首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

The aim of this study was to enhance the soil remediation of timber treatment sites; the potential application of biodegradable chelating agents and humic substances as enhancing agents was assessed in terms of the residual leachability of chromium, copper and arsenic (CCA).

Materials and methods

This study applied four leachability tests on a field-contaminated soil after 48-h washing with ethylenediamine-N,N-disuccinic acid (EDDS), glutamic-N,N-diacetic acid, ethylenediaminetetraacetic acid and humic substances derived from lignite and two other sources.

Results and discussion

It was noteworthy that the reduction in the total metal concentrations after soil washing was not predictive of the leaching behaviour. When assessed by toxicity characteristic leaching procedure (TCLP) and waste extraction test (WET), Cu and As leachability was decreased as a result of their extraction by soil washing. By contrast, when assessed by synthetic precipitation leaching procedure (SPLP) and European Council Waste Acceptance Criteria (ECWAC) tests, Cu and As leachability was found to increase, probably because the effect of destabilization of residual metals during soil washing was more observable in unbuffered leaching solutions. On the other hand, Cr leachability was acceptably low in TCLP and WET but still exceeded drinking water standard in SPLP and ECWAC tests.

Conclusions

The three chelating agents were able to meet the criteria for Cu in all leachability tests, while the limits of As concentrations could only be met by EDDS in TCLP test. The three humic substances reduced the leachate concentrations of Cu and As without destabilizing the residual metals; however, the reduction was insufficient to meet the required limits in all leachability tests considered.  相似文献   

2.

Purpose

The emerging recycling of electronic and electric waste (e-waste) is causing critical levels of soil pollution in those relatively poor towns surrounding the central cities, which have been involved in recycling activities for quite some time. Agricultural soil is of great importance due to its direct impact on food and human health. The objective of this study was to provide a systematic investigation of the contamination in agricultural soil for a range of inorganic compounds (Cr, Cd, Pb, Zn, Cu, and Ni) and organic compounds (PAHs and PCBs) in town A, an emerging e-waste recycling town in China.

Materials and methods

A total of 20 agricultural soil samples were collected from three sampling locations throughout town A. Levels of inorganic compounds (Cr, Cd, Pb, Zn, Cu, and Ni) and organic compounds (PAHs and PCBs) were determined by AAS, GC/MS, and GC/electron capture detector, respectively. Data was processed with SPSS 13 and Arcview 3.3 GIS software.

Results and discussion

The findings demonstrate that agricultural soil was contaminated to various extents by inorganic and/or organic pollutants. Comparison among the three sampling areas indicated that the soil was highly contaminated in the agricultural area near e-waste recycling workshops. Moreover, the contaminants (Cu, Pb, PAHs, and PCBs) may be connected through a common source as found in the Pearson correlations and cluster analysis.

Conclusions

There exists a heightened sense of awareness concerning the hazardous implications of current emerging e-waste recycling issues in the agricultural soil of those areas close to the central city in Taizhou.  相似文献   

3.

Background, aim, and scope

An innovative stabilization/solidification (S/S) process using high-performance additivated concrete technology was developed for remediating soil contaminated by metals from abandoned industrial sites. In order to verify the effectiveness of this new ex situ S/S procedure, an area highly contaminated by metallic pollutants (As, Cd, Hg, and Pb), due to the uncontrolled discharge of waste generated from artistic glass production on the island of Murano (Venice, Italy), was selected as a case study. The technique transforms the contaminated soil into an aggregate material suitable for reuse as on-site backfill. This paper reports the main results of the demonstration project performed in collaboration with the local environmental protection agency (ARPAV).

Materials and methods

An ex situ treatment for brownfield remediation, based on the transformation of contaminated soil into very dense, low porous, and mechanically resistant granular material, was set up and tested. Specific additives (water reducers and superplasticizers) to improve the stabilized material properties were developed and patented. A demonstration plant assembled on the study area to treat 6 m3 h–1was then tested. After excavation, the contaminated soil was screened to remove coarse material. The fraction Ø?>?4 mm (coarse fraction), mainly composed of glass, brick, concrete, and stone debris, was directly reused on site after passing through a washing treatment section. The highly polluted fraction Ø?≤?4 mm (fine fraction) was treated in the S/S treatment division of the plant (European patent WO/2006/097272). The fine fraction was mixed with Portland cement and additives defined on the basis of the high performance concrete technique. the mixture was then granulated in a rolling-plate system. After 28 days curing in an onsite storage area to allow for cement hydration, the stabilized material was monitored before its in situ relocation. The chemical, mechanical, and ecotoxicological reliability and performance of the treatment was checked. Metal leachability was verified according to four leaching test methods: Italian Environmental Ministry Decree (1998), EN 12457 (2002) tout court, amended only with MgSO4 and, lastly, with artificial sea water. The mechanical properties were measured according to BS (1990) and AASHTO (1999) to obtain the Aggregate Crushing Value and California Bearing Ratio, in that order. Moreover, leachate samples prepared with artificial seawater were assessed via the Crassostrea gigas embryotoxicity test and Vibrio fischeri bioluminescence inhibition test to discriminate the presence of potential ecotoxicological effects for the brackish and saltwater biota.

Results

Outcomes from all leachate samples highlighted the effectiveness of the remediation treatment, fully complying with the Italian legislation for non-hazardous material reuse under a physicochemical viewpoint. The stabilized granular material demonstrated high mechanical strength, low porosity, and leachability. Moreover, ecotoxicological surveys indicated the presence of low toxicity levels in leachate samples according to both toxicity tests.

Discussion

Remediated soil samples revealed a significant decrease in leachability of heavy metals as a consequence of the application of additivated cement that enhanced granular material properties, resulting in improved compactness due to the reduction in water content. The toxicity data confirmed this state-of-the-art technique, indicating that leachates could be deemed as minor acutely toxic.

Conclusions

The proposed S/S treatment proved to be able to remediate soil contaminated by heavy metals through trapping pollutants in pellet materials presenting adequate physicochemical, mechanical, and ecotoxicological properties in order to prevent leachability phenomena, their reclamation, and reuse being made easier by its granular form.

Recommendation and perspectives

This project foresees long-term monitoring activity over several years (until 2014) to consider treatment durability.  相似文献   

4.

Purpose

For abandoned slag heaps, the spontaneous establishment of a vegetation cover is usually considered beneficial as it represents a means of phytostabilization. However, for slag containing heavy metals, such a vegetation cover has a potential long-term effect on the fate of the metals. The objective of this study was to investigate how the long-term spontaneous revegetation of a slag heap can affect the fractionation and the leachability of Cd, Zn, and Pb.

Materials and methods

Soils from two plots covered by either Armeria maritima or Agrostis tenuis and a bare plot soil were sampled from a slag heap from a zinc smelting plant and characterized. The Community Bureau of Reference (BCR) sequential extraction scheme was adopted to determine the metal pools. The leachability of Cd, Pb, and Zn was assessed by means of a leaching column experiment.

Results and discussion

Long-term presence of a plant cover increased the proportion of Zn in the most mobile fraction and Pb in the fraction bound to organic matter. Cd distribution was relatively unaffected. Overall, the metal leachability was enhanced in the revegetated soils, notably due to higher organic anion release. However, responses of metal behavior to revegetation depended on the established plant species. The highest leachability of Cd was found in the soil covered by Agrostis tenuis, while the highest leachability of both Zn and Pb was observed in the soil below Armeria maritima.

Conclusions

Any remediation strategy for metal-rich waste dumps by phytostabilization should take into careful consideration the potential long-term mobilization effect of plant establishment on heavy metals. We conclude that, when using pioneer plants for phytostabilization purposes, preference should be given to pseudo-metallophyte over hyperaccumulator species.  相似文献   

5.

Purpose

The combined contamination of Pb, Zn, Cu, Cd, and As in the soils near lead/zinc mine waste posed a potential threat to the surrounding environment. Mitigation methods are needed to reduce the environmental risk. The aims of this paper were to evaluate the feasibility and efficiency of different forms of phosphates in remediating combined contamination caused by multi-metals and arsenic near the lead/zinc mining tailings.

Materials and methods

The tested soil was taken from a clayey illitic thermic typic epiaquepts soil (depth of 0–20 cm) near a lead and zinc mine tailing, located in Shaoxing, Zhejiang Province, China. Four pure chemical reagents, K2HPO4, Ca(H2PO4)2.2H2O, Ca3(PO4)2, and Ca5(PO4)3OH, were added to the soil in solution form as the trace metal stabilizing additives at a P application rate equivalent to 2,283 mg P/kg-soil and P/Pb molar ratio of 1. Shifts in trace metal speciation were determined using sequential extraction procedures and relative toxicities were evaluated using the standard EPA toxicity characteristic leaching procedure (TCLP).

Results and discussion

The addition of K2HPO4, Ca3(PO4)2, Ca5(PO4)3OH, and Ca(H2PO4)2.2H2O in the contaminated soil at the phosphorus application rate 2,283 mg P/kg-soil reduced Pb concentrations in TCLP extraction solution from 90.47 to 56.05, 83.80, 67.78, and 86.32 mg/kg (38.0, 7.36, 25.1, and 4.59% reduction), respectively. Sequential extraction analysis showed that phosphate treatments caused the transformation of easily available trace metal species to more stable forms. However, TCLP As in the soil increased from its initial value of 0.23 to 2.1, 0.70, 0.67, and 0.77 mg/kg, respectively, for the four treatments. The TCLP leachable As concentration of the K2HPO4-treated soil was about nine times of that from the untreated soil.

Conclusions

The addition of K2HPO4, Ca3(PO4)2, Ca5(PO4)3OH, and Ca(H2PO4)2.2H2O were effective in reducing water soluble and exchangeable Pb, Zn, Cu, and Cd, and minimizing TCLP-extractable Pb, Zn, and Cu. The sequential extraction test and the TCLP indicate that Ca5(PO4)3OH treatment has a higher potential in immobilizing Pb, Zn, Cu, and Cd, though a slight enhancement of As mobility, comparing with other phosphate treatments.  相似文献   

6.

Purpose

The aim of this study was to evaluate the effectiveness of mining, industrial and agricultural solid by-products in the in situ immobilisation of soil cadmium (Cd) based on soybean plant Cd content, soil pH, Cd extractability, bioavailability, leachability and Cd distribution in soils.

Materials and methods

The experiment was conducted as a field experiment in Cd-polluted-soil, wherein four by-products, including fly ash, spent mushroom substrate, silkworm excrement and limestone, were tested individually and in combination. The total Cd in soybean and the soil/by-products samples were determined. The Cd contents in the contaminated soil were analysed by the diffusive gradients in thin-film technique, the toxicity characteristic leaching procedure and four chemical methods. Changes in the fractions of Cd were determined following the Tessier method.

Results and discussion

The results showed that all the additions of the by-products increased the soil pH significantly and simultaneously decreased Cd mobility, bioavailability and leachability, particularly weakened the rate of Cd2+ ion transport from soil to solution. The by-products caused 23.5–76.4% of the exchangeable (EX) fraction of Cd to immobilised Cd fractions which include carbonates bound (CA), Fe-Mn oxides bound (OX), organic matter bound and residual fractions. The mobile faction of Cd was reduced from 33.7 to 16.8–27.8% for the amendments addition, respectively. Limestone was the most effective in immobilising the soil Cd among all the treatments, followed by fly ash. Soil pH observed significantly negative correlations with the Cd concentration in extractability, bioavailability and leachability. Soil pH had positive correlations with the percentages of CA-Cd and OX-Cd, but negatively correlated with the percentages of EX-Cd and the sum of EX-Cd and CA-Cd.

Conclusions

By-products addition increased the soil pH and decreased Cd mobility, bioavailability and leachability. The addition of limestone and fly ash exhibited higher efficiency than the other five additions. The combined additions had better performance on Cd extractability and soil pH than the corresponding single treatment, which decreased more concentrations of mobile, bioavailable and leachable Cd. This study offered four potentially cost-effective amendments singly or jointly for Cd immobilisation, reducing the potential hazards associated with excess Cd and the waste-disposal pressure and promoting a resource-saving development strategy.  相似文献   

7.

Purpose

With widely applied water-saving irrigation techniques, the transformation and availabilities of copper (Cu) as both a micronutrient and a toxic metal are changed. However, little information is available on the binding forms, bioavailability, and fate of Cu in paddy fields with different irrigation management. Thus, we investigated the effects of irrigation management on the binding forms and the fate of Cu in a non-polluted paddy soil.

Materials and methods

Field experiments were conducted in 2011 on non-polluted rice fields in Kunshan, East China. Non-flooding controlled irrigation (NFI) was applied in three replications, with flooding irrigation as a control. Samples of soil, soil solution, irrigation water, and rice plants were collected. Fresh soil samples were digested using the modified European Community Bureau of Reference sequential extraction procedure and the dried crop samples digested at 160 °C using concentrated HNO3. Cu contents in irrigation water, soil solution, extraction for different binding fractions, and the digested solutions were measured using inductively coupled plasma optical emission spectrometry. Leaching loss of Cu was calculated based on the Cu contents in 47- to 54-cm soil solutions and deep percolation rates, which were calculated using the field water balance principle.

Results and discussion

NFI led to multiple dry–wet cycles and high soil redox potential in surface soil. The dry–wet cycles in NFI soil resulted in higher Cu contents in acid-extractable and oxidizable forms and lower Cu in residual form. High decomposition and mineralization rates of soil organic matter caused by the dry–wet cycles partially accounted for the increased Cu in acid-extractable form in NFI soils. The frequently high contents of Cu in reducible form in NFI fields might be due to the enhanced transformation of Fe and Mn oxides. As a result, Cu uptakes in NFI fields increased by 8.1 %. Meanwhile, Cu inputs by irrigation and loss by leaching in NFI fields were reduced by 47.6 and 46.6 %.

Conclusions

NFI enhanced the transformation of Cu from residual to oxidizable and acid-extractable forms. The oxidizable form plays a more important role than the reducible form in determining the transformation of Cu from the immobile to the mobile forms in NFI soils. NFI helps improve availability and decreases leaching loss of Cu as a micronutrient in a non-polluted paddy soil, but leads to a high concentration of Cu in rice.  相似文献   

8.

Purpose

The objective of this research was to apply the same immobilization (stabilization/solidification) clay-based treatments to sediment contaminated with different metals (Pb, Cd, Ni, Zn, Cu, Cr) with different distributions and availabilities in sediment. We also examined the possibility of using clay as an immobilization agent without the application of thermal treatment, in order to reduce the economic cost of this expensive remediation procedure.

Materials and methods

Clay from a canal in Vojvodina, Republic of Serbia, was used as the immobilization agent in a stabilization/solidification treatment to remediate metal-contaminated sediment. Semi-dynamic and toxicity characteristic leaching tests were conducted to assess the effectiveness of the nonthermal and thermal immobilization treatments with clay, and the long-term leaching behavior of these metals was determined using the following parameters: cumulative percentage of metals leached; diffusion coefficients; leachability indices; and toxicity characteristic leaching test concentration.

Results and discussion

Based on these parameters, both clay-based treatments were effective in immobilizing metals in the contaminated sediment. Results suggest that both heating temperature and clay proportion in the sediment–clay mixture impact the degree of metal immobilization.

Conclusions

Clay-based products are potentially good immobilization materials for metal-contaminated sediments, with the distribution of metals in the original sediment not influencing the efficacy of the treatments. Even without the thermal treatment, the metals were effectively immobilized. The leaching of metals was largely inside the regulatory limits and the treated samples can be regarded as nonhazardous materials. This justifies the choice of not applying the more expensive thermal treatment during remediation, especially when treating sediments containing a mixture of pollutants.  相似文献   

9.

Purpose

In this study, a soil-washing process was investigated for arsenic (As) and pentachlorophenol (PCP) removal from polluted soils. This research first evaluates the use of chemical reagents (HCl, HNO3, H2SO4, lactic acid, NaOH, KOH, Ca(OH)2, and ethanol) for the leaching of As and PCP from polluted soils.

Materials and methods

A Box–Behnken experimental design was used to optimize the main operating parameters for soil washing. A laboratory-scale leaching process was applied to treat four soils polluted with both organic ([PCP] i ?=?2.5–30 mg kg?1) and inorganic ([As] i ?=?50–250 mg kg?1, [Cr] i ?=?35–220 mg kg?1, and [Cu] i ?=?80–350 mg kg?1) compounds.

Results and discussion

Removals of 72–89, 43–62, 52–68, and 64–98 % were obtained for As, Cr, Cu, and PCP, respectively, using the optimized operating conditions ([NaOH]?=?1 N, [cocamidopropylbetaine] i ?=?2 % w w?1, t?=?2 h, T?=?80 °C, and PD?=?10 %).

Conclusions

The use of NaOH, in combination with the surfactant, is efficient in reducing both organic and inorganic pollutants from soils with different levels of contamination.  相似文献   

10.

Purpose

We investigate the coevolution of soil organic matter (SOM) and soil properties in a semiarid Mediterranean agroecosystem, as well as the 1-year evolution of the different pools of soil organic and inorganic carbon and their influence on soil respiration after the application of a single high dose of three different organic amendments.

Material and methods

We applied a single high dose (160?Mg?ha?1 in dry weight (DW)) of three types of organic amendments: aerobically digested sewage sludge (AE), anaerobically digested sewage sludge (AN), and municipal solid waste compost (MSWC), in a calcareous Mediterranean soil. The study area is located in the southeast of Madrid (Spain), characterized by a Mediterranean climate with a marked seasonal and daily contrast. We analyzed different forms of soil organic and inorganic carbon and soil respiration rates. The measurements have been performed quarterly for 1?year.

Results and discussion

The results showed that the coevolution of SOM and soil largely depends on the origin and composition of the organic amendments used. The AN sludge affected the soil chemistry more. The organic matter (OM) provided by AE treatments underwent more intense mineralization processes than AN, with the OM from MSWC being more stable. This behavior could be explained by the different pools of carbon involved in each case. The treatments contributed differently to soil respiration rates following the sequence: AE > AN > MSWC. The application of organic amendments in calcareous Mediterranean soils also modified the inorganic carbon pools.

Conclusions

SOM and soil coevolution after organic amendments application depends on the origin and chemical composition of the inputs. The decision-making process of urban organic waste application with regard to agricultural policy must take into account the different behavior in soil of the different types of amendments.  相似文献   

11.

Purpose

Few studies have examined the effects of biochar on nitrification of ammonium-based fertilizer in acidic arable soils, which contributes to NO3 ? leaching and soil acidification.

Materials and methods

We conducted a 42-day aerobic incubation and a 119-day weekly leaching experiment to investigate nitrification, N leaching, and soil acidification in two subtropical soils to which 300 mg N kg?1 ammonium sulfate or urea and 1 or 5 wt% rice straw biochar were applied.

Results and discussion

During aerobic incubation, NO3 ? accumulation was enhanced by applying biochar in increasing amounts from 1 to 5 wt%. As a result, pH decreased in the two soils from the original levels. Under leaching conditions, biochar did not increase NO3 ?, but 5 wt% biochar addition did reduce N leaching compared to that in soils treated with only N. Consistently, lower amounts of added N were recovered from the incubation (KCl-extractable N) and leaching (leaching plus KCl-extractable N) experiments following 5 wt% biochar application compared to soils treated with only N.

Conclusions

Incorporating biochar into acidic arable soils accelerates nitrification and thus weakens the liming effects of biochar. The enhanced nitrification does not necessarily increase NO3 ? leaching. Rather, biochar reduces overall N leaching due to both improved N adsorption and increased unaccounted-for N (immobilization and possible gaseous losses). Further studies are necessary to assess the effects of biochar (when used as an addition to soil) on N.  相似文献   

12.

Purpose

Problems associated with organochlorine pesticides (OCPs)-contaminated sites have received wide attention. To address the associated environmental concerns, innovative ex situ techniques are urgently needed.

Materials and methods

As regards long-term contamination by OCPs in Wujiang region, China, we investigated the feasibility of a cleanup strategy that employed hydroxypropyl-β-cyclodextrin (HPCD) and peanut oil to enhance ex situ soil washing for extracting OCPs, followed by the addition of supplemental nutrients to the residual soil.

Results and discussion

Elevated temperature (50 °C) in combination with ultrasonication (35 kHz, 30 min) at 50 g?L?1 HPCD and 10 % peanut oil were effective in extracting, and therefore washing, the OCPs in soil. Ninety-three percent of total OCPs, 98 % of dichlorodiphenyltrichloroethanes, 93 % of chlordane as well as 85 % of Mirex were removed from soil after three successive washing cycles. Treating the residual soil with nutrients addition for 12 weeks led to significant increases (p?<?0.05) in the average well color development obtained by the BIOLOG Eco plate assay, Shannon–Weaver index, Simpson index, and EC50 ecotoxicological evaluation compared with the controls. This implied that this cleanup strategy at least partially restored the microbiological functioning of the OCPs-contaminated soil and has the advantage of being an environmental-friendly technology.

Conclusions

The ex situ cleanup strategy through HPCD and peanut oil enhanced soil washing followed by nutrients addition could be effective in remediation of OCPs-contaminated soil.  相似文献   

13.

Purpose

An efficient method was developed for treating polychlorinated biphenyl (PCB)-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation, and the photocatalytic degradation mechanism of PCBs was explored.

Materials and methods

Hydroxypropyl-??-cyclodextrin (HP??CD) and polyoxyethylene lauryl ether (Brij35) were used to extract PCBs from contaminated soil at first, and then the degradation of PCBs in the soil extracts was performed by TiO2 photocatalysis under UV irradiation.

Results and discussion

Washing conditions including washing time, the concentration of HP??CD/Brij35, and the ratio of soil mass to solution volume for extracting 2,4,4??-trichlorobiphenyl (PCB28) from a PCB28-spiked soil were investigated at first. The results indicated that both HP??CD and Brij35 exhibited good performance. The intermediates of photocatalytic degradation of PCB28 were from its dechlorination and hydroxylation in the HPCD and aqueous solutions, respectively. A field PCB-contaminated soil from e-waste recycling sites was treated by this method. The results showed that the extracting percentage was significantly affected by the chlorination degree of PCBs, and HP??CD slowed down the photocatalytic degradation efficiency of overall PCBs.

Conclusions

Soil washing and subsequent TiO2 photocatalytic degradation was successfully applied for treating PCB-contaminated soil, and HP??CD strongly altered the pathways of the photocatalytic degradation of PCBs.  相似文献   

14.

Purpose

Basic slags are alkaline by-products of the steel industry with potential properties to ameliorate nutrient supply and metal stabilisation in contaminated soils. This study aimed at investigating the potential of a P-spiked Link Donawitz slag and a conventional basic slag called Carmeuse for the aided phytostabilisation of a Cu-contaminated soil at a wood treatment site. The effects of basic slag addition on Cu fractionation, mobility and (phyto) availability were assessed.

Materials and methods

Both slags were incorporated at 1 % w/w into the Cu-contaminated soil phytostabilised with Cu-tolerant plants, using either outdoor lysimeters or a field plot. Untreated soil (UNT), amended soils with the P-spiked Link Donawitz slag (PLDS) and the conventional slag (CARM) respectively, and a control soil (CTRL) were sampled, potted and cultivated with dwarf bean. Physico-chemical analysis, determination of total soil elements and a Cu-sequential extraction scheme were carried out for all soils. Physico-chemical characteristics of soil pore water and Cu speciation (rhizon, ion selective electrode and diffusive gradient in thin film (DGT)) were determined. Shoot dry weight yield and leaf ionome (i.e. all inorganic ions present in the primary leaves) of dwarf beans were investigated.

Results and discussion

The slag incorporation at only 1 % w/w increased the soil pH from 1.5 to 2 U and electrical conductivity in soil pore water by three times. The residual Cu fraction increased for both slag amended soils compared to the UNT soil by six times in parallel to the decrease of the Cu oxidisable fraction (1.5 times) and to a less extent the reducible fraction. The incorporation of both slags did not reduce the total dissolved Cu concentration in the soil pore water but significantly reduced the real dissolved Cu concentration ca five times, the Cu labile pool as measured by DGT (at least two times) and the Cu phytoavailability. The dwarf bean total biomass was also improved with the slag addition especially for the P-spiked Linz–Donawitz slag.

Conclusions

The addition of both slags in the contaminated soil increased Cu concentration in the residual fraction and thus reduced its potential mobility. Though the total dissolved Cu soil pore water concentration remained identical, its speciation changed as the real dissolved fraction diminished and lowered the Cu bioavailability. The addition of small amount of P-spiked Linz–Donawitz and Carmeuse slags was beneficial for this Cu-contaminated soil in the context of aided phytostabilisation.
  相似文献   

15.

Purpose

The presence of high copper (Cu) and cadmium (Cd) contamination in soils around mining areas has raised serious health concerns. Improving hydroxyapatite (HAP) adsorption capacity for Cu and Cd is important if its application potential in heavily contaminated soils is to expand.

Materials and methods

The micro/nanostructured HAP (mnHAP) was synthesized using a template-induced method to improve the HAP immobilization of Cu and Cd in contaminated soils. Commercial and synthetic HAPs were evaluated as amendments in Cu and Cd remediation tests with 1.5 and 3.0 % addition level for 90 days, and soils without HAP materials (0.0 %) were designated as the controls; each treatment was repeated three times. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption, and scanning electron microscopy (SEM)-energy-dispersive spectra (EDS) and then quantitatively determined the Cu and Cd contents by inductively coupled plasma (ICP) and inductively coupled plasma mass spectrometry (ICP-MS).

Results and discussion

The mnHAP was more effective in immobilizing Cu and Cd than the two commercial HAPs. After treatment with mnHAP at the 3.0 % addition level for 90 days, the contaminated soils showed 55.2 and 84.8 % reductions in Cu and Cd concentrations in the toxicity characteristic leaching procedure (TCLP) leaching procedure, respectively. The experimental data indicated that the enhanced Cu and Cd immobilization by mnHAP was due to the increases of surface area and the improvement of structure and newly introduced carboxylate groups on its surface.

Conclusions

These findings show that regulating the structure and surface properties of HAP can enhance Cu and Cd immobilization in soils.
  相似文献   

16.

Purpose

The objective of this study was to investigate the bioleaching of Cr, Cu, Pb, and Zn from sewage sludge using iron-oxidizing microorganisms. These conditions include the solid concentration, initial pH, ferrous iron concentration, inoculum concentration as well as the kinetics of solubilization of metals from sewage sludge to determine whether they impact on bioleaching efficiency.

Materials and methods

The sludge sample containing bacteria used in this study was collected from Fuzhou Jingshan sewage treatment plant. Indigenous iron-oxidizing bacteria were enriched from the sludge. Conditions affecting the bioleaching and application were conducted using batch experiments. The analysis of Cr, Cu, Pb, and Zn was carried out with an atomic absorption spectrophotometer, and the pH and ORP were measured using pH meter and ORP meter.

Results and discussion

The data show that 88.5 % of Zn, 79.9 % of Cu, 50.1 % of Pb, and 33.2 % of Cr can be removed from the sludge after 12 days of bioleaching at 30 °C, while only 80.2 % of Zn, 21.8 % of Cu, 10.9 % of Pb, and 10.5 % of Cr were leached out in the control without iron-oxidizing microorganisms. The leaching kinetics study shows that the rate of metal solubilization in bioleaching using iron-oxidizing microorganisms was more effective compared to chemical leaching.

Conclusions

The results suggest that the leaching of metals from sludge can be attributed to two leaching approaches: firstly, chemical leaching; and secondly, bioleaching. However, their effectiveness depends on metal species because of their different bindings in sludge. For example, the leaching of Zn from the sludge was dominated by chemical leaching while the removal of Cu, Pb, and Cr was dominated by bioleaching.  相似文献   

17.

Purpose

This study addresses the feasibility of a flotation technique, using a lab-scale flotation cell, to simultaneously remove both metals and polyaromatic hydrocarbons (PAHs) from fine sediment fractions (<250 μm) that are potentially contaminated with copper (Cu).

Materials and methods

A multiple flotation process with three consecutive flotation stages was performed on three sediments (13S, 14B, and 24A) with different particle size distributions, Cu and PAH concentrations, and organic matter contents.

Results and discussion

Flotations performed under selected conditions allowed for significant removal of both Cu (61–70 %) and PAHs (75–83 %) with acceptable froth recoveries of approximately 23–29 %. Removal rates for arsenic, lead, and zinc were 48–61, 40–48, and 32–36 %, respectively. Flotation selectivity of Cu was greatly influenced by the contents of fine particles and organic matter of the sediments. The maximum flotation selectivity was obtained for the 53–125-μm size fraction. The high flotation selectivity of Cu (2.5–3.2) and PAHs (3.0–3.6) demonstrated the feasibility of flotation to treat soils or sediments containing both organic and inorganic pollutants.

Conclusions

Overall, the flotation results showed a high selectivity for both Cu and PAHs and demonstrated the feasibility of flotation to treat media contaminated with organic and inorganic contaminants.  相似文献   

18.
Soils treated with two concentrations of copper (Cu; 200 and 400 mg kg?1) were amended with three amendments (coal fly ash, apatite, and bentonite) at the rates of 1.5% and 2.5%, respectively. The effects of amendment application on the bioavailability and leachability of Cu in the soil were evaluated using the wheat uptake, single extraction, and sequential extraction tests. The addition of coal fly ash, apatite, and bentonite at the rate of 2.5% increased wheat biomass by 50.5%, 41.1%, and 61.7%, respectively. The application of amendments significantly (P < 0.01) reduced the Cu contents extract that will buy DW (deionized water), TCLP (toxicity characteristics leaching procedure), and DTPA (diethylenetriaminepentaacetic acid) in the soil. The amendments also reduced the water-soluble/exchangeable, carbonate, iron (Fe)–manganese (Mn) oxide, and organically bound fraction contents of Cu but increased the amounts of residual Cu in soil. Our results demonstrated that these amendments were effective in reducing the bioavailability and leachability of Cu in soil.  相似文献   

19.

Purpose

Appropriate land management is important for improving the soil quality and productivity of the saline-sodic farmland. A recent study has revealed that flue gas desulfurization (FGD) gypsum and lignite humic acid application enhanced the salt leaching and crop production. The purpose of this study was to investigate the effects of applied FGD gypsum and lignite humic acid (powder) on the soil organic matter (SOM) content and physical properties.

Materials and methods

This study was based on a field experiment of five consecutive rapeseed-maize rotations in a saline-sodic farmland soil (Aquic Halaquepts) at coastal area of North Jiangsu Province, China. The soil is sandy clay loam texture with pH of 8.43 and clay content of 185 g kg?1. Six treatments included three FGD gypsum rates (0, 1.6, and 3.2 Mg ha?1) and two lignite humic acid rates (0 and 1.5 Mg ha?1). The amendments were incorporated into 0–20 cm soil depth manually every year. Soil samples were collected from each treatment and analyzed for soil organic matter, water-stable aggregates (wet sieving method), bulk density (clod method), water retention capacity (pressure plate apparatus), total porosity (calculated from bulk density and particle density), and microporosity (calculated from water content at 0.01 MPa).

Results and discussion

After 5 years, the SOM and soil physical properties were significantly (P?<?0.05) affected by the application of FGD gypsum and lignite humic acid, especially at the 0–20 cm soil depth. The highest amount of SOM with best soil physical condition was observed in the field which was treated with FGD gypsum at 3.2 Mg ha?1 with lignite humic acid, and the SOM, total porosity (TP), microporosity (MP), mean weight diameter (MWD), water-stable macroaggregate (WSMA), and available water content (AWC) were increased by 22.8, 6.34, 23.2, 48.1, 55.5, and 15.8 %, respectively, while the bulk density (BD) was decreased by 5.9 % compared to no amendments applied. The generalized linear regression analysis showed that the SOM explained 42.9, 55.0, 48.5, and 54.2 % of the variability for BD, MWD, WSMA, and MP, respectively.

Conclusions

This study illustrates the benefits of applying FGD gypsum and lignite humic acid for increasing the soil organic matter content and improving the soil physical properties and suggests a great potential for ameliorating saline-sodic farmland soil (Aquic Halaquepts) by using combined amendment of FGD gypsum with lignite humic acid.
  相似文献   

20.
Ozone and UV irradiation were used for oxidative decomposition of EDTA-Cu complexes in washing solution obtained during multi-step leaching of Cu (344,1?±?36.5 mg kg?1) contaminated vineyard soil with EDTA as a chelant. The released Cu was absorbed from the washing solution on a commercial mixture of metal absorbing minerals, and the treated washing solution then reused for removal of soil residual Cu-EDTA complexes in a closed-loop process. Six consecutive leaching steps (6?×?2.5 mmol kg?1 of EDTA) removed 38.8 % of Cu from soils, and reduced Cu soil mobility, determined using the toxicity characteristic leaching test (TCLP), by 28.5%. The final washing solution obtained after soil remediation was colourless, with a pH close to neutral (7.5?±?0.2) and with low concentrations of Cu and EDTA (0.51?±?0.22 mg L?1 and 0.083 mM, respectively). The proposed remediation method has therefore potential not just to recycle and save process water, but also not to produce toxic wastewaters. Soil treatment did not substantially alter the soil properties determined by pedological analysis, and had relatively little impact on soil hydraulic conductivity and soil water sorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号