首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Oxidative modification of low-density lipoproteins (LDL) may play an important role in the development of atherosclerosis. alpha-Tocopherol functions as a major antioxidant in human LDL. The present study was to test whether green tea catechins (GTC) would protect or regenerate alpha-tocopherol in human LDL. The oxidation of LDL incubated in sodium phosphate buffer (pH 7.4, 10 mM) was initiated by addition of 1.0 mM of 2,2'-azobis(2-amidinopropane) dihydrochloride at 40 degrees C. It was found that alpha-tocopherol was completely depleted within 1 h. Under the same experimental conditions, the longjing GTC extracts demonstrated a dose-dependent protective activity to alpha-tocopherol in LDL at concentrations ranging from 2 to 20 microM. Four pure epicatechin derivatives showed varying protective activity against depletion of alpha-tocopherol in LDL with (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) being less effective than (-)-epicatechin (EC) and (-)-epicatechin gallate (ECG). The results showed that addition of longjing GTC extracts, EC, ECG, and EGCG at 5, 10, and 15 min to the incubation mixture demonstrated a gradual regeneration of alpha-tocopherol in human LDL.  相似文献   

2.
Green tea polyphenols, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG), all showed antioxidative effect in liposomes for lipid oxidation initiated in the lipid phase (antioxidant efficiency EC > EGCG > ECG > EGC) or in the aqueous phase (EC ? EGC > EGCG > ECG) as monitored by the formation of conjugated dienes. For initiation in the lipid phase, β-carotene, itself active as an antioxidant, showed antagonism with the polyphenols (EC > ECG > EGCG > EGC). The Trolox equivalent antioxidant capacity (TEAC EGC > EGCG > ECG > EC) correlates with the lowest phenol O-H bond dissociation enthalpy (BDE) as calculated by density functional theory (DFT). Surface-enhanced Raman spectroscopy (SERS) was used to assess the reducing power of the phenolic hydroxyls in corroboration with DFT calculations. For homogeneous (1:9 v/v methanol/chloroform) solution, the β-carotene radical cation reacted readily with each of the polyphenol monoanions (but not with the neutral polyphenols) with a rate approaching the diffusion limit for EC as studied by laser flash photolysis at 25 °C monitoring the radical cation at 950 nm. The rate constant did not correlate with polyphenol HOMO/LUMO energy gap (DFT calculations), and β-carotene was not regenerated by an electron transfer reaction (monitored at 500 nm). It is suggested that the β-carotene radical cation is rather reacting with the tea polyphenols through addition, as further evidenced by steady-state absorption spectroscopy and liquid chromatography-mass spectroscopy (LC-MS), in effect preventing regeneration of β-carotene as an active lipid phase antioxidant and leading to the observed antagonism.  相似文献   

3.
Kinetic study of the aroxyl radical-scavenging action of catechins (epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate (EGCG)) and related compounds (methyl gallate (MG), 4-methylcatechol (MC), and 5-methoxyresorcinol (MR)) has been performed. The second-order rate constant ( k s) for the reaction of these antioxidants with aroxyl radical has been measured in ethanol and aqueous Triton X-100 micellar solution (5.0 wt %). The k s values decreased in the order of EGCG > EGC > MC > ECG > EC > MG > MR in ethanol, indicating that the reactivity of the OH groups in catechins decreased in the order of pyrogallol B-ring > catechol B-ring > gallate G-ring > resorcinol A-ring. The structure-activity relationship in the free radical-scavenging reaction by catechins has been clarified by the detailed analyses of the pH dependence of k s values. From the results, the p K a values have been determined for catechins. The monoanion form at catechol B- and resorcinol A-rings and dianion form at pyrogallol B- and gallate G-rings show the highest activity for free radical scavenging. It was found that the free radical-scavenging activities of catechins are 3.2-13 times larger than that of vitamin C at pH 7.0.  相似文献   

4.
(-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), (-)-epigallocatechin gallate (EGCg), and Trolox inhibited the decreases of apolipoprotein B-100 (apoB) and alpha-tocopherol in a radical reaction of human plasma initiated by Cu(2+). The concentrations of EC, EGC, ECg, EGCg, and Trolox for 50% inhibition (IC50) of apoB fragmentation were 39.1, 42.2, 14.6, 21.3, and 36.2 microM, respectively. Similar IC50 values were observed for alpha-tocopherol consumption, indicating the close relationship between apoB fragmentation and alpha-tocopherol consumption. These results demonstrate that tea catechins serve as an effective antioxidant in plasma and that the gallate group has a strong antioxidative activity.  相似文献   

5.
This study was designed to investigate the effect of green tea catechins, especially (-)-epigallocatechin gallate (EGCG), on the apoptosis of 3T3-L1 preadipocytes. Preadipocyte apoptosis as indicated by formation of DNA fragments was induced by EGCG in dose-dependent manners. While EGCG was demonstrated to decrease Cdk2 expression and activity and increase caspase-3 activity, overexpression of Cdk2 and treatment with the caspase-3 inhibitor respectively prevented preadipocytes from induction of DNA fragmentation and caspase-3 activity by doses of 100-400 muM of EGCG. This suggests the Cdk2- and caspase-3-dependent apoptotic effects of EGCG. Moreover, EGCG was more effective than EC, ECG, and EGC in changing the apoptotic signals. Results of this study may relate to the mechanism by which EGCG modulates body weight.  相似文献   

6.
Determination of tea components with antioxidant activity   总被引:4,自引:0,他引:4  
Levels of essential elements with antioxidant activity, as well as catechins, gallic acid, and caffeine levels, in a total of 45 samples of different teas commercialized in Spain have been evaluated. Chromium, manganese, selenium, and zinc were determined in the samples mineralized with HNO(3) and V(2)O(5), using ETAAS as the analytical technique. The reliability of the procedure was checked by analysis of a certified reference material. Large variations in the trace element composition of teas were observed. The levels ranged from 50.6 to 371.4 ng/g for Cr, from 76.1 to 987.6 microg/g for Mn, from 48.5 to 114.6 ng/g for Se, and from 56.3 to 78.6 ng/g for Zn. The four major catechins [(-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC)], gallic acid (GA), and caffeine were simultaneously determined by a simple and fast HPLC method using a photodiode array detector. In all analyzed samples, EGCG ranged from 1.4 to 103.5 mg/g, EGC from 3.9 to 45.3 mg/g, ECG from 0.2 to 45.6 mg/g, and EC ranged from 0.6 to 21.2 mg/g. These results indicated that green tea has a higher content of catechins than both oolong and fermented teas (red and black teas); the fermentation process during tea manufacturing reduces the levels of catechins significantly. Gallic acid content ranged from 0.039 to 6.7 mg/g; the fermentation process also elevated remarkably gallic acid levels in black teas (mean level of 3.9 +/- 1.5 mg/g). The amount of caffeine in the analyzed samples ranged from 7.5 to 86.6 mg/g, and the lower values were detected in green and oolong teas. This study will be useful for the appraisal of trace elements and antioxidant components in various teas, and it will also be of interest for people who like drinking this beverage.  相似文献   

7.
An effort has been made to isolate individual catechin compounds from green tea leaves in their pure form by electrophoresis. In the present study total polyphenol extraction was carried out initially and estimated through spectrophotometric and HPLC methods. Extracted polyphenol was separated on 0.7% agarose gel and visualized at 360 nm. Fragmented individual compounds were gel eluted with methanol and confirmed as (-)-epigallocatechin (EGC), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG) by HPLC. The method developed describes a suitable method for the isolation of valuable molecules in tea.  相似文献   

8.
A green tea extract (GTE) was incorporated into bread as a source of tea catechins. The stability of tea catechins in the breadmaking process including unfrozen and frozen dough was studied. A method was developed for the separation and quantification of tea catechins in GTE, dough, and bread samples using a RP-HPLC system. The separation system consisted of a C18 reversed-phase column, a gradient elution system of water/methanol and formic acid, and a photodiode array UV detector. Tea catechins were detected at 275 nm. GTEs at 50, 100, and 150 mg per 100 g of flour were formulated. The results obtained showed that green tea catechins were relatively stable in dough during freezing and frozen storage at -20 degrees C for up to 9 weeks. There were no further detectable losses of tea catechins in bread during a storage of 4 days at room temperature. It was also revealed that (-)-epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) were more susceptible to degradation than (-)-epicatechin gallate (ECG) and (-)-epicatechin (EC). (-)-EGCG and (-)-ECG were normally selected as the quality indices of green tea catechins, and their retention levels in freshly baked bread were ca. 83 and 91%, respectively. One piece of bread (53 g) containing 150 mg of GTE/100 g of flour will provide 28 mg of tea catechins, which is approximately 35% of those infused from one green tea bag (2 g).  相似文献   

9.
Catechins, compounds that belong to the flavonoid class, are potentially beneficial to human health. To enable epidemiological evaluation of these compounds, data on their contents in foods are required. HPLC with UV and fluorescence detection was used to determine the levels of (+)-catechin, (-)-epicatechin, (+)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg) in 24 types of fruits, 27 types of vegetables and legumes, some staple foods, and processed foods commonly consumed in The Netherlands. Most fruits, chocolate, and some legumes contained catechins. Levels varied to a large extent: from 4.5 mg/kg in kiwi fruit to 610 mg/kg in black chocolate. (+)-Catechin and (-)-epicatechin were the predominant catechins; GC, EGC, and ECg were detected in some foods, but none of the foods contained EGCg. The data reported here provide a base for the epidemiological evaluation of the effect of catechins on the risk for chronic diseases.  相似文献   

10.
Catechins, compounds that belong to the flavonoid class, are potentially beneficial to human health. To enable an epidemiological evaluation of catechins, data on their contents in foods are required. HPLC with UV and fluorescence detection was used to determine the levels of (+)-catechin, (-)-epicatechin, (+)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg) in 8 types of black tea, 18 types of red and white wines, apple juice, grape juice, iced tea, beer, chocolate milk, and coffee. Tea infusions contained high levels of catechins (102-418 mg of total catechins/L), and tea was the only beverage that contained GC, EGC, ECg, and EGCg in addition to (+)-catechin and (-)-epicatechin. Catechin concentrations were still substantial in red wine (27-96 mg/L), but low to negligible amounts were found in white wine, commercially available fruit juices, iced tea, and chocolate milk. Catechins were absent from beer and coffee. The data reported here provide a base for the epidemiological evaluation of the effect of catechins on the risk for chronic diseases.  相似文献   

11.
A new rapid and sensitive method has been developed, using liquid chromatography in tandem mass spectrometry (LC-ESI-MS/MS) to identify green tea catechin metabolites in plasma and urine after oral intake of a green tea extract. (-)-Epigallocatechin-3-gallate (EGCG), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC)-glucuronide, (-)-epicatechin (EC)-glucuronide, and EC-sulfate were identified in plasma, whereas in urine only the conjugated catechins were detected (EGC-glucuronide, EGC-sulfate, EC-glucuronide, and EC-sulfate). Standard calibration curves prepared in plasma were found to be linear in the range of 10.9-1379.3 nmol/L for EGCG, EGC, ECG, and EC. The accuracy and precision of this assay showed a coefficient of variation of <15%. The method allowed the detection and quantification limits (for 20 microL injection) from 1.1 to 2.6 nmol/L and 3.8-8.7 nmol/L, respectively, in plasma and 0.8-1.8 nmol/L and 2.6-6.0 nmol/L, respectively, in urine. This method can be applied for future clinical and epidemiological studies, allowing the identification of the active metabolites that will reach the target tissues.  相似文献   

12.
We have investigated the inhibitory effects of polyphenols from natural products, such as green tea, bilberry, grape, ginkgo, and apple, on rainbow trout gelatinase activities. Gelatinases from the skin, muscle, and blood of rainbow trout contained serine proteinase, metalloproteinase, and other proteinase activities as measured by gelatin zymography. The polyphenols of green tea caused the strong inhibition of some gelatinase activities when compared with those of the other products. This inhibition was quite similar to that of metalloproteinase by ethylenediaminetetraacetic acid, suggesting that the effects of green tea polyphenols on proteinase activities are specific for metalloproteinases. The major catechins of green tea polyphenols were then separated and identified by reverse-phase chromatography to be (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epicatechin. The effects of these catechins on gelatinase activities were examined; the most potent inhibitor of metalloproteinase activities was found to be EGCG. These results have indicated that green tea polyphenols including EGCG are useful for regulating metalloproteinase activities of fish meat.  相似文献   

13.
(-)-Epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) are two important antioxidants in tea. They also display some antitumor activities, and these activities are believed to be mainly due to their antioxidative effects. However, the specific mechanisms of antioxidant action of tea catechins remain unclear. In this study are isolated and identified two novel reaction products of EGCG and one product of EGC when they were reacted separately with H(2)O(2). These products are formed by the oxidation and decarboxylation of the A ring in the catechin molecule. This study provides unequivocal proof that the A ring of EGCG and EGC may also be an antioxidant site. This study also indicates an additional reaction pathway for the oxidation chemistry of tea catechins.  相似文献   

14.
Catechins were subjected to in vitro gastric and small intestinal digestion. EGCG, EGC, and ECG were significantly degraded at all concentrations tested, with losses of 71-91, 72-100, and 60-61%, respectively. EC and C were comparatively stable, with losses of 8-11 and 7-8%, respectively. HLPC-ESI-MS/MS indicated that EGCG degradation under simulated digestion resulted in production of theasinensins (THSNs) A and D (m/z 913) and P-2 (m/z 883), its autoxidation homodimers. EGC dimerization produced the homodimers THSN C and E (m/z 609) and homodimers analogous to P-2 (m/z 579). ECG homodimers were not observed. EGCG and EGC formed heterodimers analogous to the THSNs (m/z 761) and P-2 (m/z 731). EGCG and ECG formed homodimers analogous to the THSNs (m/z 897). This study provides an expanded profile of catechin dimers of digestive origin that may potentially form following consumption of catechins. These data provide a logical basis for initial screening to detect catechin digestive products in vivo.  相似文献   

15.
Tea catechins exert many biological effects, including anticancer and antibacterial activities. Also, it is reported that some plant flavonoids exhibit estrogenic activity. In this study, we investigated estrogenic or antiestrogenic activities of catechins in HeLa cells transiently transfected with an estrogen response element (ERE)-regulated luciferase reporter and an estrogen receptor (ER) alpha or ERbeta expression vector. Catechins alone did not induce luciferase (luc) activity in either of the ERs. Addition of 17beta-estradiol (E2) plus epicatechin gallate (ECG) or epigallocatechin gallate (EGCG) at 5 x 10(-6) M resulted in significant decreases in the ERalpha-mediated luc activity compared with that of E2 alone. On the contrary, lower concentrations significantly increased the E2-induced luc activity. Similar effects were observed with tamoxifen. The ERbeta-mediated estrogenic activities were stimulated by catechins. In conclusion, some catechins, particularly EGCG, were antiestrogenic for ERalpha at higher doses, and co-estrogenic for ERalpha at lower doses and for ERbeta. The lower doses were found in human plasma after tea-drinking. In addition, some catechins may be antiendocrine disruptors because they suppressed bisphenol A-induced luc activities.  相似文献   

16.
17.
Theanine, caffeine, and catechins in fresh tea leaves and oolong tea were determined by using capillary electrophoresis (CE). CE separated these tea polyphenols from three other tea ingredients, namely, caffeine, theophylline, and theanine, within 8 min. The young leaves (apical bud and the two youngest leaves) were found to be richer in caffeine, (-)-epigallocatechin gallate (EGCg), and (-)-epicatechin gallate (ECg) than old leaves (from 5th to 7th leaves). On the other hand, the old leaves (from 8th to 10th leaves) contained higher levels of theanine, (-)-epigallocatechin (EGC), and (-)-epicatechin (EC). Results from a comparison of fresh young tea and oolong tea compositions indicated oolong tea contained more theanine and catechins than fresh young tea. Furthermore, it was found that the levels of theanine, EGC, and EGCg in young leaves rose markedly with the withering process. Caffeine did not markedly change. However, fully or partially fermented teas (oolong tea or pauchong tea) have a common initial step in the withering process. Fresh tea leaves or oolong tea extract (0.1%, w/v) markedly inhibited neurosphere adhesion, cell migration, and neurite outgrowth in rat neurospheres. Theanine (348 micrograms/mL) and caffeine at high concentration (50 micrograms/mL) did not inhibit neurosphere adhesion or migration activities, but EGCg at 20 micrograms/mL effectively inhibited neurosphere adhesion for 24 h. These results indicated that EGCg might affect neural stem cell survival or differentiation.  相似文献   

18.
Epidemiological and animal studies have found that green tea is associated with lower plasma cholesterol. This study aimed to further elucidate how green tea modulates cholesterol metabolism. When HepG2 cells were incubated with the main green tea constituents, the catechins, epigallocatechin gallate (EGCG) was the only catechin to increase LDL receptor binding activity (3-fold) and protein (2.5-fold) above controls. EGCG increased the conversion of sterol regulatory element binding protein-1 (SREBP-1) to its active form (+56%) and lowered the cellular cholesterol concentration (-28%). At 50 microM, EGCG significantly lowered cellular cholesterol synthesis, explaining the reduction in cellular cholesterol. At 200 microM EGCG, cholesterol synthesis was significantly increased even though cellular cholesterol was lower, but there was a significant increase seen in medium cholesterol. This indicates that, at 200 microM, EGCG increases cellular cholesterol efflux. This study provides mechanisms by which green tea modulates cholesterol metabolism and indicates that EGCG might be its active constituent.  相似文献   

19.
It has been reported that epigallocatechin-3-O-(3″-O-methyl)-gallate (EGCG3″Me) and the EGCG3″Me-rich green tea ( Camellia sinensis L.) cultivar 'Benifuuki' exhibit antiallergic effects. The objective of this study was to investigate the effect of various tea leaf catechins on histamine release from murine bone marrow mast cells (BMMC). At a dose of 50 μg/mL, the rank order of histamine release inhibition was observed to be epicatechin-3-O-(3″-O-methyl)-gallate (ECG3″Me) > gallocatechin-3-O-(3″-O-methyl)-gallate (GCG3″Me) > EGCG3″Me > gallocatechin-gallate (GCG) > catechin-gallate (CG) > EGCG > epicatechin-gallate (ECG) > epigallocatechin (EGC) > gallocatechin (GC). Of the various tea cultivars analyzed by HPLC, the greatest content of ECG3″Me was found in the third crop of 'Benifuuki' (1.05% dry weight). Moreover, ECG3″Me content was positively correlated with EGCG3″Me content in 'Benifuuki' tea leaves. In an assay of mixtures of ECG3″Me and EGCG3″Me, inhibitory activity (50 μg/mL in total) was increased as the content of ECG3″Me increased. This suggests that ECG3″Me might link to the antiallergic effect of 'Benifuuki' tea, as has been reported for EGCG3″Me.  相似文献   

20.
It has been known that tea catechins, (-)-epicatechin (1), (-)-epigallocatechin (2), (-)-epicatechin gallate (3), and (-)-epigallocatechin gallate (4) are epimerized to(-)-catechin (5), (-)-gallocatechin (6), (-)-catechin gallate (7), and (-)-gallocatechin gallate (8), respectively, during retort pasteurization. We previously reported that tea catechins, mainly composed of 3 and 4, effectively inhibit cholesterol absorption in rats. In this study, the effect of heat-epimerized catechins on cholesterol absorption was compared with tea catechins. Both tea catechins and heat-epimerized catechins lowered lymphatic recovery of cholesterol in rats cannulated in the thoracic duct and epimerized catechins were more effective than tea catechins. The effect of purified catechins on micellar solubility of cholesterol was examined in an in vitro study. The addition of gallate esters of catechins reduced micellar solubility of cholesterol by precipitating cholesterol from bile salt micelles. Compounds 7 and 8 were more effective to precipitate cholesterol than 3 and 4, respectively. These observations strongly suggest that heat-epimerized catechins may be more hypocholesterolemic than tea catechins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号