship between shear wave velocity and rotation angle tends to become discontinuous. When the oscillation of the shear waves occurs in the anisotropic direction of the wood beam instead of in the direction of principal stress, the shear wave velocity exhibits a peak value. In addition, the polarization direction was found to correspond to the direction of anisotropy of the wood beam according to the theory of acoustoelastic birefringence with respect to plane stress. This indicates that when the acoustoelastic birefringence method is applied to stress measurement of wood, it is appropriate to align the oscillation direction of the shear wave with the principal axial direction of anisotropy in order to carry out ultrasonic measurement.  相似文献   

14.
Summary The effects of temperature and sulfonation on the deformation of spruce wood at conditions comparable to those during screw press impregnation prior to mechanical pulping were studied using a dynamic testing method. In addition to the physical properties of wood, shear fracture surfaces obtained at different deformation temperatures and at different sulfonation levels were studied using scanning electron microscopy (SEM).The results showed that the failure energy of wood decreased gradually with increased deformation temperature in the tested range of 20–95 °C, due to thermal softening of the material. In addition to thermal treatment, the failure energy could also be reduced by sulfite treatment of the wood before deformation, and decreased with increasing sulfonation degree.The SEM analysis showed that increasing the deformation temperature causes the fracture plane to travel around the fiber walls instead of through them, thus exposing a smoother wood surface with less fiber damage. At a given deformation temperature, particularly at the lower temperatures, sulfonation improves fiber separation.Financial support from the Swedish National Board for Industrial and Technical Development (NUTEK) is gratefully acknowledged  相似文献   

15.
When measuring the shear modulus of wood by static bending tests, the basic theory is dependent on Timoshenko's bending theory. The shear modulus obtained by static bending is a much smaller value than that derived by other methods. We examined the applicability of Timoshenko's theory and propose an empirical equation that can derive the shear modulus properly. Three softwoods and three hardwoods were used for the tests. First, the Young's modulus and shear modulus were measured by free-free flexural vibration tests. Then the three-point static bending tests were undertaken, varying the depth/span ratios. Additionally, the bending tests were simulated by the finite element method (FEM). The shear moduli obtained by these methods were then compared. The deflection behaviors in static bending were not expressed by the original Timoshenko bending theory because of the stress distortion near the loading point. Based on the experimental results and numerical calculations, we modified the original Timoshenko bending equation. When using our modified equation the stress concentration must be carefully taken into account.  相似文献   

16.
The tensile strain to failure of small wood samples is a desirable property in studies where the effect of small differences in microstructure on failure is of interest. However, the scatter in data is usually significant and only one data is obtained per specimen. For this reason, a new multiple fracture test for measurement of the strain to failure distribution was designed. Wood samples were bonded between two transparent PVC layers with higher strain to failure than the wood. Multiple fractures were then observed in single wood samples during tensile loading. This behavior is already utilized in tests in the field of synthetic composite materials. It was possible to conveniently register multiple fracture events as a function of strain by visual observation through the transparent PVC layers. The data were used to compare two different wood materials and to determine their Weibull distribution functions.Financial support from SJFR is gratefully acknowledged  相似文献   

17.
We conducted asymmetric four-point bending tests of wood and obtained the shear moduli on the basis of Timoshenko's theory of bending. Akamatsu (Japanese red pine,Pinus densiflora D. Don) and shioji (Japanese ash,Fraxinus spaethiana Lingelsh.) were used for the tests. Asymmetric four-point bending tests were undertaken by varying the depth/span ratios; and Young's modulus and the shear modulus were calculated by Timoshenko's bending theory. Independent of the asymmetric bending tests, we also conducted three-point bending tests, free-freeflexural vibration tests, and numerical calculations by the finite element method. Young's and shear moduli obtained by these methods were compared with those derived from the asymmetric bending tests. Based on these comparisons, we concluded that the shear modulus can be properly obtained by the asymmetric four-point bending tests when the span is 20 times larger than the depth.  相似文献   

18.
Summary New displacement equations for the static bending of six common types of simple, finite anisotropic or orthotropic beams are presented. The effect of shear and Poisson's ratios in the determination of Young's modulus by static bending is discussed.Notations S ij Elastic compliances - K i Real function of the elastic compliances - F=F(x, y) Stress function - ij Stress - l Length of the beam - h Half thickness of the beam - b Width of the beam - q, w Loads - (x, y) Cartesian coordinates - u Longitudinal displacement - v Vertical displacement - E 11 Young's modulus along the grain (in the beam axis) - E 22 Young's modulus across the grain - G 12 Shear modulus in the 1...2 references - v 12 Poisson's ratio in the 1...2 references - 11 Strain along the beam axis The investigation reported in this paper (No. 71-8-91) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director. Funds for this research were made available under the provision of the McIntire-Stennis Cooperative Forestry Research Program of the U.S. Department of Agriculture. The author is indebted to this agency and the Kentucky Agricultural Experiment Station for their support in this project.  相似文献   

19.
We conducted three types of short beam shear tests of western hemlock (Tsuga heterophylla Sarg.) under various span/depth ratios, and examined whether the maximum shear stress was used as the shear strength. The following results were obtained. (1) In the short beam shear tests under the three-point loading method, it was difficult to have the specimen failing by horizontal shear. We thought that this method should not be recommended for determining the shear strength of wood. (2) In the short beam shear tests under the asymmetric four-point loading of the specimen with a rectangular cross-section, the failure caused by horizontal shear occurred under some span/depth ratio range. Nevertheless, this range was dependent on the specimen geometry and was quite restricted. We therefore think that this method should not be recommended for determining the shear strength of wood. (3) In the short beam shear tests under the asymmetric four-point loading of the I-shaped specimen, failure caused by horizontal shear occurred under the span/depth ratio range wider than that applicable for the asymmetric four-point loading of the specimen with a rectangular cross-section. The maximum shear stress was stable in a certain span/depth ratio range and the value of the maximum shear stress is effective as a parameter for comparing the shearing strength of materials with each other.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号