首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin enhances in vitro embryo development in several species by improving the oocyte developmental competence during in vitro maturation (IVM). Melatonin has a wide range of actions, from scavenging reactive oxygen species (ROS) to regulating gene expression, and it can also act by way of melatonin receptors. The aim of this study was to determine the mechanism of action of melatonin during the IVM of juvenile goat oocytes and the role of the membrane receptors. Melatonin receptor 1 was immunolocalized in cumulus cells and oocytes before and after 24 hr of IVM. The effect of melatonin on oocyte developmental competence was tested in three experimental IVM groups: (a) control, (b) 10?7 M melatonin, and (c) 10?7 M melatonin +10?7 M luzindole (an inhibitor of both melatonin receptors). After IVM oocytes were assessed for ROS levels, mitochondrial activity, adenosine 5′‐triphosphate (ATP) concentration and relative gene expression (ACTB, SLC1A1, SOD1, GPx1, BAX, DNMT1, GCLC and GDF9). IVM‐oocytes were in vitro fertilized and cultured under conventional conditions. Blastocyst rate and quality (differential cell count) were assessed at 8 days post‐fertilization. Melatonin decreased ROS levels, increased mitochondrial activity and ATP content and increased blastocyst quality compared to control group (55.8 vs. 30.4 inner cell mass ICM, p < 0.05). There was no effect on the relative gene expression due to treatment with melatonin. In conclusion, we have showed that melatonin improves oocyte developmental competence in juvenile goats by reducing ROS levels and improving mitochondrial activity.  相似文献   

2.
This study aimed to determine the optimum concentration of trehalose in solutions used for vitrification of in vitro matured (IVM) ovine oocytes. IVM oocytes were randomly divided into four experimental (vitrified) and one control (fresh) groups. Experimental groups were treated with different concentrations (0.0, 0.25, 0.5 and 1.0 M) of trehalose. After warming, some viable oocytes were exposed to 0.25% pronase to test zona pellucida hardening, whereas the others were fertilized and cultured in vitro for 8 days to evaluate their developmental competence. Blastocysts quality was assessed by differential staining and TUNEL test. Survival and developmental rates of oocytes vitrified in the presence of 0.5 M trehalose were significantly higher than those of the other vitrified groups. Furthermore, there was a significant difference between fresh and vitrified groups in total blastocyst rate. Analysis of blastocysts quality also revealed a significant difference between the group treated with 0.5 M trehalose and other groups in terms of apoptotic index. Furthermore,zona pellucida digestion time period was longer in trehalose‐free (0.0 M) group compared to other groups. In conclusion, we found that IVM ovine oocytes vitrified in solutions containing 0.5 M trehalose are fertilization‐competent and are able to produce good‐quality blastocysts with an apoptotic index comparable to that of the fresh oocytes. Therefore, 0.5 M may be considered the optimum concentration of trehalose to be used in solutions prepared for vitrification of oocytes.  相似文献   

3.
Very small follicles (<3.0 mm diameter) are over‐represented on the surface of ovaries of non‐cycling pigs, and the oocytes collected from these follicles generally have reduced developmental competence in vitro. This study examined the effect of follicle size on the nuclear maturation (n = 608), the potential of parthenogenetic activation (n = 243) and the cyclic AMP (cAMP) content of pre‐pubertal porcine oocytes (n = 480). In addition, the influence of follicle size on steroid hormone synthesis was analysed. Cumulus oocyte complexes (COCs) flushed from small (2.5–4.0 mm) or large (4.5–6.0 mm) ovarian follicles were cultured for 0, 28 and 46 h. After 46 h of IVM, a greater proportion of oocytes from 4.5‐ to 6.0‐mm follicles reach metaphase II (MII) compared with those from follicles with 2.5–4.0 mm of diameter (96.1 vs 77.0%, respectively; p < 0.001). Parthenogenetic activation of oocytes from large follicles produced higher developmental rates than oocytes from large follicles (p < 0.05). At 28 h, the IVM medium with oocytes from large follicles contained significantly more 17ß‐oestradiol (E2) than the medium with oocytes from small follicles (5.55 vs 3.45 ng/ml, respectively; p < 0.05) and at 46 h, the medium with oocytes from small follicles contained significantly more progesterone (P4) than the medium with oocytes from large follicles (276.7 vs 108.2 ng/ml, respectively, p < 0.05). Porcine oocytes from large follicles have higher nuclear and cytoplasmic maturation capacities, but the differences did not appear to be cAMP‐mediated. Our findings also suggest that COCs from small follicles undergo more intensive luteinization than COCs from large follicles. The results show that oocytes from follicles with a diameter greater than 4.0 mm are more suitable for in vitro studies.  相似文献   

4.
In the present study, we aimed to determine the applicability of a paper container for the vitrification of in vitro matured (IVM) bovine oocytes. In experiment 1, IVM oocytes were exposed to vitrification solution (20% dimethylsulfoxide (DMSO), 20% ethylene glycol (EG), and 5 mol/L sucrose), using a two‐step method, for 30 s; loaded onto either a paper container or Cryotop; and stored in liquid nitrogen. No significant difference (< 0.05) in the survival and blastocyst formation rates after in vitro vitrification was observed between the paper container and Cryotop. In experiment 2, IVM oocytes were exposed to either a two‐ or three‐step vitrification solution. The three‐step vitrification solution was not significantly different from the two‐step solution in terms of oocyte survival, cleavage and blastocyst rates. In experiment 3, in vitro produced blastocysts were graded according to the manual of the International Embryo Transfer Society (grades 1 and 2) and vitrified using the two‐ and three‐step methods. For grade 2 blastocysts, the three‐step method showed significantly higher (P < 0.05) survival and hatched blastocyst rates than the two‐step method, whereas for grade 1 blastocysts, no significant difference was observed. In conclusion, the paper device and three‐step technique are suitable for oocytes and embryo vitrification.  相似文献   

5.
We tested the effects of resveratrol both as a pre‐treatment and as a recovery treatment after warming during in vitro maturation (IVM) on the viability and developmental competence of porcine oocytes vitrified at the germinal vesicle stage. Pre‐treatment before vitrification of oocytes for 3 hr with 2 μM resveratrol did not affect survival, oocyte maturation and embryo developmental competence to the blastocyst stage after parthenogenetic activation. However, supplementation of the medium with resveratrol during subsequent IVM after vitrification and warming significantly improved the ability of surviving oocytes to develop to the blastocyst stage, and this effect was observed only on vitrified, but not on non‐vitrified oocytes. The intracellular levels of glutathione and hydrogen peroxide in oocytes were not affected by vitrification and resveratrol treatment. Also, there was no significant difference in the occurrence of apoptosis measured by annexin V binding between vitrified and non‐vitrified oocytes, regardless of the resveratrol treatment. In conclusion, resveratrol did not prevent the cellular damages in immature porcine oocytes during vitrification; however, when added to the IVM medium, it specifically improved the developmental competence of vitrified oocytes. Further research will be necessary to clarify the mechanisms of action of resveratrol on the recovery of vitrified oocytes from vitrification‐related damages.  相似文献   

6.
The objective of this study was to examine the effects of canthaxanthin (Cx) treatment during in vitro maturation (IVM) of porcine oocytes on embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), on intracellular glutathione (GSH) and reactive oxygen species (ROS) levels in mature oocytes, and on gene expression in both PA‐ and SCNT‐derived blastocysts. To determine the optimal effective concentration of Cx, porcine oocytes were cultured in IVM medium supplemented with various concentrations (0, 20, 40 and 80 μM) of Cx for 22 hr. Compared to other groups, supplementation with 40 μM Cx significantly improved blastocyst formation rates after PA (< .05), but no significant differences were observed among groups in total blastocyst cell numbers. Subsequently, oocytes were cultured in IVM medium supplemented with or without 40 μM Cx. Oocytes treated with 40 μM Cx showed significantly increased cleavage and blastocyst formation rates after SCNT compared to the control group (< .05). Moreover, significantly increased intracellular GSH and reduced ROS levels were observed in the Cx‐treated group (< .05). In addition, both PA‐ and SCNT‐derived blastocysts from the 40 μM Cx‐treated group showed significantly increased mRNA expression of Bcl2 and Oct4 and decreased Caspase3 expression level (< .05), when compared with the control group. PA‐derived blastocysts from the 40 μM Cx‐treated group also exhibited significantly decreased expression of Bax (< .05). Our results demonstrated that treatment with 40 μM Cx during IVM improves the developmental competence of PA and SCNT embryos. Improvement of embryo development by Cx is most likely due to increased intracellular GSH synthesis, which reduces ROS levels in oocytes, and it may also positively regulate apoptosis‐ and development‐related genes.  相似文献   

7.
The quality of porcine blastocysts produced in vitro is poor in comparison with those that develop in vivo. We examined the quality of in vitro‐matured and fertilized (IVM/IVF) oocytes, their abilities to develop to blastocysts under in vivo and in vitro conditions, and the potential of the embryos to develop to term after transfer. IVM/IVF oocytes were either transferred and the embryos recovered on Days 5 and 6 (100% and 87.5%, respectively) (‘ET‐vivo’ embryos), or cultured in vitro for 5 or 6 days (‘IVC’ embryos). The proportion of blastocysts differed significantly between the two groups on Day 5 (20.6% and 8.0%, respectively), but not on Day 6 (23.8% and 21.2%, respectively). The mean number of cells in ET‐vivo blastocysts on Days 5 or 6 was significantly higher (72.8 and 78.7, respectively) than that in IVC blastocysts (22.1 and 39.7, respectively). When IVM/IVF oocytes and IVC blastocysts on Day 6 were transferred, all (three and three, respectively) developed to piglets (16 and 16, respectively), without any difference in the rates of development to term (2.1% and 2.6%, respectively). These data suggest that, although blastocyst production differs between the two culture conditions, IVM/IVF oocytes possess the same ability to develop to term.  相似文献   

8.
Spontaneous nuclear maturation of mammalian oocytes can occur when physically removed from the ovarian follicle during in vitro oocyte maturation (IVM), largely because of a decrease in cyclic adenosine monophosphate (cAMP) concentration. Modulation of oocyte cAMP during IVM by using phosphodiesterase inhibitors has been shown to maintain elevated oocyte cAMP concentrations and control meiotic resumption of bovine and ovine oocytes. This study determined the effect of inclusion of isobutyl-1-methylxanthine (IBMX) during collection and the first 12 hours of incubation of equine oocytes on cAMP concentration and glucose metabolism of cumulus–oocyte complexes (COCs). Abattoir-derived COCs were collected in aspiration medium with (Asp-IBMX) or without (Asp) IBMX. Cumulus–oocyte complexes were then incubated for 12 hours in IVM medium with (Mat-IBMX) or without (Mat) IBMX, followed by additional 24 hours in Mat medium. The cAMP concentration, glucose consumption, lactate production, and metaphase II rates of the COCs were assessed. Cumulus–oocyte complexes aspirated into Asp-IBMX (62.2 ± 2.6 fmol per COC) medium had higher cAMP concentration than Asp (31.8 ± 2.8 fmol per COC) control group (P < .05). Likewise, at 12 hours of IVM, Mat-IBMX group (33.2 ± 2.1 fmol per COC) had higher cAMP concentration than the Mat group (7.68 ± 0.5 fmol per COC; P < .05). Glucose consumption and lactate production were lower during the first 12 hours of incubation in COCs cultured in Mat-IBMX (P < .05). Isobutyl-1-methylxanthine prevented the rapid drop in cAMP concentration and altered metabolism of glucose by the COC. Preventing the sudden drop in cAMP prevents the premature nuclear maturation of in vitro–matured oocytes causing poor developmental competence.  相似文献   

9.
Theca cells (TCs) play a key role in follicular growth and atresia. TCs synthesize androgens that act as substrate for granulosa cells (GCs) aromatization to estrogens needed for oocyte maturation. However, the effects of TCs in the form of conditioned medium on in vitro maturation (IVM) and developmental competence of buffalo oocytes remain unclear. In the present study, we examined the impacts of TC-conditioned medium (TCCM) on maturation efficiency and embryo development of buffalo oocytes after parthenogenic activation (PA). Our results showed that TCCM that was collected on day 2 and added to IVM medium at a 20% proportional level (2 days & 20%) exerted no significant effect on IVM rate (43.06% vs. 44.71%), but significantly (p  < .05) enhanced embryo development (oocyte cleavage, 80.93% vs. 69.66%; blastocyst formation, 39.85% vs. 32.84%) of buffalo oocytes after PA compared with the control group. However, monolayer TC significantly (p < .05) promoted both maturation efficiency (48.84% vs. 44.53%) and embryo development (oocyte cleavage, 80.39% vs. 69.32%; blastocyst formation, 35.38% vs. 29.25%) of buffalo oocytes after PA compared to that in the control group. Furthermore, TCs secreted some testosterone into the conditioned medium, which significantly (p < .05) promoted the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1 and 17β-HSD) in buffalo cumulus–oocyte complexes (COCs). Our study indicated that TCCM (2 days & 20%) did not significantly affect IVM efficiency, but enhanced embryo developmental competence of oocytes after PA principally by stimulating the secretion of testosterone and facilitating estradiol synthesis of buffalo COCs.  相似文献   

10.
Melatonin has been reported to improve the in vitro development of embryos in some species. This study was conducted to investigate the effect of melatonin supplementation during in vitro maturation (IVM) and development culture on the development and quality of porcine embryos. In the first experiment, when the in vitro fertilized embryos were cultured with different concentrations of melatonin (0, 10, 25 and 50 ng/ml) for 8 days, the blastocyst formation rate of embryos cultured with 25 ng/ml melatonin (10.7%) was significantly increased (p < 0.05) compared to the control embryos cultured without melatonin (4.2%). The proportion of DNA‐fragmented nuclei in blastocysts derived from embryos cultured with 50 ng/ml melatonin was significantly lower (p < 0.05) than that of embryos cultured without melatonin (2.1% vs 7.2%). In the second experiment, when oocytes were cultured in the maturation medium supplemented with different concentrations of melatonin (0, 10, 25 and 50 ng/ml), fertilized and then cultured with 25 ng/ml melatonin for 8 days, there were no significant differences in the rates of cleavage and blastocyst formation among the groups. However, the proportions (2.7–5.4%) of DNA‐fragmented nuclei in blastocysts derived from oocytes matured with melatonin were significantly decreased (p < 0.05) compared to those (8.9%) from oocytes matured without melatonin, irrespective of the concentration of melatonin. Our results suggest that supplementation of the culture media with melatonin (25 ng/ml) during IVM and development has beneficial effects on the developmental competence and quality of porcine embryos.  相似文献   

11.
As a natural plant‐derived antitoxin, resveratrol possesses several pharmacological activities. This study aimed to evaluate the effects of resveratrol addition on nuclear maturation, oocyte quality during in vitro maturation (IVM) of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer (SCNT). Our experiments showed that the treatment of porcine oocytes with 5 µM resveratrol during IVM resulted in the highest rate of the first polar body extrusion. Treatment of oocytes with resveratrol had no influence on cytoskeletal dynamics, whereas it significantly increased glucose uptake ability compared to the control oocytes. Oocytes matured with 5 μM resveratrol displayed significantly lower intracellular reactive oxygen species (ROS) levels and higher relative mRNA expression levels of the genes encoding such antioxidant enzymes as catalase (CAT) and superoxide dismutase 1 (SOD1). In addition, resveratrol also prevented onset and progression of programmed cell death in porcine oocytes, which was confirmed by significant upregulation of the anti‐apoptotic B‐cell lymphoma 2 (BCL‐2) gene and significant downregulation of the pro‐apoptotic BCL2‐associated X (BAX) gene. Furthermore, the blastocyst rates and the blastocyst cell numbers in cloned embryos derived from the oocytes that had matured in the presence of 5 μM resveratrol were significantly increased. In conclusion, supplementation of IVM medium with 5 μM resveratrol improves the quality of porcine oocytes by protecting them from oxidative damage and apoptosis, which leads to the production of meiotically matured oocytes exhibiting enhanced developmental potential following SCNT.  相似文献   

12.
Cilostazol (CLZ) is a cyclic adenosine monophosphate (cAMP) modulator that influences the steady state of the meiotic stage. This study was conducted to determine the effects of CLZ treatment during in vitro maturation (IVM) on developmental competence of pig oocytes. Immature oocytes were exposed to 0 (control), 0.5, 2 and 4 μm CLZ during the first 22 h of IVM. Nuclear maturation, intraoocyte glutathione content and embryo cleavage after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) were not influenced by CLZ at any concentrations. However, 4 μm CLZ significantly (p < 0.05) improved blastocyst formation after PA (52.1% vs 38.7–46.0%) and SCNT relative to other concentrations (40.8% vs 25.0–30.7%). The mean cell numbers of SCNT blastocysts were significantly increased by 4 μm CLZ compared to the control (42.6 cells vs 35.3 cells/blastocyst). CLZ treatment significantly increased the intraoocyte cAMP level and effectively arrested oocytes at the germinal vesicle (GV) and GV break down stages compared to the control (74.5% vs 45.4%). Our results demonstrated that improved developmental competence of PA and SCNT pig embryos occurred via better synchronization of nuclear and cytoplasmic maturation induced by increased cAMP and delayed meiotic resumption after CLZ treatment.  相似文献   

13.
14.
Kaempferol (KAE) is a natural flavonoid present in different plant species and exhibits anti‐inflammatory, antioxidant, and anticancer therapeutic properties. In the present study, we investigated the influence and underlying mechanisms of KAE supplementation on porcine oocytes during in vitro aging. The results show that KAE treatment can alleviate the aging‐related reduction of developmental competence. We observed that the blastocyst production rate in aged oocytes treated with 0.1 μM KAE was significantly higher than in untreated aging oocytes (36.78 ± 0.86% vs. 27.55 ± 2.60%, respectively, p < .05). The KAE‐treated aging oocytes had significantly reduced levels of reactive oxygen species (p < .05). Furthermore, the mRNA levels of the embryonic pluripotency‐related genes Oct4, NANOG, and ITGA5 were significantly increased in blastocysts derived from KAE‐treated oocytes (p < .05). During excessive oocyte culture, KAE treatment maintained the mitochondrial membrane potential and reduced apoptosis; however, this was not observed in untreated aging oocytes. In conclusion, our results suggest that KAE treatment can alleviate the aging of porcine oocytes by reducing oxidative stress and improving mitochondrial function.  相似文献   

15.
Bone morphogenetic protein‐4 (BMP‐4) inhibits luteinization of granulosa cells during in vitro growth (IVG) culture of bovine oocytes; however, oocytes derived from a 12 day IVG were less competent for development than in vivo‐grown oocytes. We herein investigated whether an extended IVG culture with BMP‐4 improves oocyte growth and development to blastocysts after in vitro fertilization. Oocyte‐granulosa cell complexes (OGCs) were cultured for 14 or 16 days with BMP‐4 (10 ng/mL), while a 12 day culture with BMP‐4 served as the in vitro control. OGC viability was maintained for the 16 day culture with BMP‐4 (83.2%), but was significantly lower without BMP‐4 (58.9%) than the control (83.0%). Prolong‐cultured oocytes at 16 days had statistically greater diameter (114.6 μm) than the control (111.7 μm). IVG oocytes with BMP‐4 for the 16 day culture had a similar nuclear maturation rate to the control (approximately 67%); however, blastocyst rates in BMP‐4 treated oocytes of 14 (1.8%) and 16 day (0%) IVG were statistically lower than that of 12 day IVG (9.0%). In conclusion, BMP‐4 maintained OGC viability and promoted oocyte growth in a prolonged culture, but impaired the developmental competence of oocytes. Prolonged culture may not be an appropriate strategy for enhancing the developmental competence of IVG oocytes.  相似文献   

16.
试验旨在研究不同种类、不同浓度的糖对牦牛卵母细胞体外成熟和发育能力的影响,进一步探索和优化牦牛卵母细胞培养体系,提高卵母细胞体外成熟和胚胎生产效率。在牦牛卵母细胞成熟液中添加不同浓度(0、5和10 mmol/L)的葡萄糖或蔗糖,培养24 h或预培养2 h后移入无糖培养基中继续培养22 h,统计卵母细胞体外成熟率及体外受精(IVF)后的胚胎卵裂率和囊胚率。结果显示,与对照组(0 mmol/L)相比,5和10 mmol/L葡萄糖组牦牛卵母细胞核成熟率和体外受精胚胎卵裂率均显著提高(P<0.05),10 mmol/L葡萄糖组的囊胚率最高,且与对照组相比差异显著(P<0.05)。添加10 mmol/L蔗糖可以显著提高牦牛卵母细胞核成熟率(P<0.05),但胚胎囊胚率与对照组相比差异不显著(P>0.05)。此外,用10 mmol/L葡萄糖预处理牦牛卵母细胞后其核成熟率、胚胎卵裂率和囊胚率最高,且均显著高于对照组(P<0.05)。由此可见,糖对牦牛卵母细胞体外成熟和发育有一定的影响,在成熟过程中添加适当浓度的糖能提高卵母细胞成熟率及体外受精胚胎发育能力。  相似文献   

17.
18.
The objectives of present study were to evaluate the effect of casein kinase 1 (CK1) inhibition D4476 on in vitro maturation (IVM) and developmental competence of bovine oocytes. The cumulus oocyte complexes (COCs) were cultured in maturation medium with D4476 (0, 2, 5, 10, 20 μM) for 24 hr. After IVM and in vitro fertilization, through expansion average scores of cumulus cells (CCs), oocyte maturation efficiency, cleavage rate and blastocyst rate of zygote, we found 5 μM D4476 could increase the development potential of oocytes. After the COCs were treated with 5 μM D4476, the results of quantitative real‐time PCR analysis, Lichen red staining and PI staining showed that under without affecting germinal vesicle breakdown and nuclear morphology, D4476 could significantly decrease CK1 and upregulate TCF‐4 in oocytes. Furthermore, without influencing the level of Bad and CTSB, D4476 could significantly increase the expression of β‐catenin, TCF‐4, Cx43, MAPK, PTGS‐2, PTX‐3, TGS‐6, Bax and Bcl‐2 in CCs. Western blot analysis revealed that the addition of 5 μM D4476 during the maturation of COCs resulted in a lower level of Cx43 protein at 12 hr and a higher expression of Cx43 protein at 24 hr compared to the group without D4476. These results indicate that adding optimum D4476 (5 μM) to maturation medium is beneficial to maturity efficiency and development competence of bovine oocytes.  相似文献   

19.
The aim of the present study was to determine the vitality and developmental competence of equine oocytes after in vitro maturation (IVM) and vitrified by Rapid-i method. In experiment 1, oocytes after IVM were vitrified using media: EquiPro VitKit (group 1) or medium containing 18% Ficoll, 40% ethylene glycol, and 0.3 M sucrose (group 2). For evaluation of toxicity effect, oocytes were exposed to media without a plug to liquid nitrogen. To evaluate viability, oocytes were stained with fluorescein diacetate and ethidium bromide. In experiment 2, oocytes after IVM and vitrification were activated by 7.5 μM ionomicin in TCM 199 (5 minutes) combined with 2 mM 6-DMAP in TCM 199 with 10% fetal bovine serum (4.5 hours). Survival rate was: 63% in group 1 (n = 54), 55% in group 2 (n = 69), and 73.2% (n = 56) in the control group. After parthenogenetic activation, 10.2% (n = 49) of 2–4 blastomeres were observed. This percentage was lower than in the nonvitrified group: 38.5% (n = 53).  相似文献   

20.
We investigated whether supplementing the medium used to transport bovine oocytes with different macromolecules [foetal calf serum (FCS) or bovine serum albumin (BSA)] or a mixture of antioxidants (cysteine, cysteamine and catalase) affects their nuclear and cytoplasmic maturation and thereby affects their subsequent embryonic development and cryotolerance. Oocytes were transported for 6 hr in a portable incubator and then subjected to standard in vitro maturation (IVM) for 18 hr. The oocytes in the control groups were cultured (standard IVM) for 24 hr in medium containing 10% FCS (Control FCS) or 10% FCS and the antioxidant mixture (Control FCS+Antiox). The intracellular concentrations of reactive oxygen species (ROS) at the end of IVM period were lower in the oocytes subjected to simulated transport in the presence of a macromolecular supplement or the antioxidant mixture than that of the control group (FCS: 0.62 and BSA: 0.66 vs. Control FCS: 1.00, p < .05; and Transp: 0.58 and Transp Antiox: 0.70 vs. Control FCS: 1.00, p < .05). After IVM, the mitochondrial membrane potentials of the transported oocytes were lower than those of the non‐transported oocytes (FCS: 0.41 and BSA: 0.57 vs. Control FCS: 1.00, p < .05; and Transp: 0.48 and Transp Antiox: 0.51 vs. Control FCS: 1.00 and Control Antiox: 0.84, p < .05). The blastocyst formation rates (36.9% average) and the re‐expansion rates of vitrified‐warmed blastocysts (53%, average) were unaffected (p > .05) by the treatments. In conclusion, supplementing the medium in which bovine oocytes are transported with antioxidants or different macromolecules did not affect their in vitro production of embryos or their cryotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号