首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This is the first report of Alternaria leaf spot disease on coriander (Coriandrum sativum L.) in South Africa. Using the agar plate method, Alternaria alternata was isolated from coriander seed lots together with four other fungal genera, which included Aspergillus, Fusarium, Penicillium and Rhizopus. Standard seed germination tests of coriander seed lots infected with seed-borne mycoflora showed a positive correlation with the number of diseased seedlings (r?=?0.239, p?<?0.01). Pathogenicity tests demonstrated that this seed-borne A. alternata was pathogenic on coriander and symptoms on leaves first appeared as small, dark brown to black, circular lesions (<5 mm diam.) that enlarged and coalesced to form dark brown blotches as time progressed. Leaf spot disease was most severe (64%) on wounded leaves inoculated with A. alternata. Re-isolation of A. alternata from diseased coriander plants satisfied the Koch’s postulates, thus confirming it as the causal agent of Alternaria leaf spot disease. Parsimony analysis based on rpb2 (GenBank Accession No. KT895947), gapdh (KT895949) and tef-1α (KT895945) sequences confirmed identity of the Alternaria isolate, which grouped within the A. alternata clade. Alternaria alternata was shown to be transmitted from infected coriander seed to the developing plants.  相似文献   

2.
Early blight and brown spot, caused by respectively Alternaria solani and Alternaria alternata, can lead to severe yield losses in potato-growing areas. To date, fungicide application is the most effective measure to control the disease. However, in recent years, a reduced sensitivity towards several active ingredients has been reported. To shed light on this issue, Alternaria isolates were collected from different potato fields in Belgium during two growing seasons. Subsequently, the sensitivity of these isolates was assessed using four widely used fungicides with different modes of action. Demethylation inhibitors, quinone outside inhibitors, a dithiocarbamate and a carboxylic acid amide were included in this study. Although all fungicides reduced spore germination and vegetative growth of Alternaria species to some extent, the interspecies sensitivity was very variable. In general, A. solani was more suppressed by the fungicides compared to A. alternata. The effectiveness of the dithiocarbamate mancozeb was high, whereas the quinone outside inhibitor azoxystrobin showed a limited activity, especially towards A. alternata. Therefore, a subset of the A. alternata and A. solani isolates was tested for the presence of, respectively, the G143A substitution and the F129L substitution in the cytochrome b. The frequency of A. alternata isolates bearing the resistant G143A allele (approximately 65%) was comparable in both sampling years, although sensitivity of isolates decreased during the growing season. This finding points to a shift of the population towards resistant isolates. Both the European genotype I and American genotype II were present in the A. solani population, with genotype I being the most prevalent. None of the genotype I isolates carried the F129L substitution, whereas in 83% of the genotype II isolates this substitution was present. Our results demonstrate for the first time that the Belgian Alternaria population on potato comprises a considerable broad spectrum of isolates with different sensitivity to fungicides.  相似文献   

3.
Tomato fruits are susceptible to infection by Alternaria species. In addition, Alternaria species may contaminate the fruits with mycotoxins. There is thus interest in control systems to minimise pathogenicity and control toxin production. The objectives of this study were to examine the effect of plant extracts of Eucalyptus globulus and Calendula officinalis on the growth of strains of Alternaria alternata and A. arborescens, on pathogenicity of tomato fruits and mycotoxin production. The growth bioassays showed that the ethanolic and chloroformic fractions of E. globulus were the most effective in reducing growth of A. alternata (66–74 %) and A. arborescens (86–88 %), respectively at 2500 μg/g. The effects of plant extracts on mycotoxin biosynthesis were variable and strain dependent. The most effective fractions in decreasing mycotoxin accumulation were the ethanolic and chloroformic extracts of E. globulus, which reduced tenuazonic acid by 89 %, alternariol by 75–94 % and almost complete inhibition of alternariol monomethyl ether. All the tested fractions reduced percentage of infected tomato fruits when compared to the controls. The ethanolic and chloroformic fractions of E. globulus completely inhibited growth of A. alternata and A. arborescens on unwounded fruits and reduced the aggressiveness on wounded fruits of strains of both species significantly.  相似文献   

4.
Sunflower (Helianthus annuus L.) is an important oilseed crop in South Africa, and is grown in rotation with maize in some parts of North West, Limpopo, Free State, Mpumalanga and Gauteng provinces. Alternaria leaf blight is currently one of the major potential disease threats of sunflower and is capable of causing yield losses in all production regions. Alternaria helianthi was reported as the main cause of Alternaria leaf blight of sunflower in South Africa; however small-spored Alternaria species have been consistently isolated from leaf blight symptoms during recent surveys. The aim of this study was to use morphological and molecular techniques to identify the causal agent(s) of Alternaria blight isolated from South African sunflower production areas. Alternaria helianthi was not recovered from any of the sunflower lesions or seeds, with only Alternaria alternata retrieved from the symptomatic tissue. Molecular identification based on a combined phylogenetic dataset using the partial internal transcribed spacer regions, RNA polymerase second largest subunit, glyceraldehyde-3-phosphate dehydrogenase, translation elongation factor and Alternaria allergen gene regions was done to support the morphological identification based on the three-dimensional sporulation patterns of Alternaria. Furthermore, this study aimed at evaluating the pathogenicity of the recovered Alternaria isolates and their potential as causal agents of Alternaria leaf blight of sunflower. Pathogenicity tests showed that all the Alternaria alternata isolates tested were capable of causing Alternaria leaf blight of sunflower as seen in the field. This is the first report of A. alternata causing leaf blight of sunflower in South Africa.  相似文献   

5.
Alternaria genus includes many plant pathogens on numerous hosts, causing leaf spots, rots and blights. Alternaria blight has been observed as one of the important fungal diseases of pistachio (Pistacia vera L.) as well as its wild relatives (P. terebinthus, P. lentiscus, P. khinjuk, P. atlantica, P. mutica) in Turkey. Alternaria species were sampled from Pistacia spp. hosts from different geographic regions in Turkey during field trips in late spring to early fall of 2013. Alternaria blight symptoms were observed mainly on fruits and rarely on leaves. Four hundred and twenty two of the isolates were morphologically defined as A. alternata, A. tenuissima, A. arborescens and also intermediate morpho-species between A. alternata/A. arborescens. Pathogenicity of the isolates was confirmed with host inoculations on detached fruits. Mating types of 270 isolates of Alternaria spp. from the collection were identified using a PCR-based mating type assay that amplifies either a MAT1-1 or a MAT1-2 fragment from the mating locus. Although a strongly clonal population structure was expected due to the putative asexual reproduction of these fungi, both idiomorphs were detected at equal frequencies at several different spatial scales. The distribution of mating types within each geographic region, within host species as well as in overall collection was not significantly different from 1:1. Amplified fragments of partial idiomorph sequences were obtained for representative isolates. Parsimony trees were depicted based on sequence data of mating type genes for these representative isolates as well as some other Alternaria species obtained by Genebank. Several point mutations presented a few clusters which are supported by high bootsrapped values. The Alternaria blight disease agents both from cultivated and wild hosts were pathogenic on pistachio which may cause difficulties to control the disease because of extensity of pathogen sources. Besides, equal mating type distribution of the pathogen at both geographic and host species levels suggests a potential for sexual reproduction of Alternaria spp. in Turkey.  相似文献   

6.
Drimia maritima (squill) is a historically important medicinal plant. During the spring of 2016, small, yellow leaf spots, which became brown and finally necrotic, were observed on squill plants in Kohgiluyeh and Boyer-Ahmad Provinces in Iran. A fungus was consistently isolated from infected leaves and identified as Alternaria alternata based on morphological and phylogenetic analyses. Pathogenicity tests confirmed A. alternata to be the causal agent of the newly observed leaf spot disease. This is the first report of leaf spot on D. maritima caused by A. alternata in the world.  相似文献   

7.
Alternaria species are common pathogens of fruit and vegetables able to produce secondary metabolites potentially affecting human health. Twenty-nine isolates obtained from cabbage, cauliflower, wild and cultivated rocket were characterized and identified based on sporulation pattern and virulence; the phylogenetic analysis was based on the β-tubulin gene. Isolates were identified as A. alternata, A. tenuissima, A. arborescens, A. brassicicola and A. japonica. Pathogenicity was evaluated on plants under greenhouse conditions. Two isolates showed low level of virulence on cultivated rocket while the other isolates showed medium or high level of virulence. Isolates were also characterized for their mycotoxin production on a modified Czapek-Dox medium. Production of the five Alternaria toxins, tenuazonic acid, alternariol, alternariol monomethyl ether, altenuene and tentoxin were evaluated. Under these conditions, about 80% of the isolates showed the ability to produce at least one mycotoxin.  相似文献   

8.
Fusarium is one of the most destructive fungal genera whose members cause many diseases on plants, animals, and humans. Moreover, many Fusarium species secrete mycotoxins (e.g. trichothecenes and fumonisins) that are toxic to humans and animals. Fusarium isolates from date palm trees showing disease symptoms, e.g. chlorosis, necrosis and whitening, were collected from seven regions across Saudi Arabia. After single-sporing, the fungal strains were morphologically characterized. To confirm the identity of morphologically characterized Fusarium strains, three nuclear loci, two partial genes of translation elongation factor 1 α (tef1α) and β-tubulin (tub2), and the rDNA-ITS region, were amplified and sequenced. Of the 70 Fusarium strains, 70 % were identified as F. proliferatum that were recovered from six regions across Saudi Arabia. Fusarium solani (13 %), as well as one strain each of the following species: F. brachygibbosum, F. oxysporum, and F. verticillioides were also recovered. In addition, five Fusarium-like strains were recognized as Sarocladium kiliense by DNA-based data. The preliminary in vitro pathogenicity results showed that F. proliferatum had the highest colonization abilities on date palm leaflets, followed by F. solani. Although F. oxysporum f. sp. albedinis is the most serious date palm pathogen, F. proliferatum and F. solani are becoming serious pathogens and efforts should be made to restrict and control them. In addition, the potential toxin risks of strains belonging to F. proliferatum should be evaluated.  相似文献   

9.
An extensive survey was carried out to collect Fusarium species colonizing the lower stems (crowns) of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) from different wheat growing regions of Turkey in summer 2013. Samples were collected from 200 fields representing the major wheat cultivation areas in Turkey, and fungi were isolated from symptomatic crowns. The isolates were identified to species level by sequencing the translation elongation factor 1-alpha (TEF1-α) gene region using primers ef1 and ef2. A total of 339 isolates representing 17 Fusarium species were isolated. The isolates were identified as F. culmorum, F. pseudograminearum, F. graminearum, F. equiseti, F. acuminatum, F. brachygibbosum, F. hostae, F. redolens, F. avenaceum, F. oxysporum, F. torulosum, F. proliferatum, F. flocciferum, F. solani, F. incarnatum, F. tricinctum and F. reticulatum. Fusarium equiseti was the most commonly isolated species, accounting for 36% of the total Fusarium species isolated. Among the damaging species, F. culmorum was the predominant species being isolated from 13.6% of sites surveyed while F. pseudograminearum and F. graminearum were isolated only from 1% and 0.5% of surveyed sites, respectively. Six out of the 17 Fusarium species tested for pathogenicity caused crown rot with different levels of severity. Fusarium culmorum, F. pseudograminearum and F. graminearum caused severe crown rot disease on durum wheat. Fusarium avenaceum and F. hostae were weakly to moderately virulent. Fusarium redolens was weakly virulent. However, F. oxysporum, F. equiseti, F. solani, F. incarnatum, F. reticulatum, F. flocciferum, F. tricinctum, F. brachygibbosum, F. torulosum, F. acuminatum and F. proliferatum were non-pathogenic. The result of this study reveal the existence of a wide range of Fusarium species associated with crown rot of wheat in Turkey.  相似文献   

10.
Bread wheat (BW) and durum wheat (DW) are both strongly affected by Septoria tritici blotch caused by the hemibiotrophic fungus Zymoseptoria tritici. However, only the BW-Z. tritici pathosystem has been well studied so far. Here, we compared compatible interactions between Z. tritici and both BW and DW species at the cytological, biochemical and molecular levels. Fungal infection process investigations showed close spore germination and leaf penetration features in both interactions, although differences in the patterns of these events were observed. During the necrotrophic phase, disease severity and sporulation levels were associated in both interactions with increases of the two cell-wall degrading enzyme activities endo-β-1,4-xylanase and endo-β-1,3-glucanase as well as protease. An analysis of plant defense responses during the first five days post inoculation revealed inductions of GLUC, Chi4, POX and PAL and a repression of LOX gene expressions in both wheat species, although differences in kinetics and levels of induction or repression were observed. In addition, peroxidase, catalase, glucanase, phenylalanine ammonia-lyase and lipoxygenase activities were induced in both wheat species, while only weak accumulations of hydrogen peroxide and polyphenols were detected at the fungal penetration sites. Our study revealed overall a similarity in Z. tritici infection process and triggered wheat defense pathways on both pathosystems.  相似文献   

11.
Fungal species comprising the Fusarium graminearum species complex (FGSC) may cause disease in maize and wheat. Host preference within the FGSC has been suggested, in particular F. boothii towards maize ears. Therefore, the disease development and mycotoxin production of five FGSC species in maize and wheat grain was determined. Eighteen isolates representing F. acaciae-mearnsii, F. boothii, F. cortaderiae, F. graminearum and F. meridionale were used. Each isolate was inoculated on maize ears and wheat heads to determine host preferences. Disease severity and disease incidence was measured for maize and wheat, respectively. Fungal colonisation and mycotoxins, deoxynivalenol (DON), nivalenol and zearalenone, was also quantified. Isolates differed significantly (P < 0.05) in their ability to produce symptoms on maize ears, however, no significant differences between FGSC species were determined. Similarly, significant differences (P < 0.05) between isolates but not between FGSC species in disease incidence on wheat were determined. The isolates also differed significantly (P < 0.05) in their ability to colonise maize and wheat grain. No significant differences in fungal colonisation, among the five FGSC species, were determined in field grown maize. However, under greenhouse conditions, F. boothii was the most successful coloniser of maize grain (P < 0.05). In wheat, F. graminearum colonised the grain more successfully and produced significantly more (P < 0.05) DON than the other species. Fusarium boothii isolates were the best colonisers and mycotoxin producers in maize, and F. graminearum isolates in wheat. The selective advantage of F. boothii to cause disease on maize was supported in this study.  相似文献   

12.
The role of the self-sown shrubsDittrichia viscosa (L.) W. Greuter andRubus ulmifolius Schott as reservoirs of aphid parasitoids was investigated. In the field studies conducted,D. viscosa grew adjacent to crops of durum wheat and barley andR. ulmifolius grew adjacent to cotton. The relative abundance of the parasitoids of(a) Capitophorus inulae (Passerini) onD. viscosa, (b) Rhopalosiphum padi (Linnaeus) on durum wheat and barley,(c) Aphis ruborum (Börner) onR. ulmifolius, and(d) Aphis gossypii Glover on cotton in various parts of Greece, was assessed during the years 1996–2000. In 2000, the fluctuation of parasitization of the above four aphid species was recorded and the action of the aphidophagous predators of the family Coccinellidae was studied. It was observed thatAphidius matricariae Haliday predominated onC. inulae andR. padi in all sampling cases. In contrast,Lysiphlebus fabarum (Marshall) was the dominant species parasitizingA. ruborum onR. ulmifolius andA. gossypii on cotton in Thessaly (central Greece) and Macedonia (northern Greece), whereasLysiphlebus confusus Tremblay et Eady andBinodoxys acalephae (Marshall) were the dominant parasitoid species in Thrace (northern Greece).Coccinella septempunctata Linnaeus was the most abundant coccinellid species on durum wheat, whereasAdonia variegata (Goeze) predominated on cotton. However, coccinellid individuals were scarce on bothD. viscosa andR. ulmifolius. The present study indicated that these two shrubs can be regarded as useful reservoirs of aphid parasitoids.  相似文献   

13.
The species of Salix herbacea L. and Salix lapponum L. are the rare relicts within the genus of Salix. With respect to their phylogeography, they are classified into the taxa of the Arctic-Alpine distribution. They can be found in the Arctic zone (Greenland, Scandinavia, Spitsbergen) as well as in such geographically separated areas as the mountains of lower latitudes like the Alps, the Sudetes or the Carpathians. Another species of willow occurring in the mountains of Europe, and more specifically on montane positions of the Balkan-Carpathian distribution is S. silesiaca. The aim of the study was to determine the severity of the diseases of the willows growing in selected locations in the Karkonosze Mountains. The research was conducted in the years 2014 and 2015 in the Kocio? ?omniczki [the ?omniczka Cirque] and the Wielki and Ma?y ?nie?ny Kocio?, [the Great and Small Snowy Cirques] at intervals of 4 weeks, from April to October. Field observations included the species of the genera Salix: S. herbacea, S. silesiaca and S. lapponum. Disease symptoms were identified with the percentage of infected plants at selected locations, as well as the percentage of infected leaves, recorded. In the course of the research, symptoms of rust caused by Melampsora epitea and M. alpina (S. herbacea and S. silesiaca), black spot blight caused by Rhytisma salicinum (S. silesiaca) and leaf spot, probably caused by a complex of fungal taxa (S. herbacea), were detected on the leaves of Salix spp. growing in post glacial cirques. During the study period, there were no disease symptoms on S. lapponum. A total of 13 species of fungi were isolated from the infected leaves of S. herbacea. In the first year, the highest share in the fungal assembly was taken by Penicillium notatum, followed by Alternaria alternata and an unidentified species of the genus Ceuthospora. In the second year of the research, Ceuthospora spp. and A. alternata predominated in the species assembly of fungi in the infected leaves of the herb willow.  相似文献   

14.
A disease caused by Alternaria alternata occurred on the leaves of European pear cultivar Le Lectier in Niigata Prefecture, Japan, and was named black spot of European pear. In conidial inoculation tests, the causal pathogen induced not only small black lesions on the leaves of European pear cultivar Le Lectier, but severe lesions on the leaves of apple cultivar Red Gold, which is susceptible to the A. alternata apple pathotype (previously called A. mali) causing Alternaria blotch of apple. Interestingly, the apple pathotype isolate showed the same pathogenicity as the European pear pathogen. HPLC analysis of the culture filtrates revealed that A. alternata causing black spot of European pear produced AM-toxin I, known as a host-specific toxin of the A. alternata apple pathotype. AM-toxin I induced veinal necrosis on leaves of Le Lectier and General Leclerc cultivars, both susceptible to the European pear pathogen, at 5?×?10?7 M and 10?6 M respectively, but did not affect leaves of resistant cultivars at 10?4 M. PCR analysis with primers that specifically amplify the AM-toxin synthetase gene detected the product of expected size in the pathogen. These results indicate that A. alternata causing black spot of European pear is identical to that causing Alternaria blotch of apple. This is the first report of European pear disease caused by the A. alternata apple pathotype. This study provides a multiplex PCR protocol, which could serve as a useful tool, for the epidemiological survey of these two diseases in European pear and apple orchards.  相似文献   

15.
Severe outbreaks of Alternaria leaf blotch and fruit spot were recently observed in cv. Pink Lady apples in northern Israel, especially on fruit. Such severe outbreaks have not been reported from other countries. Symptoms involved cracks and rot around the calyx and external rot of the fruit body. Up to 80 % of the fruit in some orchards were affected by the disease. Microscopic examinations, fulfillment of Koch’s postulates and molecular (genetic) analyses confirmed the causal agent as Alternaria alternata f. sp. mali. The incidence of Alternaria increased as the degree of calyx cracking increased, or if fruit were both cracked and rotted. Injecting spore suspensions into the fruit produced typical rot symptoms. Injection assays of detached fruit of eight apple cultivars showed that cvs. Pink Lady and Golden Delicious were susceptible whereas cv. Jonathan was resistant. Pink Lady and Golden Delicious produced more fruit rot as the inoculum concentration increased. Rot in all three cultivars was moderate close to the skin but more severe close to the seed locule. Aqueous extracts taken from Jonathan fruit peel inhibited germ tube elongation of A. alternata f. sp. mali in vitro. This is the first report on heavy infection of Pink Lady fruit in Israel caused by A. alternata f. sp. mali.  相似文献   

16.
Wheat leaf rust caused by Puccinia triticina (Pt) is one of the most severe fungal diseases threatening the global wheat production. The use of leaf rust resistance (Lr) genes in wheat breeding programs is the major solution to solve this issue. Wheat isogenic line carrying the Lr39/41 gene has shown a moderate to high resistance to most of the Pt pathotypes detected in China. In the present study, a typical hypersensitive response (HR) was observed using microscopy in leaves of the Lr39/41 isogenic line inoculated with the avirulent Pt pathotype THTT from 48 h-post inoculation. Two Lr39/41 resistance-associated suppression subtractive hybridization (SSH) libraries with a total of 6000 clones were established. Microarray hybridizations were performed on all obtained SSH clones using RNAs extracted from leaves of the Pt-inoculated and non-inoculated Lr39/41 isogenic lines, and leaves of the Pt-inoculated and non-inoculated Thatcher susceptible lines. Differentially expressed clones were analyzed by significance analysis of microarrays (SAM), followed by further sequencing. A total of 36 Lr39/41-resistance-related differentially expressed genes (DEGs) were identified, many of which had been previously reported to be involved in the plant defense response. The expression levels of eight selected DEGs during different stages of the Lr39/41-mediated resistance were further quantified by a qRT-PCR assay. Several pathogenesis-related (PR) and HR-related genes seem to be crucial for the Lr39/41-mediated resistance. In general, a brief profile of DEGs associated with the Lr39/41-mediated wheat resistance to Pt was drafted.  相似文献   

17.
Ethylene has been shown to promote spore germination and hyphal growth in the phytopathogenic fungus Alternaria alternata. However, little is known about the ethylene biosynthetic pathway in this fungus. In the present study, the ethylene biosynthetic pathway in A. alternata was investigated to explore ethylene-associated virulence of this fungus. The strain A0 of A. alternata did not produce ethylene on basal medium with different possible precursors or intermediates for ethylene biosynthesis (glutamate, aspartate, 2-oxoglutarate and 1-aminocyclopropano ?1-carboxylic acid). However, ethylene production was observed when methionine was added as a precursor to the medium and was further promoted by continuous light illumination. Furthermore, addition of 2-keto-4-methylthiobutyric acid (KMBA) promoted ethylene production in the absence of methionine, indicating that the KMBA pathway was mainly responsible for ethylene biosynthesis in this fungus. The strain A0 was inoculated into grape berries to examine the effect of ethylene production on its virulence (as assessed by lesion formation at the inoculation site). The results indicated that higher ethylene production caused larger lesion formation. Similar results were also obtained when isolates of A. alternata, obtained from infected grapes, were inoculated. Thus, the present study thus demonstrated that A. alternata produces ethylene via the KMBA pathway and utilizes it for enhanced virulence expression during infection.  相似文献   

18.
Fusarium Head Blight is a major disease of wheat and an important contributor to the reduced cultivation of wheat in South Africa, where the crop often is grown under irrigation. We collected Fusarium isolates from 860 Fusarium Head Blight-infected wheat heads in seven irrigated wheat-growing areas of South Africa. Six Fusarium species, i.e., F. chlamydosporum, F. crookwellense, F. culmorum, F. equiseti, F. graminearum and F. semitectum were recovered, three of which, i.e., F. chlamydosporum, F. equiseti and F. semitectum, were not previously associated with Fusarium Head Blight in South Africa. Fusarium graminearum occurred at high frequencies at all seven locations. Based on polymerase chain reaction (PCR) assays of diagnostic sequences, more isolates were predicted to produce deoxynivalenol than nivalenol. Fusarium graminearum (sensu lato) appears to be the primary causal agent of Fusarium Head Blight in irrigated wheat in South Africa, which may not be the case for wheat cultivated under rain-fed conditions. Rotations of irrigated wheat with other graminaceous crops and maize could increase fungal inoculum and disease pressure. The establishment of Fusarium Head Blight in the irrigated wheat region of the country means that resistant lines and alternative agronomic practices are needed to limit disease severity, yield losses and mycotoxin contamination.  相似文献   

19.
Fusarium head blight (FHB) is one of the most important fungal diseases affecting wheat worldwide and it is caused mainly by species within the Fusarium graminearum species complex (FGSC). This study evaluated the presence of FGSC in durum wheat from the main growing area in Argentina and analyzed the trichothecene genotype and chemotype of the strains isolated. Also, the genetic variability of the strains was assayed using ISSR markers. Molecular analysis revealed that among the strains isolated and identified morphologically as F. graminearum, there were 14 strains identified as F. cerealis. Also, it revealed that durum wheat grains were mostly contaminated by F. graminearum, being this the only species reported so far, within the FGSC, affecting durum wheat in Argentina. Analysis of molecular variance (AMOVA) indicated a high genetic variability within rather than between F. graminearum populations. All F. graminearum strains presented 15ADON genotype and were able to produce DON while all F. cerealis strains presented the NIV genotype and most of them were able to produce this toxin. The finding of F. cerealis in durum wheat grains indicates the need for investigating if this fungus is the responsible for the NIV contamination found in wheat in Argentina.  相似文献   

20.
We investigated incidences of Fusarium head blight (FHB) and concentrations of six mycotoxins (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, T-2 toxin, HT-2 toxin and zearalenone) in wheat from 2010 to 2013. Field trials were conducted at the Experimental Station of Cultivar Testing in Chrz?stowo, Poland (53o11’N, 17o35’E). We examined the effects of four agronomic factors, including pre-crop type (corn, sugar beets and wheat), date of sowing (late autumn: November 8–December 9 or spring: March 29–April 19), fungicidal application (untreated or treated with two applications) and cultivar (Monsun, Cytra), on FHB index (FHBi) and mycotoxin levels in order to minimize the risk of wheat grain contamination by mycotoxins via integrated pest management methods. The dominant Fusarium species observed on wheat heads were F. culmorum, F. avenaceum (Gibberella avenacea) and F. graminearum (Gibberella zeae), at 21.1%, 17.2% and 7.1%, respectively. A monthly rainfall sum of 113.9 mm and a relatively low air temperature (monthly average 15.5 °C) resulted in the highest FHBi in untreated wheat (25.1%). Agronomic factors crucial for the FHB incidence were the pre-crop, fungicidal treatments and cultivar selection. In wheat planted after wheat or corn, the FHBi was higher compared with a pre-crop of sugar beet. A double application of fungicides at BBCH 30–32 with prothioconazole and spiroxamine and at a BBCH 65 with fluoxastrobin and prothioconazole effectively reduced the FHBi and mycotoxin concentrations, respectively, in grain. The cultivar ‘Cytra’ had a greater FHBi (10.4%) than ‘Monsun’ (4.6%), and grain infestations by Fusarium species were also greater in ‘Cytra’, at 16.5%, than in ‘Monsun’, at 11.2%. Untreated cv. Cytra grown after corn in spring produced grains with the highest amounts of the mycotoxins, deoxynivalenol, 3-acetyldeoxynivalenol, zearalenone and HT-2 (605, 103, 17.5 and 5.53 μg/kg, respectively). Total mycotoxin levels in wheat were correlated with five determinants: duration of the period between the end of flowering and the beginning of kernel abscission, FHBi, F. culmorum isolation, G. zeae isolation and Fusarium ratio (FR) as a % of total mould isolations. Although, the mean concentration of mycotoxins in grain did not exceed the maximum permissible values for unprocessed wheat our study suggests necessity to monitor and mitigate FHB risk for susceptible cultivars, when wheat spring sowing follows corn or wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号