首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A feeding trial of 60 days was conducted to delineate the effect of dietary synbiotic on maximum growth, body composition, digestive enzyme activity and subsequently gut microbiota in Cirrhinus mrigala fingerlings. One hundred and eighty acclimatized fingerlings of mrigal with initial body weight ranging from 2.87 ± 0.01 g to 3.26 ± 0.05 g were randomly distributed in three replicates of each of four experimental groups including control (without probiotic and prebiotic), T1 (high probiotic + low prebiotic), T2 (low probiotic + high prebiotic) and T3 (high probiotic + high prebiotic), using completely randomized design (CRD). Results showed that growth performance parameters, such as specific growth rate (SGR), per cent weight gain, feed conversion ratio (FCR) and protein efficiency ratio (PER), were reported to be higher in the T2 group followed by the T3 group. Maximum gut microbiota activity was found in the T3 group which was significantly different from other treatment groups. Similarly, body composition and digestive enzyme activity varied significantly (p < .05) among the treatment groups. The study showed the possibility of improved nutrient utilization in terms of growth performance and digestive enzyme activity in the group following dietary synbiotic supplementation.  相似文献   

2.
Fasting and refeeding have considerable effects on thyroid hormone metabolism. In tilapia (Oreochromis niloticus), fasting results in lower plasma T3 and T4 concentrations when compared to the ad libitum fed animals. This is accompanied by a decrease in hepatic type II (D2) and in brain and gill type III (D3) activity. No changes in kidney type I (D1) activity are observed. Refeeding results in a rapid restoration of plasma T4 values but not of plasma T3. Plasma T3 remains low for two days of refeeding before increasing to normal levels. Liver D2 and gill D3 also do not increase until two days after refeeding. Brain D3, on the other hand, rises immediately upon refeeding. These results suggest that the change in hepatic D2 activity is one of the main factors responsible for the changes in plasma T3 observed during starvation and refeeding in tilapia. This finding supports the hypothesis that, in contrast to mammals and birds, liver D2 is the primary source of plasma T3 in fish. Although the deiodinases important for the gross regulation of plasma T3 during fasting/refeeding differ (mammals: D1 and D3, birds: D3, fish: D2), they all occur in the liver, suggesting that the organ itself may play a crucial role. In addition, the changes in brain and gill D3 suggest that these enzymes constitute a fine tuning mechanism for regulation of T3 availability at the cellular or plasma levels, respectively.  相似文献   

3.
This study was conducted to evaluate the effect of dietary taurine supplementation on growth, immunity and resistant to dry stress of rice field eel (Monopterus albus) fed low fish meal diets. Six isonitrogenous and isolipid diets (32% fish meal) supplemented with six taurine concentrations (0, 0.3, 0.6, 0.9, 1.2 and 1.5 g/kg; designated as T0, T0.03, T0.06, T0.09, T0.12 and T0.15 groups, respectively) were prepared. A diet including 42% fish meal (FM group) was also included as a reference. The results showed that specific growth rate (SGR) in FM group was significantly higher than that in lower fish meal treatments. SGR significantly increased and slowly decreased with the increase in taurine supplementation level. Lipase activity value in intestine of M. albus fed FM diet was maximum, and with the increase in taurine supplementation level, lipase activity significantly increased and slowly decreased. The FM group had relative higher total antioxidant capacity (T‐AOC) content, catalase (CAT), total superoxide dismutase (T‐SOD), and lyzozyme (LZM) activities in serum than the other groups. With the increase in dietary taurine supplementation level, the CAT, T‐SOD, T‐AOC and LZM activities in serum significantly increased and then decreased. In the dry stress experience, the adrenaline (AD), cortisol (COR), glucose (GLU), total cholesterol (CHOL), and malondialdehyde (MDA) concentrations, T‐AOC content, CAT and T‐SOD activities in serum of M. albus in the four groups first increased and reached the peak at 2 hr, and then decreased under air‐exposure stress. Compared to the FM group, T0.15 group had relative higher T‐AOC content, CAT and T‐SOD activities, and lower AD, COR GLU, TC and MDA concentrations.  相似文献   

4.
为探讨斑点叉尾(鮰)免疫应激状态下血浆抗氧化酶和免疫指标的变化,并研究甘草次酸对斑点叉尾(鮰)免疫应激的调控机制,实验设计两组,每组6个重复:1)对照组,饲喂基础饲料;2)GA组,饲喂含0.15 g/kg甘草次酸饲料,养殖8周后,腹腔注射大肠杆菌脂多糖(LPS),分别在注射后0、3、6、12、24、48 h采集血液和肝脏组织,进行红细胞、白细胞计数,分离血浆后检测血浆皮质醇、溶菌酶、ACH50、谷草转氨酶、谷丙转氨酶、碱性磷酸酶活性,肝脏匀浆液检测SOD、MDA和CAT抗氧化酶活性.结果显示,在腹腔注射LPS后,血浆溶菌酶、皮质醇、谷草转氨酶、谷丙转氨酶、ACH50、SOD均呈现先升高后下降的趋势,白细胞计数、血浆CAT呈现先下降后升高的趋势;饲料中添加0.15 g/kg甘草次酸显著抑制了各指标变化,缩短了由LPS诱导产生各指标变化的恢复时间.研究表明,腹腔注射LPS使斑点叉尾(鮰)产生免疫应激,并在注射后6~12h达到顶峰;饲料中添加0.15 g/kg甘草次酸可以有效抑制由LPS诱导的免疫应激反应.  相似文献   

5.
GH-transgeniccoho salmon (Oncorhynchus kitsutch) juveniles were fed diets containing 3,5,3-triiodo-L-thyronine (T3; 30 ng/g fish) or 6-n-propyl-2-thiouracil (PTU; 20 ug/g fish), to assess the effect of these drugs on the physiology, growthand survival in comparison with untreated transgenicand non-transgenic salmon. After 84 days, food intake, feed efficiency, survival, growth, hepato-somatic index (HSI), viscera-somatic index (VSI), plasma L-thyroxine (T4), T3and growth hormone (GH) levels,and cranial morphological abnormalities were determined. Growth of transgenic salmon was significantly faster than the nontransgenic salmon,and was increased by exogenous T3and reduced by PTU. Food intake of transgenic salmon was higher than that of the nontransgenic group, but was reduced by exogenous PTU administration. Food conversion efficiency of transgenic salmon was lower than that of nontransgenic salmon,and also was increased by T3 but reduced by PTU in the transgenic fish. The survival rate in all transgenic groups was significantly higher than that of nontransgenic,and transgenic T3and PTU treatment groups showed higher survivals than the transgenic-control group. The HSIand VSI of the transgenic fish were higher than the nontransgenic fish;and both parameters in the transgenic salmon were increased by PTU, but reduced by T3. The plasma T4 level in transgenic salmon was approximately 1.5-fold higher relative to the nontransgenic fish, whereas no difference was observed among the transgenic groups. Plasma T3 levels in transgenic salmon were also approximately 2-fold higher relative to the nontransgenic fish. However, the plasma T3 level in transgenic animals was increased by exogenous T3 administration, but was reduced by exogenous PTU to that observed in nontransgenic salmon. The plasma GH level of transgenic fish was higher than that of the nontransgenic salmon,and the level was increased by the exogenous T3, whereas exogenous PTU did not reduce significantly GH levels in transgenic salmon. Transgenic fish also displayed cranium, jawand opercular abnormalities typical of the effects of this gene construct incoho salmon, indicating that some imbalance in growth processes has been induced. However, these abnormalities (especially cranial disruptions) were diminished by administration of exogenous PTU. In conclusion, exogenous T3and PTU treatments can induce hyperthyroidismand hypothyroidism, respectively,and have inverse effects on growthand skeletal abnormalities of transgenic salmon constitutively expressing GH.  相似文献   

6.
This study was carried out to test the effect of triiodothyronine (T3) on the growth and survival of larval striped bass (Morone saxatilis). Growth and survival of striped bass held in 5 ppt seawater and treated with various doses of T3 were measured beginning at 5 and 16 days after hatching. Body content of T3 was measured by radioimmunoassay. T3 dissolved in the 5 ppt seawater was taken up by larval striped bass in a dose-dependent manner, and affected the growth and survival of the fish. At 5 days after hatching, T3 at 100 ng ml–1 and 50 ng ml–1 retarded the growth of larval striped bass and caused a lower survival rate than T3 at 25 ng ml–1 or the control treatment. At 16 days after hatching, T3 at 100 ng ml–1 retarded the growth of larval fish and caused a higher mortality. T3 at 10 ng ml–1 and 1 ng ml–1 did not show any effect on either survival or growth. Body content of T3 returns to control levels within days following end of treatment. The results indicate that exogenous T3 can be detrimental to the growth and survival of larval striped bass.  相似文献   

7.
Carp larvae, like any other fish larvae dependon natural food during first few days of theirlife. In nursery conditions, high mortality andslow larval growth are of common occurrence;sub-optimal nutrition might be a possiblereason for such consequences. To improve thesituation the effect of feeding ascorbicacid-enriched live food on survival, growth,tissue biochemical composition includingascorbate level was evaluated in first feeding(3 days old) larvae (av. wt. 2.2 mg) of therohu carp, Labeo rohita (Ham.) for aperiod of 15 days (temp. 28.6 ± 1 °C)under natural photoperiod. The larvae (stockingdensity 10 l–1) were offered enriched andnon-enriched zooplankton ad libitumfollowing a rigid schedule with four feedingregimes, each having 3 replicates. In treatmentT1, non-enriched zooplankton (Moina,Daphnia, Cyclops, Diaptomus) and in T2,T3, T4 ascorbic acid enriched (12 henrichment) zooplankton [@10%, 20% and 30%ascorbyl palmitate (AP) inclusion in diet ofzooplankton] were offered. Highest survival(90%) and growth (9563% live weight gain)could be seen in T3 group and the lowestin T1 (62% survival and 805% live weightgain), thus confirming the dietary essentialityof ascorbic acid for rohu larvae. Therequirement has been shown to be 1409 µg/gdry diet. Whole body tissue analyses for crudeprotein, total lipid and RNA: DNA ratiofollowed the same trend as that of growthresponse and percent survival. Significantpositive correlation (r = 0.949 and 0.861) couldbe found with muscle RNA/DNA ratio and muscleRNA content with specific growth rate indifferent treatments. Significant differencewas found in tissue ascorbate levels betweenenriched plankton fed groups, being highest in T3. Such live foodmediated vitamin transfer might be an effectivemeans to provide higher plane of nutrition forhigh survival and rapid growth for rohu larva.  相似文献   

8.
The effect of freezing and frozen storage of threadfin bream fish (Nemipterus japonicus) meat on the setting and gel-forming ability has been evaluated. The dynamic viscoelastic properties of fish meat during setting and thermal gelation process were evaluated using Controlled Stress Rheometer under oscillatory mode. A sharp decrease in setting ability was recorded immediately after freezing as revealed by storage modulus (G?) values. The transglutaminase (TGase) enzyme activity of fish meat decreased from the initial value of 81.09 to 51.46 U/g meat/min at the end of 200 days of frozen storage. A decrease in setting ability of fish meat beyond 160 days of frozen storage is probably related to lower TGase enzyme activity. The gel-forming ability was related to setting ability during the frozen storage period. Although the protein solubility showed a decreasing trend during 200 days of frozen storage, the decrease was not significant. The effect of freezing and frozen storage on calcium-activated adenosine triphosphatase (Ca2+-ATPase) enzyme activity of fish mince was significant (P < 0.05). A reduction in protein solubility and Ca2+-ATPase enzyme activity is an indication of aggregation/denaturation of myofibrillar proteins.  相似文献   

9.
为了探讨急性氨氮胁迫对黄颡鱼组织中抗氧化酶活性及HSP70和HSP90基因mRNA表达水平的影响,实验随机挑选了360尾黄颡鱼[初体质量(17.25±0.05)g],分别暴露于含有0(对照)、5.70(低浓度组)、28.50(中浓度组)和57.00(高浓度组)mg/L总氨氮浓度的水体中,进行96 h的急性胁迫实验。实验开始后,分别于0、12、24、48和96 h取样。结果显示,氨氮胁迫发生后,低、中浓度组实验鱼肝脏中超氧化物歧化酶(SOD)活性呈先升高后降低趋势,而高浓度组则持续降低;低、中、高浓度组实验鱼肝脏中丙二醛(MDA)含量在胁迫开始后显著升高;3 h时,高浓度组实验鱼肝脏中SOD活性达到最低,而MDA含量最高;24 h后,高浓度组实验鱼肝脏中过氧化氢酶(CAT)活性显著升高;低、中、高浓度组实验鱼肝脏中HSP70基因的mRNA表达量呈先降低后升高趋势,而鳃中HSP70基因表达量持续升高,但脑中HSP70基因在0 h后显著降低;氨氮胁迫3 h时,低、中、高浓度组实验鱼肝脏和脑中HSP70基因表达量显著低于对照组,而在鳃中正好相反;相比HSP70基因,高氨氮浓度组实验鱼肝脏和鳃中HSP90基因的mRNA表达量在24 h时达到最高。研究表明,不同浓度的氨氮胁迫会对黄颡鱼抗氧化酶活性造成不同程度的抑制,原因与丙二醛的积累量有关;相比HSP90基因,黄颡鱼HSP70基因的表达量在氨氮胁迫发生后迅速上调,这种生理调控机制提示HSP70在应对急性氨氮胁迫时发挥着更重要的作用。  相似文献   

10.
This investigation examines the influence of implants containing 11-ketotestosterone (11KT), 17-estradiol (E2), and 3,5,3-triiodo-l-thyronine (T3) on astaxanthin metabolism in sexually immature individually tagged Arctic charr. The fish (initial average weight 427 g) were maintained in freshwater for 40 days, and weekly implanted intraperitoneally with oil-based injections containing either 11 KT, E2 or T3 at levels of 0.1, 1.0 and 0.1 mg (100 g body weight (BW))–1, respectively. The control fish were given the oil medium alone (0.2 ml 100 g BW–1). The diet contained ca. 50 mg astaxanthin kg–1. Carotenoid composition was monitored in plasma, fillet, liver and skin, and 11 KT, E2 and testosterone (T) levels in plasma. All hormone treatments reduced plasma T compared to the control. E2-treated fish had a higher (p<0.05) hepatosomatic index (HSI) than the other treatments. Hormone treatment did not influence gonadosomatic index (GSI). T3 administration induced a silvery skin appearance. The fillet and plasma carotenoid content decreased during the experiment. 11 KT implantation reduced astaxanthin and idoxanthin concentrations of plasma and fillets, and increased the amount in liver and skin, compared to the other treatments. The relative proportion of astaxanthin to idoxanthin was higher in the control fish and T3 implanted fish, than in fish implanted with 11 KT or E2 (p<0.05). Fish treated with E2 had the highest skin carotenoid concentration. Male fish had significantly higher carotenoid content in plasma, fillet and skin than female fish. This study reveals that sex hormones affect carotenoid metabolism and partitioning among body compartments of Arctic charr, effects differently displayed by the sexes.  相似文献   

11.
A 6-week feeding trial was conducted to investigate the effects of short-term feed deprivation on inducing compensatory growth and changes in thyroid hormone levels of channel catfish. Feeding treatments consisted of the following four regimes of 2-week duration: satiate feeding (control), no feed for 3 days then feeding to apparent satiation for the next 11 days, no feed for 5 days then feeding to apparent satiation for 9 days, and no feed for 7 days then feeding to apparent satiation for 7 days. These regimes were repeated three times over the 6-week trial in which 25 channel catfish fingerlings, initially averaging 15 g each, were stocked into each of 12, 38-l glass aquaria supplied with supplemental aeration and flow-through water. Depriving fish of feed had a pronounced effect in that fish lost weight in as little as 3 days. Returning the fish to a satiate feeding regime caused a resumption of growth, equal to control growth only in the case of the 3-day deprived treatment, but all periods of feed deprivation failed to induce a period of catch-up growth adequate to compensate for previously lost weight. Feed efficiency also was not improved by the periods of feed deprivation, and restricting feed in excess of 3 days lowered feed efficiency. Fish condition indices were not altered at the termination of the trial. Muscle lipid, muscle protein and liver protein also were not different among feeding regimes. Liver lipid was elevated in fish deprived of feed for more than 3 days every 2 weeks. Plasma thyroxine (T4) and triiodothyronine (T3) were equally depressed by 3 days from the onset of feed deprivation. Both hormones rose significantly within 24 h of realimentation, with the greatest increase observed in animals subjected to the briefest feed deprivation. These results support a role for thyroid hormones in the promotion of growth in channel catfish. Whereas feed deprivation appears to rapidly reduce activity of the hypothalamo-pituitary-thyroid axis, the high correlation observed between T4 and T3 in all treatments suggests that peripheral deiodinating systems are capable of rapidly generating T3 from T4 upon realimentation. More rapid recovery of thyroid hormone production following realimentation may minimize the effects of feed deprivation on growth and feed efficiency of fish subjected to the 3-day deprivation treatment when compared to longer periods.  相似文献   

12.
The aim of this study was to evaluate the effects of Bacillus subtilis and Bacillus licheniformis on growth, gut microbiota, and digestive enzyme activities of Artemia urmiana. Three diets containing 102 (T1), 104 (T2), 106 (T3) CFU of probiotics/g feed, and a control diet (C) without probiotic were used through a completely randomized design (treatments with triplicates). Twelve plastic tanks with the capacity of 60- l and density of 20 nauplii/ml were used and the trial continued for 15?days. Results showed that probiotics significantly increased the total length of A. urmiana (P?<?0.05). Although the total aerobic gastrointestinal bacteria count showed no significant differences among the treatments, the total Bacillus count significantly increased in experiments (P?<?0.05). The ratio of TCBS to total aerobic bacteria count was significantly lower in T1 (0.31?±?0.05), T2 (0.27?±?0.15), and T3 (0.25?±?0.05) compared to the control (0.76?±?0.34) (P?<?0.05). The probiotics were able to increase the protease and amylase activities (P?<?0.05). No significant effect on lipase activity. The study determined T2 and T3 as the most effective treatments for improving growth, bacterial flora, and digestive enzyme activities. As less probiotic needed in T2, using 104 bacteria per g diet is recommended for rearing Artemia up to the maturity stage.  相似文献   

13.
为了解配合饲料和活饵料对刀鲚幼鱼生长、存活和几种酶活性的影响,对用配合饲料和活饵料喂养178 d的刀鲚幼鱼的生长、存活和消化酶、非特异性免疫酶、代谢酶以及抗氧化酶活性进行分析与比较。结果显示,配合饲料组的最终体长、体质量、成活率、鱼体肥满度和肝指数(分别为125.17 mm、6.27 g、65.73%、0.31 g/cm3和1.4%)显著低于活饵料组(分别为150.66 mm、12.39 g、85.59%、0.36 g/cm3和1.9%),两组鱼的肠长和体长比无显著差异(分别为25.3%和23.6%);两组鱼的肝脏中均未检测出蛋白酶,配合饲料组的幽门盲囊中碱性蛋白酶的活性(43.49 U/mg prot)显著低于活饵料组(86.37 U/mg prot),但两处理组鱼胃中酸性蛋白酶和肠道中碱性蛋白酶的活性均没有显著差异;配合饲料组肠道和幽门盲囊中的淀粉酶活性(分别为196.63和575.93 U/g prot)显著低于活饵料组(分别为928.91和1 755.90U/g prot),但两处理组鱼肝脏和胃中的淀粉酶活性没有显著差异;两处理组鱼的肝脏和胃中均未检测出脂肪酶,配合饲料组的肠道脂肪酶活性(23.55 U/g prot)显著高于活饵料组(14.39 U/g prot),但两处理组幽门盲囊中脂肪酶活性(分别为17.90和13.23 U/g prot)没有显著差异;配合饲料组的肝脏碱性磷酸酶(AKP)活性(103.44 U/g prot)显著高于活饵料组(58.20 U/g prot),而配合饲料组的肝脏谷草转氨酶(AST/GOT)活性(20.38 U/g prot)显著低于活饵料组(32.51 U/g prot);肝脏中其余被检测的5种酶活性(ACP、ALT/GPT、SOD、GSH-PX和CAT)和血清中被检测的代谢酶(ALT/GPT和AST/GOT)及抗氧化酶(SOD和GSH-PX)活性在两处理组之间均没有显著差异。研究表明,刀鲚能摄食配合饲料,配合饲料组和活饵料组的大多数消化酶、非特异性免疫酶、代谢酶及抗氧化酶活性,没有显著性差异,但配合饲料组的刀鲚生长和成活率远低于活饵料组,建议今后研发和改进刀鲚配合饲料,逐步替代活饵料。  相似文献   

14.
Thyroid hormone profiles and 5-monodeiodinase activity were determined in tilapia at different stages of early development. The results showed that both T4 and T3 were present in significant amounts in fertilized eggs. There was a steady decrease in both T4 and T3 levels during embryonic development. The levels continued to decline after hatching until around 7 days later when most of the yolk had been absorbed. The T4 level started to rise then, suggesting that the larval thyroid had begun to produce T4 at this time, which coincided with the period of faster growth of the larvae. The T3 level remained fairly constant until around 20 days after which it rose significantly. In vitro determination of 5-monodeiodinase activity (5-D activity) in the whole-body homogenates of larvae showed that the enzymatic conversion of T4 to T3 was not detectable in eggs and 3-day-old larvae but detected in 5-day-old and older larvae. There was a gradual increase in the Vmax as development proceeded indicating increasing 5-D activity during larval development. The Km values did not differ significantly in the different stages of development. These results are discussed in relation to the growth and development of the larvae.  相似文献   

15.
A feeding trial of 120 days was conducted to study the effect of graded levels of dietary phosphorus on haematology, serum protein concentrations and HSP70 expression in fingerlings of the Indian major carp, Catla (Catla catla). Eight isonitrogenous and isoenergetic purified diets were formulated to contain graded levels of dietary phosphorus (dP), i.e., T1, 0.1%; T2, 0.3%; T3, 0.5%; T4, 0.7%; T5, 0.9%; T6, 1.1%; T7, 1.3%; or T8, 1.5%. Four hundred and eighty fish (average weight 4.23 ± 0.016 g) were equally distributed into 24 tanks forming eight treatments with three replicates each. The fish were fed daily at the rate of 3.5% body weight in two instalments. At the end of feeding trial fish were sampled to study total RBC and WBC count, haemoglobin, serum lysozyme activity, serum total protein, albumin (A), globulin (G) concentration and HSP70 expression. Total RBC count, haemoglobin concentration and serum lysozyme activity did not vary significantly in response to different dietary phosphorus concentrations. Total WBC count was found to be significantly (P < 0.05) higher in T1 relative to all other treatments. Serum albumin and A/G ratio was found to be significantly lower in fish of T1 and T2 in relation to T7 group (P < 0.05). Serum globulin and total protein levels remained unaffected by variations in dietary phosphorus. HSP70 expression was observed in T1 group (0.1% dP) in gills and brain tissue, but not in liver and muscle tissues. No HSP70 expression was observed in fish of T4 (0.7% dP) and T8 (1.5% dP) treatments. These prima facie results suggest that dietary phosphorus had only minor influence on the haemato-biochemical parameters studied; however dietary phosphorus deficiency caused organ specific induction of HSP70 in catla fingerlings.  相似文献   

16.
Abstract. Serum thyroxine (T4) and triiodothyroninc (T3) levels were significantly lower in fish fed a high PCB diet (500 mg/kg) in comparison to those fed the control diet. The differences in serum thyroid hormone levels between the PCB-fed group and those fed the control diet were not evident after 14 days food deprivation nor after testosterone-injection. The low PCB diet (50 mg/kg) was without effect on serum T4 and T3 levels regardless of the treatment. Trout fed the highest Mirex diet (50 mg/kg) had T3 levels which were significantly lower and a T4 T3 ratio which T3was still evident after 14 days food deprivation but after testosterone administration the serum T3 levels in the control fish had fallen to levels similar to those in the Mirex-fed group. The low Mires diet (5 mg/kg) was without effect on serum T4 and T3 levels regardless of treatment. Serum T4 and T3 levels in fish fed a mixed PCB (50 mg/kg) and Mirex (5 mg/kg) diet were not significantly different from controls but T3 levels were significantly higher than in control fish after 14 days food deprivation and subsequent testosterone administration. There were no appearence difference in anterior pituitary or thyroid histology between the different groups. The hepatosomatic index (HSI) in PCB-fed trout was significantly larger than in controls in the fed groups, but not after 14 days food deprivation and subsequent testosterone administration. There was a five-fold difference in carcass PCB hioaccumulation between fish fed the two PCB-conlaminated diets, despite a 10-fold difference in dietary levels of the organochlorine. Similarly despite 10-fold differences in dietary Mirex levels in fish fed the 5 and 50 mg/kg and the 50 and 500 mg/kg diets, there were only 4–56–and 1–35-fold increases in carcass Mirex content, respectively. Trout fed the mixed Mirex-PCB diet had PCB levels of only 60.2% of those fed comparable levels of PCB alone (50 mg/kg) but contained similar levels of Mirex to those fed Mirex alone (a mg/kg).  相似文献   

17.
A comprehensive acute toxicity trial was conducted using a static water system to study the toxic effect of ammonia on haematology and enzyme profiles of Cirrhinus mrigala H. The LC50 of total ammonia‐nitrogen (TAN) was 11.8 mg L?1 TAN (1.029 mg L?1 NH3‐N). The sub‐lethal test revealed that with increasing concentration of TAN, the total erythrocyte counts were reduced in lower concentrations (1–4 mg L?1 TAN) followed by higher levels in fish exposed to higher concentrations (8–16 mg L?1 TAN). In contrast, the total leucocyte counts were opposite. With increasing concentration of TAN, haemoglobin and serum protein content were reduced, whereas the blood glucose level increased. As the concentration of ammonia increased, there was a reduction in acetylecholinesterase activity in the brain and liver; alkaline phosphatase activity in the serum, brain and gill; and acid phosphatase (ACP) activity in the gill. The activity of lactate dehydrogenase in the gill, liver, kidney and brain increased with increased concentration of ammonia. In addition, activities of ACP in the serum and brain, alanine aminotransferase in the serum, brain and gill, and aspartate aminotransferase in the serum, brain and gill were increased.  相似文献   

18.
Four separate 8-week feeding trials were conducted to assess the effects of supplementing semipurified diets with either triiodothyronine (T3) or thyroxine (T4) at 0, 2, 10, and 50 mg/kg on growth and body composition of juvenile red drum (Sciaenops ocellatus) held in artificial brackish water (6‰) and artificial seawater (32‰). At both levels of salinity, increasing doses of T3 resulted in fish with reduced weight gain, feed efficiency, condition factor (weight × 100/length3), and muscle ratio (muscle weight × 100/body weight), as well as a lighter body color. Significant (p < 0.05) effects of T3 on the proximate composition of whole body, liver, and muscle were variable, generally reflecting decreased lipid and protein storage in liver and muscle, respectively. The two highest doses of T3 given to seawater adapted fish increased survival. Dietary T4 supplementation had no distinctive effects on appearance, growth or proximate body composition. These results indicate that whereas T3 may function to regulate protein and lipid metabolism in red drum, dietary supplementation with T3 leads to a hyperthyroidism-induced catabolic state. The elevated endogenous thyroid hormone levels found in fish fed optimal diets may thus adequately supply tissue needs during juvenile growth.  相似文献   

19.
Antarctic fish of the family Channichthyidae (Icefishes) lack the respiratory pigments haemoglobin and myoglobin. The morphometrics and ultrastructure of the ventricular myocardium of a benthic icefish,Chaenocephalus aceratus has been compared with that of a red-blooded Notothenioid fish,Notothenia neglecta, of similar habit.The mass of ventricular muscle as a percentage of bodyweight is 3 times greater in adultC. aceratus (0.32%) thanN. neglecta (0.11%). Myoglobin concentration in the ventricle ofN. neglecta, 20 nmoles/g, is comparable to that of temperate teleosts with similar activity patterns. The volume and surface densities of mitochondria are 41.5% and 0.32 m–1 for Icefish and 25% and 0.15 m–1 forN. neglecta, Cytochrome oxidase activities are similar in the two tissues whilst the volume density of myofibrils is higher forN. neglecta (47%) thanC. aceratus (29.9%).The proliferation of mitochondria in the myocardium of Icefish will reduce the diffusion path-length for oxygen between ventricular lumen and the outer mitochondrial membrane and may compensate for the absence of myoglobin.  相似文献   

20.
Rainbow trout (initial body weight 4.16 ± 0.25 g) were fed diets [crude protein 420 g kg?1; gross energy 18.7 MJ kg?1 dry matter (DM); crude fat 110 g kg?1] containing graded levels of either a canola meal (crude protein 350 g kg?1 DM) supplemented with DL‐methionine as partial fish meal protein. A growth trial was conducted over 16 weeks at a water temperature of 12 ± 1 °C. At the end of the growth trial, in addition to body composition analyses, plasma tri‐iodothyronine (T3) and thyroxine (T4), cholesterol and liver fatty acid composition were measured. Replacement of fish meal with canola meal (100–570 g kg?1 replacement) did not affect on growth performance. At 16th week, plasma cholesterol levels were reduced in fish fed all diets in comparison with 8th week. Plasma T4 levels were significantly higher in the canola meal‐fed fish sampled after 16 weeks, but no significant differences in T3 levels were obtained (P > 0.05). Proximate compositions were affected by dietary treatments. The liver fatty acid composition reflected that of the diet with a higher level of polyunsaturated (n‐6) fatty acids in fish fed diet canola meal and a higher content in n‐3/n‐6 ratio in fish fed diet without canola meal. These studies show that canola meal has potential to replace substantial levels of fish meal in diets for carnivorous fish without compromising performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号