首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The structure of algological and mycological complexes in Al–Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpinа, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria–algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest  相似文献   

2.
The distribution of the fungal biomass and diversity of cultivated microscopic fungi in the profiles of some soils from East (Progress Station, valleys of the Larsemann Hills oasis) and West (Russkaya Station, the Marie Byrd Land) Antarctica regions were studied. The structure of the biomass (spore/mycelium and live cells/dead cells) was analyzed by fluorescence microscopy with staining using a set of coloring agents: calcofluor white, ethidium bromide, and fluorescein diacetate. The species composition of the cultivated microscopic fungi was determined on Czapek’s medium. The fungal biomass in the soils studied is not high (on the average, 0.3 mg/g of soil); the greatest biomass (0.6 mg/g) was found in the soil samples with plant residues. The fungal biomass is mainly (to 70%) represented by small (to 2.5 μm) spores. About half of the fungal biomass is composed of living cells. There are differences in the distribution of the fungal biomass within the profiles of different primitive soils. In the soil samples taken under mosses and lichens, the maximal biomass was registered in the top soil horizons. In the soils with the peat horizon under stone pavements, the greatest fungal biomass was registered in the subsurface horizons. Thirty-eight species of cultivated microscopic fungi were isolated from the soils studied. Species of the genus Penicillium and Phoma herbarum predominated.  相似文献   

3.
Quantitative estimates of the rate of transformation of moss residues of two species (Sphagnum angustifolium and Sphagnum fuscum) in the peat soils (Histosols) were obtained for two oligotrophic bogs with different hydrological conditions in the southern taiga of Western Siberia. The coefficients of decomposition rate (k) significantly differed for the studied species; the decomposition of Sphagnum fuscum proceeded much slower. The most intense decomposition was observed in the first year of transformation (k = 0.06 and 0.16–0.66 for Sph. fuscum and Sph. angustifolium, respectively); then, the rate of moss decomposition decreased. Despite the great amount of fungal mass in the moss residues (exceeding the bacterial biomass by 3–10 times), the rate of the initial decomposition was very low. The hydrological conditions affected the intensity of this process—in the peat of the Kirsanovskoe bog with the low level of bog water, losses of the mass of sphagnum moss were 1.1–1.6 times greater as compared to those in the Bakcharskoe bog. For Sph. angustifolium, the level of bog water was more important than for Sphagnum fuscum, whereas for Sphagnum fuscum, the composition of organic matter played a decisive role in the rate of decomposition of moss residues. The activity of the microflora also depended on the level of bog water, which was manifested in a greater abundance of bacteria in the peat of the Kirsanovskoe bog.  相似文献   

4.
The introduction of Trichoderma viride spores (108 CFU per 1 cm2) essentially changed the structure of micromycetes in the soils of tree nurseries in Krasnoyarsk region. During the first 20 days, in the variants with dark gray forest soils and podzolized chernozems, the total number of fungi decreased by 3–4 and 1.5 times, respectively, as compared to that in the control plots. During the intense development of the introduced microbes, the species composition of the soil fungi changed considerably. The treatment of Scots pine seeds with metabolites of Trichoderma fungi, as well as Pseudomonas and Bacillus bacteria, in the form of water suspensions, biopreparations, and dry spores promoted an increase in the yield of seedlings and improve their morphometric parameters. At the end of the growing period, the treatment with Trichoderma and the biopreparation on its basis increased these parameters, on average, by 18–70%, and the treatment with bacteria increased the same parameters by 13–15%. The application of microbial preparations improved the phytosanitary state of the soils in the studied tree nurseries. The use of the strains of indigenous microorganisms might be feasible for solving bioremediation problems more successfully in particular regions.  相似文献   

5.
The qualitative and quantitative characteristics of the mycobiota in podzolic and bog-podzolic soils were studied in the middle taiga subzone (the Republic of Komi). The complex of micromycetes was found to include 73 species of 18 genera from the Zygomycota and Ascomycota orders and from the formal class of anamorphic fungi. The latter has the following specific features: many forms of sterile mycelium, the predominance of Penicillium species (25), the constant presence of Mucor and Trichoderma species, and single Aspergillus species. With increasing moisture in the sequence of the podzolic, surface-gleyic podzolic, peaty podzolic-gleyic, and peat podzolic-gley soils, the dominant soil fungi are preserved, but the species composition of the micromycete complexes becomes poorer due to the removal of rare species. In the podzolic and bog-podzolic soils, fungi absolutely predominate in the microbial biomass. They accounted for more than 99% of the total biomass, 1–6% of the latter is the biomass of spores, and more than 94% falls on mycelium. In these soils, the reserves of bacterial biomass, as compared to those of fungi, are lower by two orders of magnitude.  相似文献   

6.
Phenolics from root exudates or decaying residues are usually referred as autotoxins of several plant species. However, how phenolics affect soil microbial communities and their functional significances are poorly understood. Rhizosphere bacterial and fungal communities from cucumber (Cucumis sativus L.) seedlings treated with p-coumaric acid, an autotoxin of cucumber, were analyzed by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer amplicons. Then, feedback effects of the rhizosphere biota on cucumber seedlings were evaluated by inoculating non-sterilized and sterilized rhizosphere soils to sterilized background soils. p-Coumaric acid decreased the bacterial diversity of rhizosphere but increased fungal diversity and altered the compositions of both the bacterial and fungal communities. p-Coumaric acid increased the relative abundances of microbial taxa with phenol-degrading capability (such as Chaetomium, Humicola, and Mortierella spp.) and microbial taxa which contained plant pathogens (such as Fusarium spp.). However, p-coumaric acid inhibited the relative abundances of Lysobacter, Haliangium, and Gymnoascus spp., whose species can have pathogen-antagonistic and/or plant-growth-promoting effects. The positive effect of cucumber rhizosphere microbiota on cucumber seedling growth was reduced by p-coumaric acid. Overall, our results showed that, besides its direct phytotoxicity, p-coumaric acid can inhibit cucumber seedling growth through generating negative plant-soil microbial interactions.  相似文献   

7.
The present study of arbuscular mycorrhizal (AM) fungi is focused on the identification of AM ecotypes associated with different plants species (Poa annua, Medicago polymorpha, and Malva sylvestris) growing in three contaminated soils with different organic matter, phosphorus, and trace element (TE; Cu, Cd, Mn, and Zn) contents. Soils were amended with biosolid and alperujo compost. Shifts in AM fungal community structure, diversity, richness, root colonization, and plant TE uptake were evaluated. Soil properties and plant species had a significant effect on AM fungal community composition as well as on root colonization. However, AM fungal diversity and richness were only affected by soil properties and especially by soil organic matter that was a major driver of AM fungal community. As soil quality increased, Glomeraceae decreased in favor of Claroideoglomeraceae in the community, AM fungal diversity and richness increased, and root colonization decreased. No effect due to amendment (exogenous organic matter) addition was found either in AM fungal parameters measured or TE plant uptake. Our results revealed that the role of TE contamination was secondary for the fungal community behavior, being the native organic matter content the most significant factor.  相似文献   

8.
A high number (from tens of thousands to millions of CFU/g of soil) of actinomycetes and a high diversity of genera were found in typical peat and agropeat soils. Agricultural use increases the number and diversity of the actinomycete complexes of the peat soils. In the peat soils, the actinomycete complex is represented by eight genera: Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, Saccharopolyspora, Saccharomonospora, and Microtetraspora. A considerable share of sporangial forms in the actinomycete complex of the peat soils not characteristic of the zonal soils was revealed. The number of actinomycetes that develop under aerobic conditions is smaller by 10–100 times than that of aerobic forms in the peat soils. Among the soil actinomycetes of the genera Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, and Microtetraspora, the microaerophilic forms were found; among the Saccharopolyspora and Saccharomonospora, no microaerophilic representatives were revealed.  相似文献   

9.
The influence of edaphic and orographic factors on the formation of algal diversity in biological soil crusts was studied in mountain tundras of the Polar and Subpolar Urals. Bare spots developed in the soils on different parent materials and overgrown to different extents were investigated. Overall, 221 algal species from six divisions were identified. Among them, eighty-eight taxa were new for the region studied. The Stigonema minutum, S. ocellatum, Nostoc commune, Gloeocapsopsis magma, Scytonema hofmannii, Leptolyngbya foveolarum, Pseudococcomyxa simplex, Sporotetras polydermatica species and species of the Cylindrocystis, Elliptochloris, Fischerella, Leptosira, Leptolyngbya, Myrmecia, Mesotaenium, Phormidium, Schizothrix genera were permanent components of biological soil crusts. The basis of the algal cenoses in soil crusts was composed of cosmopolitan cyanoprokaryotes, multicellular green algae with thickened covers and abundant mucus. The share of nitrogen fixers was high. The physicochemical properties of primary soils forming under the crusts of spots are described. The more important factors affecting the species composition of algae in the crusts are the elevation gradient, temperature, soil moisture, and the contents of Ca, Mg, mobile phosphorus, and total nitrogen.  相似文献   

10.
The annual dynamics of yeast communities were studied in the soddy-podzolic soil under the thickets of Aster x salignus Willd., one of the widespread invasive plant species in central Russia. Yeast groups in the soils under continuous aster thickets were found to differ greatly from the yeast communities in the soils under the adjacent indigenous meadow vegetation. In both biotopes the same species (Candida vartiovaarae, Candida sake, and Cryptococcus terreus) are dominants. However, in the soils under indigenous grasses, eurybiontic yeasts Rhodotorula mucilaginosa, which almost never occur in the soil under aster, are widespread. In the soil under aster, the shares of other typical epiphytic and pedobiontic yeast fungi (ascomycetic species Wickerhamomyces aniomalus, Barnettozyma californica and basidiomycetic species Cystofilobasidium macerans, Guehomyces pullulans) significantly increase. Thus, the invasion of Aster x salignus has a clear effect on soil yeast complexes reducing their taxonomic and ecological diversity.  相似文献   

11.
Studies of tundra flowering plants and mosses on the Тaymyr Peninsula have determined the presence of thousands and tens of thousands of colony formation units of psychrotolerant actinomycetes in 1 g of vegetation substrate, which is smaller than the amount of mesophilic forms by one to two orders of magnitude. Incubation of plants at 5°C has shown very small taxonomical variety of actinomycetes. The actinomycete complex is represented by species of the genus Streptomyces, belonging to the sections and series Albus Albus and Cinereus Achromogenes, and by the genus Micromonospora.  相似文献   

12.
The postagrogenic dynamics of acidity and some parameters of humus status have been studied in relation to the restoration of zonal vegetation in southern taiga (podzolic and soddy-podzolic soils (Retisols)), coniferous-broadleaved (subtaiga) forest (gray forest soil (Luvic Phaeozem)), and forest-steppe (gray forest soil (Haplic Phaeozem)) subzones. The most significant transformation of the studied properties of soils under changing vegetation has been revealed for poor sandy soils of southern taiga. The degree of changes in the content and stocks of organic carbon, the enrichment of humus in nitrogen, and acidity in the 0- to 20-cm soil layer during the postagrogenic evolution decreases from north to south. The adequate reflection of soil physicochemical properties in changes of plant cover is determined by the climatic zone and the land use pattern. A correlation between the changes in the soil acidity and the portion of acidophilic species in the plant cover is revealed for the southern taiga subzone. A positive relationship is found between the content of organic carbon and the share of species preferring humus-rich soils in the forest-steppe zone.  相似文献   

13.
Five common fungal strains, Cladosporium cladosporioides, Aspergillus clavatus, Penicillium citrinum, Fusarium oxysporum, and Alternaria alternata, were cultivated in presence of iodide and iodate to evaluate their efficiency in iodine biovolatilization and bioaccumulation. Our results suggest that iodide and iodate bioaccumulation by microscopic filamentous fungi is similar although the biological transformation into volatile iodine compounds is driven by various pathways resulting in higher volatilization efficiency of iodate. Thus, the mobilization of iodate by filamentous fungi is superior to iodide mobilization. Our paper is also the first to compare the iodide and iodate volatilization efficiency by microorganisms. Our results highlight the significant role of filamentous fungi in biogeochemistry of iodine, especially in formation of environmentally reactive volatile forms that may contribute to ozone layer destruction.  相似文献   

14.

Purpose

We examined the effects of vermicompost application as a basal fertilizer on the properties of a sandy loam soil used for growing cucumbers under continuous cropping conditions when compared to inorganic or organic fertilizers.

Materials and methods

A commercial cucumber (Cucumis sativus L.) variety was grown on sandy loam soil under four soil amendment conditions: inorganic compound fertilizer (750 kg/ha,), replacement of 150 kg/ha of inorganic compound fertilizer with 3000 kg/ha of organic fertilizer or vermicompost, and untreated control. Experiments were conducted in a greenhouse for 4 years, and continuous planting resulted in seven cucumber crops. The yield and quality of cucumber fruits, basic physical and chemical properties of soil, soil nutrient characteristics, and the soil fungal community structure were measured and evaluated.

Results and discussion

Continuous cucumber cropping decreased soil pH and increased electrical conductivity. However, application of vermicompost significantly improved several soil characteristics and induced a significant change in the rhizosphere soil fungal community compared to the other treatments. Notably, the vermicompost amendments resulted in an increase in the relative abundance of Ascomycota, Chytridiomycota, Sordariomycetes, Eurotiomycetes, and Saccharomycetes, and a decrease in Glomeromycota, Zygomycota, Dothideomycetes, Agaricomycetes, and Incertae sedis. Compared to the organic fertilizer treatment, vermicompost amendment increased the relative abundance of beneficial fungi and decreased those of pathogenic fungi. Cucumber fruit yield decreased yearly under continuous cropping conditions, but both inorganic and organic fertilizer amendments increased yields. Vermicompost amendment maintained higher fruit yield and quality under continuous cropping conditions.

Conclusions

Continuous cropping decreased cucumber yield in a greenhouse, but basic fertilizer amendment reduced this decline. Moreover, basal fertilizer amendment decreased beneficial and pathogenic fungi, and the use of vermicompost amendment in the basic fertilizer had a positive effect on the health of the soil fungal community.
  相似文献   

15.
A number of polycyclic aromatic hydrocarbon (PAH) structures have been identified in organic horizons of surface-gley tundra soils (Stagnic Cambisols) and the moss Pleurozium schreberi. The total content of polyarenes in soils and P. schreberi exceeds the background values in 3.5–5 times. A tendency of increasing content of polyarenes with the distance from the source to 1 km has been revealed. High coefficients of variation have been found between the contents of PAHs in snow cover, organic soil horizons, and mosses. Light hydrocarbons dominate in the composition of PAHs from the snow and ground covers and mosses. Naphthalene dominates on the surface of mosses in all of the studied plots, which is largely related to its intensive uptake by mosses under pollution conditions. It has been found that when the input of polyarenes onto the surface of tundra phytocenoses increases, the bioaccumulation of PAHs by P. schreberi is intensified, and PAHs begin to penetrate into moss. The increase in the concentration of high-molecularweight polyarenes in the environment plays the key role in the activation of PAH bioaccumulation by moss. It has been shown that P. schreberi can be used as an indicator species for monitoring the contamination of tundra phytocenoses by polyarenes. Both living and dead parts of P. schreberi are suitable for the environmental monitoring of PAH contamination.  相似文献   

16.
Actinomycetes in the rhizosphere of semidesert soils of Mongolia   总被引:1,自引:0,他引:1  
The population density of actinomycetes in the desert-steppe soil, rhizosphere, and the above-ground parts of plants varies from tens to hundreds of thousands of colony-forming units (CFU) per gram of substrate. The actinomycetal complexes of the brown desert-steppe soil without plant roots are more diverse in their taxonomic composition than the actinomycetal complexes in the rhizosphere and the aboveground parts of plants. Additionally to representatives of the Streptomyces and Micromonospora genera, actinomycetes from the Nocardia, Saccharopolyspora, Thermomonospora, and Actinomadura genera were identified in the soil. The population density of actinomycetes in the rhizosphere and in the soil reached hundreds of thousand CFU/g; it considerably exceeded the population density of actinomycetes in the aboveground parts of plants. The maximum population density of actinomycetes was determined in the rhizosphere of Asparagus gobicus, Salsola pestifera, and Cleistogenes songorica.  相似文献   

17.
A field experiment investigating the phytoremediation potential of six plant species—Goosegrass (Eleusine indica), Bermuda grass (Cynodon dactylon), Sessile joyweed (Alternanthera sessilis), Benghal dayflower (Commelina benghalensis), Lovanga (Cleome ciliata), and Chinese violet (Asystasia gangetica)—on soil contaminated with fuel oil (82.5 ml/kg of soil) have been conducted from March to August 2016. The experiments consider three modalities—Tn: unpolluted planted soils, To: unplanted polluted soils, and Tp: polluted planted soil—randomized arranged. Only three (E. indica, C. dactylon, and A. sessilis) of the six species survived while the others died 1 month after the beginning of experimentations. The relative growth indexes showed a strong similarity between the growth parameters of E. indica and C. dactylon, each on polluted and control soils, unlike A. sessilis. Total petroleum hydrocarbons (TPHs) removal efficiency were 82.56, 80.69, and 77% on soil planted with E. indica, C. dactylon, and A. sessilis, respectively; and 57.25% on non-planted soil. According to the bioconcentration and translocation factors, E. indica and A. sessilis are involved on rhizodegradation and phytoextraction of hydrocarbons whereas C. dactylon is only involved into rhizodegradation. Overall, E. indica and C. dactylon out-yielded A. sessilis in the phytoremediation capacity of fuel oil-contaminated soils.  相似文献   

18.
In this study, we analysed the impact of heavy metals and plant rhizodeposition on the structure of indigenous microbial communities in rhizosphere and bulk soil that had been exposed to heavy metals for more than 150 years. Samples of the rhizosphere of Silene vulgaris and non-rhizosphere soils 250 and 450 m from the source of emission that had different metal concentrations were collected for analyses. The results showed that soils were collected 250 m from the smelter had a higher number of Cd-resistant CFU compared with the samples that were collected from 450 m, but no significant differences were observed in the number of total and oligotrophic CFU or the equivalent cell numbers between rhizosphere and non-rhizosphere soils that were taken 250 and 450 m from the emitter. Unweighted pair group method with arithmetic mean (UPGMA) cluster analysis of the denaturing gradient gel electrophoresis (DGGE) profiles, as well as a cluster analysis that was generated on the phospholipid fatty acid (PLFA) profiles, showed that the bacterial community structure of rhizosphere soils depended more on the plant than on the distance and metal concentrations. The sequencing of the 16S rDNA fragments that were excised from the DGGE gel revealed representatives of the phyla Bacteroidetes, Acidobacteria, Gemmatimonadetes, Actinobacteria and Betaproteobacteria in the analysed soil with a predominance of the first three groups. The obtained results demonstrated that the presence of S. vulgaris did not affect the number of CFUs, except for those of Cd-resistant bacteria. However, the presence of S. vulgaris altered the soil bacterial community structure, regardless of the sampling site, which supported the thesis that plants have a higher impact on soil microbial community than metal contamination.  相似文献   

19.
Soil samples were collected in June and October from areas with three land-use types, i.e., Robinia pseudoacacia L. (RP), Caragana korshinskii Kom. (CK), and abandoned land (AL), of which the former two were afforested areas, whereas the latter was not. These areas were converted from similar farmlands 40 years prior. Illumina sequencing of 16S rRNA gene and fungal ITS gene was used to analyze soil bacterial and fungal diversity. Additionally, plant communities, soil properties, fine root biomass, and C, N, and P levels in fine root and microbial biomass were estimated. Compared to AL, the C:N:P stoichiometry in fine root and microbial biomass in the afforested lands was synchronously changed, especially the N:P ratio. Soil microbial diversities were affected by afforestation and were more related to N:P ratio than C:P and C:N ratios. Moreover, Alpha-proteobacteria, Gamma-proteobacteria, and Bacteroidetes were significantly more abundant in afforested soils than in the AL soil, and the abundances of Actinobacteria, Chloroflexi, Cyanobacteria, and Nitrospirae ranked as AL > RP or CK. For fungal taxa, Ascomycota abundance responded positively to afforestation, whereas Basidiomycota abundance responded negatively. Changes of soil microbial taxa were significantly correlated with the N:P ratio in fine root and microbial biomass, which explained 54.1 and 55% of the total variation in bacterial and fungal taxa, respectively. Thus, our results provide evidence that compositions of soil microbial communities are linked to the N:P ratio in the plant-soil system.  相似文献   

20.
The population density of actinomycetes in the samples of light sierozem from the Kopet Dag piedmont plain (75 km from Ashkhabad, Turkmenistan) reaches hundreds of thousand CFU/g soil. The actinomycetal complex is represented by two genera: Streptomyces and Micromonospora. Representatives of the Streptomyces genus predominate and comprise 73 to 87% of the actinomycetal complex. In one sample, representatives of the Micromonospora genus predominated in the complex (75%). The Streptomyces genus in the studied soil samples is represented by the species from several sections and series: the species of section Helvolo-Flavus series Helvolus represent the dominant component of the streptomycetal complex; their portion is up to 77% of all isolated actinomycetes. The species of other sections and series are much less abundant. Thus, the percentage of the Cinereus Achromogenes section in the actinomycetal complex does not exceed 28%; representatives of the Albus section Albus series, Roseus section Lavendulae-Roseus series, and Imperfectus section belong to rare species; they have been isolated not from all the studied samples of light sierozem, and their portion does not exceed 10% of the actinomycetal complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号