首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Adaptation of Marek's disease virus to the Vero continuous cell line   总被引:2,自引:0,他引:2  
Marek's disease virus (MDV) is a highly infectious, cell-associated oncogenic herpesvirus. Production of MD vaccines has been limited to primary chicken and duck embryo fibroblast (CEF and DEF) cultures. These have a limited life span and cannot be readily stored in liquid nitrogen. Moreover, the need to prepare CEF and DEF cells on a regular basis from 10 to 11 day-old embryos derived from a flock that must be tested continuously for the presence of avian pathogens adds to the cost of vaccine production. A continuous cell line that would support MDV replication could have significant advantages for the rapid large-scale preparation of MD vaccines. In this report, we describe the adaptation to growth of CEF-grown preparations of serotype 1 and serotype 3 (herpesvirus of turkeys; HVT) strains of MDV in cells of the Vero continuous cell line. Although both viruses produced typical CPE, higher levels of infectious progeny and more extensive virus-specific immunofluorescence were obtained for HVT than for the serotype 1 virus. PCR and pulsed field electrophoresis (PFE) analysis of the DNA from Vero cells infected with either virus confirmed the presence of virus-specific DNA.  相似文献   

2.
Efficacy of a bivalent vaccine against Marek's disease   总被引:1,自引:0,他引:1  
A bivalent vaccine was prepared by combining inactivated Marek's disease virus and turkey herpesvirus. The efficacy of this vaccine, compared to turkey herpesvirus and inactivated Marek's disease virus separately, was studied in unsexed White Leghorn chicks which were vaccinated at one day old and then challenged at 21 days old with fowl blood infected with virulent Marek's disease virus. The bivalent vaccine appreciably delayed mortality resulting from Marek's disease and elicited the highest protective efficacy as judged on the basis of Marek's disease-specific mortality and percentage occurrence of lesions. The occurrence, extent and severity of gross lymphomas and microscopic lymphoproliferative lesions in various organs of the bivalent vaccinated birds were less than in the other challenged groups. In addition, the level of viraemia remained consistently and significantly lower in the bivalent vaccinated birds.  相似文献   

3.
Marek's disease (MD) vaccines representing serotypes 2 (SB-1 strain of MD virus) and 3 (FC-126 strain of turkey herpesvirus) were administered to 1-day-old MD-susceptible chicks that either were free of antibodies or carried maternally derived antibodies against SB-1, FC-126, or a serotype-1 MD virus, CU-2 strain. Homologous antibodies delayed the development of vaccine virus viremias and inhibited vaccinal immunity, as judged by protection against challenge with the virulent JM-10 strain of MD virus 7 days postvaccination. Heterologous antibodies had little effect on vaccine responses. Antibodies were shown to interfere with both cell-associated and cell-free vaccine virus.  相似文献   

4.
Objective To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody.
Study design Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carried out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel.
Results The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multi-valent vaccines, although protection achieved with the mono-valent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus.
Conclusion The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

5.
6.
OBJECTIVE: To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody. STUDY DESIGN: Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carded out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel. RESULTS: The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multivalent vaccines, although protection achieved with the monovalent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus. CONCLUSION: The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

7.
The effect of feeding aflatoxin B1 (AFB1) (0.5 ppm) was studied in young chicks. The frequency and the severity of gross and microscopic lesions of Marek's disease were significantly higher in those birds which had been vaccinated with turkey herpesvirus (HVI) and birds challenged with Marek's disease virus which had been given AFB1 in the feed than in those given normal feed. The protective efficacy of HVT vaccine, as judged on the basis of gross and histopathological lesions, was 86.1 and 77.3 per cent in normally fed birds in comparison to 37.6 and 8 per cent in AFB1 fed birds.  相似文献   

8.
J M Sharma 《Avian diseases》1985,29(4):1155-1169
Studies with specific-pathogen-free chickens revealed that chicks hatching from eggs inoculated at the 18th day of embryonation with infectious bursal disease (IBD) vaccine viruses of low virulence (isolates TC-IBDV and BVM-IBDV) developed antibody against IBD virus (IBDV) and resisted challenge with virulent IBDV at 3 weeks of age or older. Embryo vaccination did not adversely affect hatchability of chicks or survival of hatched chicks. Chicks embryonally vaccinated with TC-IBDV had transient histologic lesions in the bursa of Fabricius at hatch. Similar but milder lesions were also noted in chickens that received TC-IBDV at hatch. The level of protection following embryo vaccination with TC-IBDV and BVM-IBDV was similar to that following vaccination with the same vaccines at hatch. Vaccine viruses of moderate virulence (isolates BV-IBDV and 2512-IBDV) were not suitable as vaccines in embryos lacking maternal antibody to IBDV, because the vaccinated chicks developed acute IBD after hatch. Isolate 2512-IBDV was not pathogenic for embryos bearing maternal antibody to IBDV. Maternal antibody against IBDV interfered with efficacy of embryo vaccination with BVM-IBDV but not with 2512-IBDV. Embryo vaccination with a mixture of vaccines against IBD and Marek's disease resulted in protection of hatched chicks against challenge with virulent IBDV and Marek's disease virus.  相似文献   

9.
Marek's disease is an economically important lymphoid neoplasm of chickens, caused by oncogenic strains of Marek's disease herpesvirus. The disease can be successfully controlled by vaccination with attenuated or non-pathogenic MDV strains. However, vaccine failures do occur as field strains continue to evolve towards pathotypes of greater virulence, and this evolution is likely to be driven by the vaccines themselves. Two general strategies can be considered to improve protection by vaccination. Firstly by the development of novel vaccines, and secondly by maximizing the potential of existing vaccines. This second goal requires investigation of optimal timing and vaccine delivery route, and optimal vaccination regimes for different breeds of chick. Accurate quantitation of Marek's disease vaccine virus in vaccinated chicks will contribute significantly to our understanding of vaccinal protection. We recently developed a real-time polymerase chain reaction (PCR) assay for quantitation of CVI988 vaccine virus in the feather tips, a rich source of viral DNA which can easily be sampled in a non-invasive manner. This PCR test is now used commercially to confirm the successful vaccination of chicks. We have also used the PCR to examine various aspects of vaccination in experimental chicks and commercial chicks with a view to determining how vaccine level in feathers correlates with protection against challenge, and for identifying optimal timing and vaccine delivery route, and optimal vaccination regimes for different breeds of chick. In this article we review some aspects of the current vaccinal control of Marek's disease, before highlighting some of the problems associated with current vaccines and vaccination strategies, and the challenges for the future. We go on to discuss the development and use of our real-time PCR feather test, its current applications and potential opportunities in Marek's disease vaccine research.  相似文献   

10.
11.
Marek's disease (MD) is a highly contagious lymphoproliferative disease of poultry caused by the oncogenic herpesvirus designated Marek's disease virus (MDV). MD has a worldwide distribution and is thought to cause an annual loss over 1 bn US dollars to the poultry industry. Originally described as a paralytic disease, today MD is mostly manifested as an acute disease with tumours in multiple visceral organs. MD is controlled essentially by the widespread use of live vaccines administered either in ovo into 18-day-old embryos or into chicks immediately after they hatch. In spite of the success of the vaccines in reducing the losses from the disease in the last 30 years, MDV strains have shown continuous evolution in virulence acquiring the ability to overcome the immune responses induced by the vaccines. During this period, different generations of MD vaccines have been introduced to protect birds from the increasingly virulent MDV strains. However, the virus has countered each new vaccine with ever more virulent strains. This continuous race between the virus and the host is making the control of this poultry health problem a major challenge for the future.  相似文献   

12.
Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.  相似文献   

13.
Commercial Marek's disease (MD) vaccines produced by two manufacturers were tested for possible contamination with avian leukosis virus (ALV). Samples of MD vaccines manufactured by two companies (A and B) were received from a breeder company; samples were also received directly from vaccine company B. Using virus isolation tests, samples initially tested positive for subgroup E (endogenous) ALV. However, upon repassage, the vaccines also tested positive for exogenous ALV. The isolated exogenous ALV proved to be a subgroup A virus, as determined by flow cytometry using polyclonal chicken antibodies specific for various subgroups of ALV, and by DNA sequencing of the envelope glygoprotein (gp85). The exogenous ALV isolated from MD vaccines was inoculated in chickens from ADOL lines 15I(5) x 7(1) and 0 to determine its pathogenicity and compare it with that of Rous-associated-virus-1 (RAV-1), the prototype strain of ALV-A. Each chicken from each line was inoculated with approximately 10,000 infectious units of RAV-1 or the ALV-A isolated from vaccines termed B-39 virus at 7th day of embryonation. At hatch, and at 4, 8, and 16 wk of age, chickens were tested for viremia and cloacal shedding; chickens were also observed for ALV-induced tumors within 16 wk of age. Viremia and cloacal shedding results suggest that chickens from both lines were susceptible to infection with either virus. Within 16 wk of age, the proportion of ALV tumors induced by strain B-39 in line 0 and line 15I5 x 7(1) chickens was 0% and 12%, respectively, compared with 62% and 67% in chickens inoculated with RAV-1. The data indicate that commercial MD vaccines produced by two manufacturers were contaminated with endogenous subgroup E and an exogenous subgroup A ALV. Further, data from biological characterization suggest that the ALV-A isolated from commercial MD vaccines is of low oncogenicity, compared with that of RAV-1. GenBank accession numbers: The gp85 gene sequences of ALV isolated from commercial Marek's disease vaccines have been deposited in GenBank and assigned the following accession numbers: A46 subgroup A, DQ412726 ; B53 subgroup A, DQ412727; A46 subgroup E, DQ412728; B53 subgroup E, DQ412729.  相似文献   

14.
A field trial to assess the ability of two vaccines to protect calves against respiratory disease was carried out on a large beef rearing unit in southern England over the two winters of 1983 to 1984 and 1984 to 1985. A quadrivalent vaccine containing the killed antigens of respiratory syncytial virus, parainfluenza virus type 3, Mycoplasma bovis and M dispar or a vaccine containing only the respiratory syncytial virus component were inoculated into 246 and 245 calves, respectively; 245 calves remained as unvaccinated controls. The calves were reared in seven batches and outbreaks of disease occurred in five; significant protection was achieved in the four batches in which disease was associated with respiratory syncytial virus and M bovis infection, together or independently. The death rate from pneumonia was 9 per cent in the control group, 2 per cent in the calves inoculated with the quadrivalent vaccine (P less than 0.001), a protection rate of 77 per cent, and 3 per cent in the calves inoculated with the respiratory syncytial virus vaccine (P less than 0.01), a protection rate of 68 per cent. The proportion of calves receiving treatment for respiratory disease was 38 per cent in the control group, 25 per cent in the calves inoculated with the quadrivalent vaccine (P less than 0.001) and 27 per cent in the calves inoculated with the respiratory syncytial virus vaccine (P less than 0.01). The results show that protection against respiratory disease can be achieved by parenteral vaccination of calves with the appropriate inactivated microorganisms.  相似文献   

15.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

16.
An experiment was performed to study the immunogenicity of the dermal antigen of Marek's disease virus, extracted from the skin of 30-day-old chickens, infected with Marek's disease virus on the first day of life. Three kinds of samples were tested: (1) dermal antigen centrifuged at 10 000 g per 0.5 h, (2) dermal antigen centrifugated at 10 000 g per 0.5 h and 100 000 g per 1 h, (3) dermal antigen treated like sample (2) and partly purified by DEAE-cellulose chromatography. Samples (1) and (2) were inoculated to two-day-old chickens and the vaccination was repeated, using complete Freund's adjuvant, 21 days later. Sample (3) was inoculated to two-day-old chickens with DEAE-dextran. All the three groups were challenged together with the controls (non-vaccinated chickens) on the seventh day after the first vaccination. A reduction of mortality was observed in the chickens vaccinated with and re-vaccinated with sample (1) (23.07%) and in the chickens vaccinated with sample (3) (30.76%). The chickens of the latter group were the last to start dying from Marek's disease--only after the 10th week of life. In the chickens which had been vaccinated and revaccinated with sample (2) the mortality was not reduced. The study is continued, with particular emphasis on the relationship of DEAE-dextran to protection against Marek's disease.  相似文献   

17.
One-day-old White Leghorn and broiler chicks with maternal antibody to turkey herpesvirus (HVT) were vaccinated with 300 or 1,000 plaque-forming units (PFU) of cell-free or cell-associated HVT vaccine and challenged with virulent Marek's disease virus (MDV) by contact exposure. Broiler chicks receiving 300 PFU of cell-associated HVT had a 3.3% incidence of MD lesions, whereas only 2.0% of those receiving 1,000 PFU had macroscopic lesions. Broiler chicks vaccinated with 300 PFU of cell-free vaccine had 6.8% gross lesions, and 0.67% of the birds receiving 1,000 PFU had MD lesions. Unvaccinated broiler chickens had a 28.3% incidence of MD lesions. Unvaccinated White Leghorn chickens had a 48.9% incidence of macroscopic lesions, whereas 5.4% of the birds receiving 300 PFU of cell-associated HVT had gross lesions, and 8.3% of the birds vaccinated with 1,000 PFU had lesions. In contrast, 6.7% of the chicks vaccinated with 300 PFU of cell-free HVT had MD lesions, and only 4.0% of those receiving 1,000 PFU of cell-free HVT had macroscopic lesions.  相似文献   

18.
HVT-7, the standard vaccine against MD, was prepared from HVT strain FC126 grown in fibroblast cultures from SPF embryos. Ampoules of freeze dried material were prepared from a cell free suspension of virus in a solution of SPGA. The vaccine is stored at −20°C.The primary purpose of the standard vaccine was to control the variation encountered in the assay of virus content of HVT vaccines. The virus content of the standard vaccine was determined under a range of assay conditions, and the method in current use was shown to be satisfactory.A mean value for the virus content of the standard vaccine was determined using a constant assay method, by titrating 27 ampoules over a period of time. A further series of assays performed after one year's storage showed there to be no significant loss of titre.When several ampoules were titrated at the same time, some vial to vial variation was detected, but this was less than normal assay to assay variation.During routine determinations of the virus content of commercial HVT vaccines, an assay of the standard vaccine was carried out simultaneously to determine whether the assay conditions were acceptable. Assays where the value for the virus content of standard vaccine fell outside the expected range were considered invalid.The stability of the standard vaccine after reconstitution in SPGA was considered satisfactory: when reconstituted in phosphate-buffered saline, the rate of decrease in virus content was significantly greater. The vaccine could therefore be used as a control preparation in stability tests.Preliminary investigations showed that the behaviour of the standard vaccine in vivo was similar to that of satisfactory commercial vaccines, so that the preparation may also be of value in tests of vaccines for their ability to produce viraemia and confer protection.  相似文献   

19.
Mixtures of turkey herpesvirus (HVT) and Rispens poultry vaccines have been used worldwide for over 20 yr, mainly for vaccination of future layers and breeders. With increasing virulence of Marek's disease (MD) virus strains, vaccination strategies are evolving toward the use of vaccines combining HVT and Rispens. A single vaccination either in ovo or at 1 day of age with the HVT + infectious bursal disease (IBD) vector vaccine is efficient against IBD. However, with vaccination programs that include a hatchery administration of the HVT + IBD vaccine, additional protection against very virulent and very virulent-plus MD viruses is needed, especially for layers and breeders. This study looked at the combination of four commercially available Rispens vaccines with the HVT + IBD vector vaccine injected at 1 day of age. MD challenge tests that were superior to 90% in relative score in all the groups vaccinated with both vaccines showed that the mixture of HVT + IBD and Rispens vaccines had no effect on clinical protection against MD, and IBD challenge tests showed that the mixture of HVT + IBD and Rispens vaccines had no effect on clinical protection against IBD, which was equal to 100% protection in all the groups vaccinated with both vaccines.  相似文献   

20.
Sung HW 《Avian diseases》2002,46(3):517-524
The incidence of Marek's disease (MD), an important neoplastic disease of chickens, suddenly increased in 1997 in Korea. Most MD cases of this country were detected in chickens over 20 wk of age. Five MD viruses were isolated from field flocks in which severe MD losses had occurred, and one of the viruses was studied to compare its pathotype with the prototype JM strain. The isolate KOMD-IC induced severe depression not only in body weight but also in relative bursal weight, and the depression by KOMD-IC was more severe than that induced by JM strain. In addition, the incidence of MD tumor caused by KOMD-IC was higher than that caused by the JM strain. The protective capacity of several MD vaccines was studied against challenge with KOMD-IC. The protective levels of several MD vaccines such as herpesvirus of turkeys (HVT), HVT plus SB1, and Rispens were usually lower against challenge with KOMD-IC than those challenged with JM strain, even if the chickens vaccinated with serotype 1 were not completely protected against challenge with KOMD-IC. The above results indicate that the virulence of KOMD-IC isolated recently was increased, and the increase of MD outbreak in Korea may be related to the virulence increase of the virus. Various MD vaccine programs were applied to reduce MD loss to a broiler breeder farm where severe MD loss had occurred. Serotype 1 vaccine could dramatically decrease the mortality due to MD, and the best results were obtained from the flocks vaccinated with bivalent vaccine of Rispens and HVT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号