首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Karki  Himani  Bargali  Kiran  Bargali  S. S. 《Agroforestry Systems》2021,95(8):1603-1617

To access the process of nitrogen mineralization in soil, the buried-bag technique was used among traditional agroforestry systems in the Bhabhar belt of Kumaun Himalaya. The present study, determined the relationship between various parameters of N-mineralization with agroforestry systems, seasons and soil depths. Season and soil depth have significantly (p?<?0.001) affected the process of ammonification, nitrification and net N-mineralization. The soil ammonium-N pool was comparatively higher than the nitrate-N pool. Highest amount of ammonium and nitrate-N were recorded in the agri-horticulture (AH) system, and lowest in the agri-horti-silviculture (AHS) system. Among the systems, highest amount of inorganic-N (ammonium?+?nitrate) was recorded during rainy season while, lowest during winter season. The highest ammonification rate (6.47?±?1.47 mg kg?1 month?1) was observed in agri-silviculture system and lowest (5.67?±?1.68 mg kg?1 month?1) in AHS system, while nitrification value was maximum (2.53?±?0.40 mg kg?1 month?1) in AH system and minimum (2.23?±?0.37 mg kg?1 month?1) in AHS system. The values of net N-mineralization were ranged from 4.03?±?0.53 to 13.29?±?0.44 mg kg?1 month?1. The values of inorganic-N and net N-mineralization were significantly more (P?<?0.01) in the surface soil layer (0–20 cm) than the subsurface layers (20–40 cm and 40–60 cm). Nitrogen mineralization was negatively correlated with the soil pH and positively correlated with soil organic carbon and total soil nitrogen. Higher rate of N-mineralization in AHS system indicated rapid turnover of nitrogen due to soil management practices and suggested that the changes in agroforestry based land-use systems alter the process of net N-mineralization, nitrification and ammonification.

  相似文献   

2.
Understory plant biomass, species richness and canopy openness were measured in six-year old hybrid poplar riparian buffer strips, in the understory of two unrelated clones (MxB-915311 and DxN-3570), planted along headwater streams at three pasture sites of southern Quebec. Canopy openness was an important factor affecting understory biomass in hybrid poplar buffers, with lower understory biomass observed on sites and under the clone with lower canopy openness. Although tree size was an important factor affecting canopy openness, relationships between total stem volume and canopy openness, for each clone, also support the hypothesis of a clonal effect on canopy openness. Understory biomass and canopy openness as low as 3.6 g m−2 and 7.6% in 1 m2 microplots were measured under clone MxB-915311 at the most productive site. This reduction of understory plant growth could compromise important buffer functions for water quality protection (runoff control, sediment trapping and surface soil stabilisation), particularly were concentrated runoff flow paths enter the buffer. On the other hand, tree buffers that maintain relatively low canopy openness could be interesting to promote native and wetland plant diversity. Significant positive relationships between canopy openness and introduced species richness (R 2 = 0.46, p < 0.001) and cover (R 2 = 0.51, p < 0.001) were obtained, while no significant relationship was observed between canopy openness and native (wetland) species richness and cover. These results suggest that planting riparian buffer strips of fast-growing trees can rapidly lead to the exclusion of shade-intolerant introduced species, typical colonisers of disturbed habitats such as riparian areas of pastures, while having no significant effect on native (wetland) diversity. Forest canopy created by the poplars was probably an important physical barrier controlling introduced plant richness and abundance in agricultural riparian corridors. A strong linear relationship (R 2 = 0.73) between mean total species richness and mean introduced species richness was also observed, supporting the hypothesis that the richest communities are the most invaded by introduced species, possibly because of higher canopy openness, as seen at the least productive site (low poplar growth). Finally, results of this study highlight the need for a better understanding of relationships between tree growth, canopy openness, understory biomass and plant diversity in narrow strips of planted trees. This would be useful in designing multifunctional riparian buffer systems in agricultural landscapes.  相似文献   

3.
Despite its importance as one of the most notorious, globally distributed, multihost plant pathogens, knowledge on the survival strategy of Phytophthora cinnamomi in seasonally dry climates is limited. Soil and fine roots were collected from the rhizosphere of severely declining or recently dead specimens of 13 woody species at 11 dieback sites and two dieback spots and from healthy specimens of five woody species at four dieback‐free sites in native forests, woodlands and heathlands of the south‐west of Western Australia (WA). Phytophthora cinnamomi was recovered from 80.4, 78.1 and 100% of tested soil, fine root and soil–debris slurry samples at the 11 dieback sites, in some cases even after 18‐month storage under air‐dry conditions, but not from the small dieback spots and the healthy sites. Direct isolations from soil–debris slurry showed that P. cinnamomi colonies exclusively originated from fine roots and root fragments not from free propagules in the soil. Microscopic investigation of P. cinnamomi‐infected fine and small woody roots and root fragments demonstrated in 68.8, 81.3 and 93.8% of samples from nine woody species the presence of thick‐walled oospores, stromata‐like hyphal aggregations and intracellular hyphae encased by lignitubers, respectively, while thin‐walled putative chlamydospores were found in only 21.2% of samples from five woody species. These findings were confirmed by microscopic examination of fine roots from artificially inoculated young trees of 10 woody species. It is suggested that (i) the main function of chlamydospores is the survival in moderately dry conditions between consecutive rain events and (ii) selfed oospores, hyphal aggregations, and encased hyphae and vesicles in infected root tissue of both host and non‐host species are the major long‐term survival propagules of P. cinnamomi during the extremely dry summer conditions in WA.  相似文献   

4.
We investigated patterns of moth occurrence among habitats in two different landscapes surrounding roosts of the endangered Ozark big-eared bat (Corynorhinus townsendii ingens) from May to August 2005, and compared these data with published results on the diet of this subspecies. Landscapes were situated in the Ozark Mountains, USA, and consisted of a fragmented, agricultural landscape and a contiguous national forest. We captured 8720 moths constituting ≥314 species and 22 families. Pastures demonstrated a lower abundance and richness of moths than other habitats in the fragmented landscape (p < 0.05). Neither abundance nor richness of moths varied by habitat in the forested landscape, but we did observe variation among roost locations (p < 0.05). Abundant families of moths (n ≥ 100 specimens captured) did vary in abundance among habitats in both landscapes (p < 0.05), with poletimber stands, riparian forest and upland forest selected, and pasture, forest edge, sawtimber and sapling stands avoided by at least one family of moths. Density and richness of woody plant species were correlated with the occurrence of moths at sampling sites. We recommend maintaining habitat heterogeneity around roosts of the Ozark big-eared bat to encourage an abundance and richness of moth prey, and suggest that forested riparian corridors are important habitat elements for Ozark big-eared bats foraging in fragmented landscapes.  相似文献   

5.

Livestock presence in forest ecosystems is considered a factor in forest destruction in developing countries; therefore, rehabilitation practices following livestock exclusion could be a good way to restore forests. The main purpose of this study was to investigate the changes in the soil properties and plant biodiversity 12 years after applying fencing and planting in the livestock farms in the Hyrcanian Forests of Iran. First, three regions close to each other were selected and then four areas (treatments) were considered in each region: 1. An area under livestock use (L), 2. an enclosed area (E; with fences, established in 2007), 3. a planted area (P; established with Acer velutinum seedlings in 2007), and 4. a control area (C; natural forest); therefore, a total of 12 areas were considered. In each of the 12 areas, three plots (20?×?20 m) were randomly established (a total of 36 plots), and all the vascular plants in the herbaceous layer and woody species seedlings were recorded in order to study the biodiversity of the vegetation cover. One soil sample was taken from each plot to examine the physical and chemical properties of the soil. The results showed that bulk density, pH, electrical conductivity (EC), and available potassium were not significantly different between the C, E, and P treatments. Rehabilitation practices improved the soil pH (P: 6.36?±?0.06, E: 6.59?±?0.08), EC (P: 0.86?±?0.05, E: 0.82?±?0.04 ds cm?1), total nitrogen (P: 0.31?±?0.001, E: 0.31?±?0.005), available phosphorus (P: 10.13?±?2.22, E: 19.29?±?2.43 mg kg?1), and available potassium (P: 1369.60?±?31.06, E: 1898.80?±?448.60 mg kg?1). The Margalef index was lower in the L area and no significant difference was observed between the E and P areas. Since the multivariate analysis (based on the vegetation and soil data) showed that P and E had more similarity to C, these treatments could accelerate the forest restoration process.

  相似文献   

6.
Holm oak (Quercus ilex L.) seedlings were exponentially (E) nutrient loaded using incremental increases in fertilizer addition or conventionally (C) fertilized using a constant fertilizer rate during nursery culture. The fertility treatments (mg N plant−1) were control (0), 25E, 100E, and 100C. Subsequently, 1-year-old plants were transplanted under simulated soil fertility gradients in a greenhouse to evaluate effects of nutrient loading and post-transplant fertility on seedling performance. Post-transplant fertility consisted of fertilizing plants at two rates (0 vs. 200 mg N plant−1). A water-soluble fertilizer 20-20-20 was supplied in both nursery and post-transplant experiments. Nutrient loading increased plant N content by 73% in 100E and by 75% in 100C relative to controls, although no significant differences were detected between constant and exponential fertilization regimes at the 100 mg N plant−1 rate. When transplanted, nutrient loading promoted post-transplant root growth relative to shoot, implicating potential to confer competitive advantage to loaded holm oak seedlings after trans-planting. In contrast, post-transplant fertility increased new shoot dry mass by 140% as well as N, P and K content relative to controls. Results suggest that holm oak seedlings can be successfully nutrient loaded in the nursery at higher fertility rates, improving its potential to extend new roots, but alternative fertilization regimes and schedules that better fit nutrient availability to the growth rhythm and conservative strategy of this species must be tested.  相似文献   

7.
Abstract

Performance of three, evenaged leguminous tree species (Acacia nilotica, A. auriculiformis and Pithecellobium duke) was evaluated on sodic soil sites (pH 9.6) at Biomass Research Centre, Banthra, Lucknow (north India). Species differed significantly in respect to plant survival, growth and productivity since beginning of its growth as observed at the age of five, 10 and, 15 years. Acacia nilotica had highest average girth at breast height (60.5 cm) and stand biomass (161 Mg ha-1) in spite of its lowest plants survival after 15 years of growth. A. auriculiformis ranked next to it with 131 Mg ha-1 productivity. Basal area ranged from 12.8 to 23 m2 ha-1 in different species. P. duke performed poorly as it had only 71 Mg ha-1 of biomass. Average leaf area per hectare in different species ranged from4,129 m2 ha-1 to 16,090 m2 ha-1 after 15 years of growth. A. nilotica also showed superiority in respect to energy content in woody biomass (2,467 GJ ha-1) and fuel wood value index (1694) as compared to the other two species. At the age of 15 years, litter accumulation over the soil surface resulted in marked reductions in soil pH, electrical conductivity, bulk density and sodium content, and increase in soil porosity, organic carbon and nitrogen content, particularly in the uppermost layer of the mineral soil (0-5 cm). A. nilotica exhibited greater efficiency in terms of soil amelioration followed by A. auriculiformis. The relative ranking of three species was A. nilotica > A. auriculiformis > P. duke, respectively. This indicated greater promise of A. nilotica for biomass production, energy harvest, and soil amelioration on degraded soil sites. Matching tree species to soil conditions needs serious considerations in order to expand site specific afforestation programs and to ameliorate vast tracts of degraded soil sites.  相似文献   

8.
Growth and physiological performance of multipurpose tree species can be severely constrained by low phosphorus (P) availability in highly weathered soils. Limitations to plant growth are accentuated by seasonal dry periods. The overall objective of this study was to examine P fertilization and irrigation effects on survival, growth, biomass partitioning, foliar nutrients, intrinsic water-use efficiency (WUE) indexed by δ13C, Rhizobium nodulation, and carbohydrate content as an indicator of resprouting potential, of mimosa (Albizia julibrissin Durz.), a N2-fixing tree species being tested for browse in agroforestry practices in south-central USA. In a field experiment carried out during two growing seasons near Booneville, Arkansas, USA, mimosa had a strong growth response to irrigation. The trial was arranged in a split plot design with three replications with irrigation as main plot treatment and P as sub-plot treatment. Mean total plant aboveground biomass at the end of the second growing season was 9.8 and 44.1 g plant−1 for the rainfed treatment without and with 300 mm of irrigation water, respectively. Placed P fertilization increased mean total aboveground biomass from 19 g plant−1 for the 0-P treatment to 69 g plant−1 for the treatment with 90 kg P ha−1 year−1. Similarly, irrigation consistently increased stem basal diameter, total height, survival, root, stem, foliar and total aboveground biomass, and number of nodules per plant. Phosphorus fertilization increased basal diameter, and root and stem biomass in both irrigation treatments, survival and nodulation in the rainfed treatment, and foliar and total aboveground biomass in the rainfed +300 mm irrigation treatment. There was a decrease of foliar δ13C suggesting that WUE decreased with P fertilization. In a pot experiment, seedlings were subjected to a factorial combination of two irrigation treatments and six P levels in a randomized complete block design. Irrigation increased basal diameter, root, stem, foliar and total biomass, leaf area and nodulation, whereas P fertilization (i.e., levels from 0 to 3.68 g P kg−1 soil) had similar effect in all the above variables except foliar biomass. Foliar P concentration to obtain 90% of the maximum total plant biomass (critical level) was estimated at 0.157%. Total nonstructural and water soluble carbohydrate, and starch concentrations increased non-linearly with irrigation and P addition suggesting impaired re-growth potential after defoliation of seedlings with reduced water supply and at low soil P availability. Results of this study indicated strong limitations for growth and regrowth potential of mimosa on a highly weathered soil with very low P availability and seasonal water content shortages. Placed (i.e., near the plant base) application of P appeared to be a good strategy to fertilize perennial woody plants.  相似文献   

9.
Iron chlorosis caused by an elevated soil pH remains an important selection criteria in evaluating hybrid Populus trials in northwest New Mexico. Compared to expensive extraction methods or visual ranking scales, the soil plant analysis development (SPAD) chlorophyll meter is a handheld tool that objectively indicates leaf color. SPAD calibration curves pertaining to Fe status in Populus leaves were developed for two clones: NM-6 (Populus nigra × Populus maximowiczii) and OP-367 (Populus deltoides × Populus nigra). Hybrids were grown in the greenhouse in a sandy loam soil of pH > 8 and the same soil amended with composted biosolids enriched with 420 mg kg−1 Fe. SPAD measurements related to foliar Fe as follows: r 2 = 0.72 for NM-6 and r 2 = 0.58 for OP-367. SPAD measurements correlated with total chlorophyll as follows: r 2 = 0.66 for NM-6 and r 2 = 0.85 for OP-367. Based on the total chlorophyll content (supported with foliar element data), Fe sufficiency threshold values from SPAD measurements were estimated in these two clones.  相似文献   

10.
Nitrogen (N) limits productivity in many coniferous forests of the western US, but the influence of post-fire structure on N cycling rates in early successional stands is not well understood. We asked if the heterogeneity created by downed wood and regenerating pine saplings affected N mineralization and microbial community composition in 15-yr old lodgepole pine (Pinus contorta var. latifolia) stands established after the 1988 fires in Yellowstone National Park (Wyoming, USA). In three 0.25-ha plots, we measured annual in situ net N mineralization in mineral soil using resin cores (n = 100 per plot) under pine saplings, downed wood (legacy logs that survived the fire, and fire-killed trees that had fallen and were contacting or elevated above the ground), and in bare mineral soil. Annual in situ net N mineralization and net nitrification rates were both greater in bare mineral soil (8.4 ± 0.6 and 3.6 ± 0.3 mg N kgsoil−1 yr−1, respectively) than under pine saplings, contact logs, or elevated logs (ca. 3.9 ± 0.5 and 0.8 ± 0.1 mg N kgsoil−1 yr−1, respectively). Net nitrification was positively related to net N mineralization under all treatments except for elevated logs. In laboratory incubations using 15N pool dilution, NH4+ consumption exceeded gross production by a factor of two in all treatments, but consumption and gross production were similar among treatments. Contrary to our initial hypothesis, microbial community composition also did not vary among treatments. Thus, two- to three-fold differences in in situ net N mineralization rates occurred despite the similarity in microbial communities and laboratory measures of gross production and consumption of NH4+ among treatments. These results suggest the importance of microclimate on in situ annual soil N transformations, and differences among sites suggest that broader scale landscape conditions may also be important.  相似文献   

11.
藤本植物中具镉超积累特征植物的筛选   总被引:1,自引:1,他引:0       下载免费PDF全文
[目的]筛选出对重金属镉(Cd)具有强富集作用的植物,以修复被镉污染的土壤。[方法]以湖南常见的25种藤本植物为参试样本,采用室内水培和室外盆栽相结合的方法,设置不同浓度的重金属镉溶液处理参试植株当年生扦插苗,定量测定供试植物根部、茎部和叶片三部分的镉含量及生物量,分析参试植物对重金属镉的耐性和富集特性。[结果]水培筛选试验表明:蔓长春花对Cd污染的耐性较强,转移系数和富集系数均大于1,具备了镉超富集植物的基本特征。盆栽浓度梯度试验结果表明:当土壤中Cd投加浓度为25、50 mg kg-1时,蔓长春花地上部分生物量没有明显下降,且地上部分Cd含量均大于其根部,叶片中Cd含量均大于Cd超积累植物应达到的临界含量标准(100 mg·kg-1)。[结论]从25种参试植物中筛选出的蔓长春花具有重金属镉超富集植物的基本特征,是一种新的镉超积累植物,建议在重金属镉污染土壤中进一步测试。  相似文献   

12.
This paper examines the results of plantings of the Mediterranean pine species, Pinus halepensis and Pinus pinea, in a degraded Mediterranean kermes oak (Quercus coccifera) shrubland in Northern Greece, which were accomplished in order to mitigate ecosystem degradation. Plant establishment and the vegetation differences between the degraded ecosystem’s previous state and the new state following reforestation were measured in order to evaluate the effect of reforestation. Monitoring of the seedling survival and growth of the planted species was carried out during the next five years. In the fifth year we conducted botanical inventories in 18 and 15 plots (50 m2 in size) from the reforested and control area, respectively. Plant community parameters estimated were: vegetation composition, total plant cover, planted species cover, native woody, herb and grass species cover, plant species richness, Shannon-Weiner index, community structure and dominant plant height. P. halepensis exhibited higher survival and growth than P. pinea. The reforested area exhibited higher plant diversity, higher vegetation cover, taller plants and more complex community structures than the control area, which concludes that plantings of pines can be successfully used in degraded ecosystem reforestation projects, in areas with similar site conditions.  相似文献   

13.
Decomposing stumps could significantly increase soil resource heterogeneity in forest ecosystems. However, the impact of these microsites on nutrient retention and cycling is relatively unknown. Stump soil was defined as the soil fraction directly altered by the decomposition of the primary rooting system (e.g. taproots) and aboveground stumps. Study sites were located in mature hardwood stands within the Jefferson National Forest in the Ridge and Valley Physiographic region of southwest Virginia. The objectives of this study were to: (i) determine the total soil volume altered by the decomposition of stumps and underlying root system, (ii) compare and contrast total C and N, extractable ammonium (NH4+) and nitrate (NO3), potentially mineralizable N, microbial biomass C (MBC), root length and root surface area between the bulk soil (i.e. O, A, B and C horizons) and stump soil and (iii) evaluate how nutrient concentrations and fine-root dynamics change as stumps decompose over time using a categorical decay class system for stumps. Potentially mineralizable N was 2.5 times greater in stump soil than the A horizon (103 mg kg−1 vs. 39 mg kg−1), 2.7 times greater for extractable NH4+ (16 mg kg−1 vs. 6 mg kg−1) and almost 4 times greater for MBC (1528 mg kg−1 vs. 397 mg kg−1). Approximately 19% of the total fine-root length and 14% of fine-root surface area occurred in the stump soil. Significant differences occurred in C and N concentrations between all four decay classes and the mineral soil. This validated the use of this system and the need to calculate weighted averages based on the frequency and soil volume influenced by each decay class. In this forest ecosystem, approximately 1.2% of the total soil volume was classified as stump soil and contained 10% and 4% of soil C and N. This study illustrates that including stump soil in soil nutrient budgets by decay class will increase the accuracy of ecosystem nutrient budgets.  相似文献   

14.
U.D Chima  G. Vure 《林业研究》2014,25(4):915-921
The study evaluated the impact of crude oil pollution on natural regeneration of plant species in a major oil-producing community in the Niger Delta region of Nigeria. Three sites—unpolluted site(US), polluted and untreated site(PUS), and polluted and treated site(PTS)—were purposively chosen for the study. The seedling emergence method was used to evaluate soil seed banks in the various sites at two depths, 0 to 10 cm and 10 to 20 cm. Woody-plant species richness, abundance, and diversity were higher in the US seed bank than in the PUS and PTS seed banks. The highest number of non-woody plants was observed in the US, followed by the PTS, and then the PUS. Both species richness and diversity of non-woody plants were highest at the US, followed by the PUS, and lowest in the PTS. Woody species in the US seed bank were 87.5% and 80% dissimilar with those of the PUS and PTS at 0–10 cm and 10–20 cm respectively. No variation was observed between woody species in the PUS and PTS seed banks. Non-woody species at 0-10 cm US seed bank were 73.08% dissimilar with those of PUS at the two soil depths and 81.48/88.46% dissimilar with those of the 0–10/10–20 cm of the PTS respectively. At 10–20 cm, non-woody species of the US were 69.66% dissimilar with those from each of the two soil depths in PUS; and 73.91/81.82% dissimilar with those of 0–10/10–20 cm of the PTS respectively. Non-woody species variation between the PUS and PTS was higher at 10–20 cm than 0–10 cm. The poor seed bank attributes at the polluted sites demonstrates that crude oil pollution negatively affected the natural regeneration potential of the native flora because soil seed banks serve as the building blocks for plant succession. Thorough remediation and enrichment planting are recommended to support the recovery process of vegetation in the polluted areas.  相似文献   

15.
Pedraza  R.A.  Williams-Linera  G. 《New Forests》2003,26(1):83-99
Four native tree species (Liquidambar styraciflua, Juglans pyriformis, Podocarpus matudae, and Carpinus caroliniana) were evaluated for their suitability in rehabilitating degraded areas of Mexican cloud forest. Plant survival and growth in height and diameter were determined in three mixed-experimental plantations with different land use histories; their performance was compared with two on-farm plantations started by landowners for forest restoration. Nearby forest fragments were controls for soil compaction. An experimental plantation with remnant trees had the highest plant survival (82%), height, basal diameter and relative growth rate. The plantation with the steepest slope had high plant survival (63%) and growth. The plantation characterized by dominance of grasses and compacted soils had the lowest survival (22%) and growth. On-farm plantations had good establishment of planted trees (5–10 species planted), and facilitated the recruitment of 9–11 woody species. Carpinus and Liquidambar appear to be suitable species for reforestation in all these areas. Podocarpus grew relatively slowly, although it performed well in two experimental sites. Juglans had high survival (76%) under the stressful conditions of the most adverse site, and therefore may be useful for rehabilitation of degraded sites. Differences among species and sites strongly suggest that species success depends on plantation site quality.  相似文献   

16.
Under heavily disturbed conditions, the selection of the appropriate native species and of planting and ameliorating techniques is necessary. Volcanic eruptions create harsh conditions that can preclude native plant establishment. We tested the performance of two native species Pinus pseudostrobus and P. montezumae for restoration of volcanic ash covered areas. Two age classes of P. pseudostrobus and one of P. montezumae were tested as well as the effect of mulching to ameliorate harsh substrate conditions. Results show that older plants of P. pseudostrobus (19-month old at planting) have higher survival and growth rates than young plants (8-months at planting). Plants at least 19-months-old at planting of P. pseudostrobus and P. montezumae, are appropriate for restoration of volcanic ash covered areas. Mulching had no effect on plant survival or growth for this experiment.  相似文献   

17.
Streamside management zones (SMZs) in the Ouachita Mountains of Arkansas and Oklahoma are frequently established along headwater ephemeral and intermittent streams to protect water quality, provide wildlife habitat, and increase landscape diversity. To better understand the function of these riparian forest corridors, we characterized the tree density and composition, forest floor mass, and downed woody debris volume within SMZs located in undisturbed, mature, upper mid-slope shortleaf pine stands and then compared these attributes to those in upland portions of these stands. In addition to evaluate the impact of upland forest harvesting on these riparian corridors, we compared the amounts and distribution of forest floor, downed woody debris (DWD), snags, and windthrows in SMZs within shortleaf pine stands that had been clearcut, had a shelterwood harvest, and had no recent management activity (uncut stands). Total tree and hardwood basal area was significantly higher (4.4 and 4.2 m2 ha−1) while forest floor mass was significantly lower (0.5 kg m−2) in the SMZs than in the upland portion of the undisturbed stands. Five years following the reproduction cuttings tree basal area, DWD volume, and forest floor mass within SMZs did not significantly differ among stands that had or had not been harvested. Snag density was significantly lower within SMZs that occurred in clearcut stands compared to those in the uncut or shelterwood stands. Harvesting activities that retain few or no residual trees appear to increase the degradation of snags. This study provided evidence that clearcutting may also increase the risk of windthrow in SMZs as well. There was little difference in the distribution of forest floor within SMZs regardless of whether the stand was harvested or the type of harvesting that occurred in the stand. However, DWD amounts were higher near the SMZs edge than in the interior of the SMZs with the greatest differences in distributions in stands that were clearcut.  相似文献   

18.
Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).  相似文献   

19.
Seeking an alternative to Sesbania spp. tree fallows, a Tephrosia species and provenance trial was conducted at Msekera Research Station, Chipata (Zambia) to evaluate eleven Tephrosia vogelii and three Tephrosia candida provenances. They were tested for biomass production, quality of biomass, resistance to root-knot nematodes, nitrogen release, and for their effects on soil nitrogen dynamics. At the end of 1.5 years, the T. candida provenances 02970, 02971 and 02972 from Madagascar produced two times greater amount of aboveground biomass than the T. vogelii provenances. There was little variability among the T. vogelii provenances in terms of litter and biomass production. Weed growth was significantly greater under T. vogelii than T. candida provenances. While Tephrosia vogelii provenance 98/02 from Zambia and T. candida 02972 were highly tolerant to the Meloidogyne incognita nematodes, T. vogelii provenances 02977, 98/03, 02973 from Kenya, Zambia and Malawi, respectively, were highly susceptible to the nematodes. The Tephrosia species and provenances showed a wide variability in terms of N, lignin and polyphenol concentration in their foliage. Mineralization of N in the foliage of T. candida provenances 02970 and 02971 and T. vogelii provenances 98/04 and 02974 from Malawi occurred rapidly within 14 weeks of incubation. At the end of the 2-year growth period, there was significantly greater total inorganic N under T. candida provenance 02972 (12.5 mg kg−1) than T. vogelii (5 mg kg−1) provenance Mungwi 98/02. Maize (Zea mays L.) yields after T. candida provenances were greater than those after T. vogelii provenances. Further testing of the most promising provenances is needed for their effects on subsequent maize yields under a range of farm conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Forested riparian buffers in California historically supported high levels of biodiversity, but human activities have degraded these ecosystems over much of their former range. This study examined plant communities, belowground biodiversity and indicators of multiple ecosystem functions of riparian areas across an agricultural landscape in the Sacramento Valley of California, USA. Plant, nematode and soil microbial communities and soil physical and chemical properties were studied along 50-m transects at 20 sites that represented the different land use, soil and vegetation types in the landscape. Riparian zones supported greater plant diversity and nearly twice as much total carbon (C) per hectare compared to adjacent land managed for agricultural uses, but had generally lower soil microbial and nematode diversity and abundance. When woody plant communities were present in the riparian zone, plant diversity and species richness were higher, and soil nitrate and plant-available phosphorus levels were lower. Belowground diversity and community structure, however, appeared to depend more on plant productivity (as inferred by vegetation cover) than plant diversity or species richness. Greater plant species richness, nematode food web structure, total microbial biomass, woody C storage and lower soil nitrate and phosphorus loading were correlated with higher visual riparian health assessment scores, offering the possibility of managing these riparian habitats to provide multiple ecosystem functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号