首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concern about impacts of climate change in the Bering Sea prompted several research programs to elucidate mechanistic links between climate and ecosystem responses. Following a detailed literature review, Hunt et al. (2011) (Deep‐Sea Res. II, 49, 2002, 5821) developed a conceptual framework, the Oscillating Control Hypothesis (OCH), linking climate‐related changes in physical oceanographic conditions to stock recruitment using walleye pollock (Theragra chalcogramma) as a model. The OCH conceptual model treats zooplankton as a single box, with reduced zooplankton production during cold conditions, producing bottom‐up control of apex predators and elevated zooplankton production during warm periods leading to top‐down control by apex predators. A recent warming trend followed by rapid cooling on the Bering Sea shelf permitted testing of the OCH. During warm years (2003–06), euphausiid and Calanus marshallae populations declined, post‐larval pollock diets shifted from a mixture of large zooplankton and small copepods to almost exclusively small copepods, and juvenile pollock dominated the diets of large predators. With cooling from 2006–09, populations of large zooplankton increased, post‐larval pollock consumed greater proportions of C. marshallae and other large zooplankton, and juvenile pollock virtually disappeared from the diets of large pollock and salmon. These shifts in energy flow were accompanied by large declines in pollock stocks attributed to poor recruitment between 2001 and 2005. Observations presented here indicate the need for revision of the OCH to account for shifts in energy flow through differing food‐web pathways due to warming and cooling on the southeastern Bering Sea shelf.  相似文献   

2.
Yearling Chinook (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) were sampled concurrently with physical variables (temperature, salinity, depth) and biological variables (chlorophyll a concentration and copepod abundance) along the Washington and Oregon coast in June 1998–2008. Copepod species were divided into four different groups based on their water‐type affinities: cold neritic, subarctic oceanic, warm neritic, and warm oceanic. Generalized linear mixed models were used to quantify the relationship between the abundance of these four different copepod groups and the abundance of juvenile salmon. The relationships between juvenile salmon and different copepod groups were further validated using regression analysis of annual mean juvenile salmon abundance versus the mean abundance of the copepod groups. Yearling Chinook salmon abundance was negatively correlated with warm oceanic copepods, warm neritic copepods, and bottom depth, and positively correlated with cold neritic copepods, subarctic copepods, and chlorophyll a concentration. The selected habitat variables explained 67% of the variation in yearling Chinook abundance. Yearling coho salmon abundance was negatively correlated with warm oceanic copepods, warm neritic copepods, and bottom depth, and positively correlated with temperature. The selected habitat variables explained 40% of the variation in yearling coho abundance. Results suggest that copepod communities can be used to characterize spatio‐temporal patterns of abundance of juvenile salmon, i.e., large‐scale interannual variations in ocean conditions (warm versus cold years) and inshore‐offshore (cross‐shelf) gradients in the abundance of juvenile salmon can be characterized by differences in the abundance of copepod species with various water mass affinities.  相似文献   

3.
Spatial and temporal variation in copepod community structure, abundance, distribution and biodiversity were examined in the western subarctic North Pacific (40–53°N, 144–173°E) during 2001–2013. Continuous Plankton Recorder (CPR) observational data during the summer season (June and July) were analyzed. The latitudinal distribution of warm‐water species in June shifted northward after 2011 while no apparent latitudinal shift of cold‐water and other species was observed. Species number and the Shannon–Wiener biodiversity index (H′) in June tended to increase in the northern area after 2011. The warm‐water species abundance and center latitude of warm‐water distribution were positively correlated with sea surface temperature (SST) across sampling locations, whereas no significant correlations with SST were observed for cold‐water species or other species. Warm SSTs in June after 2011 appeared to cause the northward shift of warm‐water species distribution, which in turn contributed to the higher biodiversity in the northern area. This study demonstrated the rapid response of warm‐water species to warm SST variation, whereas cold‐water and other species did not exhibit such clear responses. These findings indicate that the response of copepods to environmental changes differs among copepod species, highlighting the importance of investigating lower trophic levels to the species level to evaluate individual species’ responses to climate change.  相似文献   

4.
Turbot were reared from yolk sack larvae to juvenile in an outdoor semi‐intensive system. Three production cycles were monitored from May to September. A pelagic food chain was established with phytoplankton, copepods and turbot larvae. Abiotic and biotic parameters of lower trophic levels together with turbot larval survival, development, prey electivity and growth were monitored. A decreasing larval survival from 18.4% in May to 13.6% in July and just 7.0% in September was observed. The overall phytoplankton and copepod abundance decreased during the productive season. The turbot larval growth showed significant differences between larvae below (isometric) and above (allometric) 7 mm. Larval fish gut content showed no differences with available prey between production cycles. Therefore, it appears that the available prey concentration is governing their growth in this outdoor system. First‐feeding turbot larvae exhibited active selection for nauplii whereas developed larvae switched to copepodites and adult copepods. Although developing turbot larva exhibited active selection towards copepod size classes, there was no evidence of selective feeding on either of the two dominant copepod species. The turbot larvae's prey ingestion was modelled together with the standing stock of copepod biomass. The model results indicated that the estimated need for daily ingestion exceeded the standing stock of copepods. Hence, the initially established food web was unable to sustain the added turbot larvae with starvation as a consequence. We therefore suggest several solutions to circumvent starvation in the semi‐intensive system.  相似文献   

5.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

6.
Annual catch of the western sand lance Ammodytes japonicus in the eastern Seto Inland Sea, Japan, has shown a decreasing trend since the 1990s. To examine whether food shortage was the main cause for the catch decrease, we investigated the condition factor of the age‐0 fish at the beginning of the estivation period (late July) in Harima‐Nada, eastern Seto Inland Sea, for 10 years from 2008 to 2017. The mean abundance of copepods as food for the age‐0 fish during the fish growth period (from February to June) around the estivation area was also determined. The condition factor showed a significant decrease, and values for 2011 and later years were mostly lower than the known minimum threshold (4.2) for maturation. In the recent 4 years from 2013 to 2016, the mean copepod abundance was much lower than values for the other years. The condition factor showed a significant positive correlation with the copepod abundance. These results indicate that decline of western sand lance catch after 1990 was caused mainly by food shortage.  相似文献   

7.
In 2003, the Alaska walleye pollock industry reported product quality issues attributed to an unspecified parasite in fish muscle. Using molecular and histological methods, we identified the parasite in Bering Sea pollock as Ichthyophonus. Infected pollock were identified throughout the study area, and prevalence was greater in adults than in juveniles. This study not only provides the first documented report of Ichthyophonus in any fish species captured in the Bering Sea, but also reveals that the parasite has been present in this region for nearly 20 years and is not a recent introduction. Sequence analysis of 18S rDNA from Ichthyophonus in pollock revealed that consensus sequences were identical to published parasite sequences from Pacific herring and Yukon River Chinook salmon. Results from this study suggest potential for Ichthyophonus exposures from infected pollock via two trophic pathways; feeding on whole fish as prey and scavenging on industry‐discharged offal. Considering the notable Ichthyophonus levels in pollock, the low host specificity of the parasite and the role of this host as a central prey item in the Bering Sea, pollock likely serve as a key Ichthyophonus reservoir for other susceptible hosts in the North Pacific.  相似文献   

8.
As a major part of fish larval diet in nature, copepods constitute an appropriate live prey for aquaculture purposes. Considering the difficulty of mastering copepod mass production, studies on their growth performance at different environmental conditions are needed to improve their productivity. In this study a new selective approach based on temperature control is proposed to improve the physiological (body size, fecundity and lipid storage) performance of copepods. The estuarine copepod Eurytemora affinis known to have a high genetic variance in temperature tolerance was used as a biological model. First two different copepod lines were obtained after long‐term culture at constant cold (7°C) and warm (20°C) temperatures. Then both populations were transferred to a higher temperature of 24°C appropriate for aquaculture use and followed during five generations. During the first two generations (F1–F2) of a cold‐acclimated population, female body size and fecundity decreased significantly whereas the survival rate remained high. The high lipid content of this population was used by females to compensate the heat shock of more than 10°C. However, the survival rate decreased dramatically in F3 but allowed the selection of robust individuals which progressively improved their fitness during the following generations. So, compared to the warm acclimated population, the cold acclimated one showed larger body size, higher fecundity and better lipid storage. After only five generations at 24°C the cold‐acclimated population showed a significant genetic gain in prosome length compared to the warm acclimated one.  相似文献   

9.
The aim of this study was to compare the nutritional composition and effects of short periods with cultivated copepod nauplii versus rotifers in first‐feeding. Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae were given four different dietary regimes in the earliest start‐feeding period. One group was fed the copepod Acartia tonsa nauplii (Cop), a second fed enriched rotifers (RotMG), a third fed unenriched rotifers (RotChl) and a fourth copepods for the seven first days of feeding and enriched rotifers the rest of the period (Cop7). Cod larvae were fed Artemia sp. between 20 and 40 dph (days posthatching), and ballan wrasse between 36 and 40 dph, with weaning to a formulated diet thereafter. In addition to assessing growth and survival, response to handling stress was measured. This study showed that even short periods of feeding with cultivated copepod nauplii (7 days) had positive long‐term effects on the growth and viability of the fish larvae. At the end of both studies (60 days posthatching), fish larvae fed copepods showed higher survival, better growth and viability than larvae fed rotifers. This underlines the importance of early larval nutrition.  相似文献   

10.
Mackerel (Scomber scombrus) is one of the ecologically and economically most important fish species in the Atlantic. Its recruitment has, for unknown reasons, been exceptional from 1998 to 2012. The majority (75%) of the survivors in the first winter were found north of an oceanographic division at approximately 52°N, despite the fact that mackerel spawns over a wide range of latitudes. Multivariate time series modelling of survivor abundance in the north revealed a significant correlation with the abundance of copepodites (stage I–IV) of Calanus sp. in the spawning season (April to June). The copepodites were a mix of C. helgolandicus (dominating) and C. finmarchicus. The growth of mackerel larvae is known to be positively related to the availability of nauplii and copopodites of preferred prey species, namely, large calanoid copepod species such as Calanus. The statistical relationship between mackerel survivors and abundance of Calanus, therefore, most likely, reflected a causal relationship: high availability of Calanus probably reduced starvation, stage‐specific predation and cannibalism (owing to prey switching). The effects of other abundant, but less preferred zooplankton taxa, (Acartia sp., Branchiopoda spp. and Echinodermata spp. larvae), as well as stock size, temperature and wind‐induced turbulence were not found to be significant. However, stock size was retained in the final model because of a significant interaction with Calanus in oceanic areas west of the North European continental shelf. This was suggested to be a consequence of a density driven expansion of the spawning area that increased the overlap between early life stages of mackerel and food (Calanus) in new areas.  相似文献   

11.
A biophysical model of the Irish Sea was produced to predict net horizontal movement of key taxa including small copepods (Acartia, Pseudocalanus), large copepod species (Calanus finmarchicus and C. helgolandicus), the euphausiid Meganyctiphanes norvegica, and the larval stages of commercially important fish and Nephrops. The model coupled biological information on the vertical distribution and diel vertical migration (DVM) of these taxa with temporally resolved flow fields generated by a baroclinic hydrodynamic model. The DVM of Calanus spp. and Meganyctiphanes was parameterized empirically from data provided by a biophysical campaign carried out in the nearby Clyde Sea. Small copepods and larvae remained within the layers above the thermocline. Model organisms, programmed with particular behavioural patterns, were spaced at regular intervals (1/20° longitude × 1/30° latitude) in the model grid, which extended from 53 to 54.5°N and 4.5 to 6.4°W. The model was run over the months of April, May and June. Model simulations showed that the movement of model organisms followed one of four characteristic patterns: containment along the coast, advection to the north or south, stagnation in the centre of the gyre or circulation around the periphery of the gyre. The latter pattern was apparent even in April, when gyral circulation was not expected because of a lack of stratification in the water column. Thirty‐day model runs in April, May and June showed that the number of organisms retained within the model grid varied between 23 and 49%. Those seeded close to the Irish coast had the highest probability of being retained within the model grid at the end of 90 days. DVM increased the probability of retention through improving the chances of organisms becoming entrained within the gyre circulation. This was especially true for Calanus spp., with those performing midnight sinking being the most likely to be retained out of any model organism. Meganyctiphanes showed comparatively lower levels of retention in deep regions, which suggests that they may have to swim against currents during certain phases of their DVM to avoid displacement. Overall, model results supported a number of hypotheses on the origin and fate of various taxa in the Irish Sea, as well as revealing some less expected distribution patterns.  相似文献   

12.
The ocean survival of coho salmon (Oncorhynchus kisutch) off the Pacific Northwest coast has been related to oceanographic conditions regulating lower trophic level production during their first year at sea. Coastal upwelling is recognized as the primary driver of seasonal plankton production but as a single index upwelling intensity has been an inconsistent predictor of coho salmon survival. Our goal was to develop a model of upwelling‐driven meso‐zooplankton production for the Oregon shelf ecosystem that was more immediately linked to the feeding conditions experienced by juvenile salmon than a purely physical index. The model consisted of a medium‐complexity plankton model linked to a simple one‐dimensional, cross‐shelf upwelling model. The plankton model described the dynamics of nitrate, ammonium, small and large phytoplankton, meso‐zooplankton (copepods), and detritus. The model was run from 1996 to 2007 and evaluated on an interannual scale against time‐series observations of copepod biomass. The model’s ability to capture observed interannual variability improved substantially when the copepod community size distribution was taken into account each season. The meso‐zooplankton production index was significantly correlated with the ocean survival of hatchery coho salmon from the Oregon production area, although the coastal upwelling index that drove the model was not itself correlated with survival. Meso‐zooplankton production within the summer quarter (July–September) was more strongly correlated with coho survival than was meso‐zooplankton production in the spring quarter (April–June).  相似文献   

13.
The copepod Calanus finmarchicus remains in diapause for up to 5 months in the cold (<0.5°C) deep (>700 m) waters of the Faroe–Shetland Channel of the north-western approaches to the North Sea. While in diapause, C. finmarchicus has a high lipid content, up to 76% of dry weight, mostly in the form of wax esters. The question we address here is how copepods with such a high content of buoyant lipids can remain in diapause at depth for an extended period of time? The corollary to this is how this lipid content hinders and/or assists the copepods in their seasonal vertical migration? Part of the answer is due to the physical properties of wax esters. These have a thermal expansion and compressibility higher than that of sea water. Thus, depending on their relative composition (i.e. wax esters/water/protein/chitin), a copepod that is positively buoyant in warm surface waters can become neutrally buoyant in cold deep water. We develop a simple three component physical model of a copepod to explore how and where they attain neutral buoyancy, how the lipid content can aid in their ascent, and what fraction of the lipids can be utilized in ascent in gonad/egg formation while maintaining observed ascent rates. As well as being an energy reserve, the results show that rather than being a barrier to vertical migration, wax esters serve as an important regulator of buoyancy.  相似文献   

14.
Larval and early juvenile fishes were sampled from the eastern Bering Sea (EBS) shelf from 2001 to 2005, and in 2007. Data from these collections were used to examine spatial and temporal patterns in species assemblage structure and abundance. The years 2001–2005 were unusual because the EBS water temperature was ‘warm’ compared with the long‐term mean temperature. In contrast, 2007 was a ‘cold’ year. The abundance of the five most numerous taxa at 12 stations common to all years sampled (1996–2005, 2007) were significantly different among years. Larval and early juvenile stage Theragra chalcogramma (walleye pollock), a commercially important gadid, were by far the most abundant fish in all years. Bottom depth alone best explained assemblage structure in most years, but in others, bottom depth and water column temperature combined and percent sea‐ice coverage were most important. Abundance of T. chalcogramma larvae increases with water column temperature until 5°C and then becomes level. Higher abundances of Gadus macrocephalus (Pacific cod) larvae occur in years with the greatest percent sea‐ice cover as indicated by GAM analysis. Larvae of Lepidopsetta polyxystra (northern rock sole) increase in abundance with increasing maximum wind speed, but decrease at a later date during the last winter storm. The data are consistent with the hypothesis that oceanographic conditions, specifically water temperature and sea‐ice coverage, affect the spatial and temporal pattern of larval abundances. In general, ichthyoplankton species assemblages can be important early indicators of environmental change in the Bering Sea and potentially other subarctic seas as well.  相似文献   

15.
The biological benefits of copepods as live feed for marine finfish larvae have already been well established in the literature. Copepods have better biochemical compositions that improve growth, reduce malpigmentations and allow successful farming of ‘new’ marine finfish species. However, their current usage is quite limited. One of the reasons has been lack of economic knowledge concerning the cost‐effectiveness of copepod application compared to other commonly used feed items such as the brine shrimp Artemia. In this study, a cost‐effectiveness analysis is made on two alternative live feed items (copepods and Artemia) in juvenile turbot farming. Unit cost of production and profit are compared between the two feeding regimes using a unique data set from an existing turbot fry production facility in Denmark. The result reveals that copepods are not only biochemically superior but they are also economically a cost‐effective alternative. Thus, a commercial use of copepods will significantly reduce the production costs for turbot. Furthermore, the unexploited economic potential can be utilized for the successful farming of other high‐valued marine finfish species such as tuna, flounders, cod, sole and halibut. Generally, the biochemical superiority coupled with economic benefits can lead to the commercial utilization of copepods as complementary live feed in the short run and in some situations as a substitute in the long run.  相似文献   

16.
The distribution of northern European hake (Merluccius merluccius L.) extends from the Bay of Biscay up to Norwegian waters. However, despite its wide geographical distribution, there have been few studies on fluctuations in the European hake populations. Marine ecosystem shifts have been investigated worldwide and their influence on trophic levels has been studied, from top predator fish populations down to planktonic prey species, but there is little information on the effect of atmosphere–ocean shifts on European hake. This work analyses hake recruitment success (recruits per adult biomass) in relation to environmental changes over the period 1978–2006 in order to determine whether the regime shift identified in several abiotic and biotic variables in the North Sea also affected the Northeast Atlantic shelf oceanography. Hake recruitment success as well as parameters such as the sea surface temperature, wind patterns and copepod abundance changed significantly at the end of the 1980s, demonstrating an ecological regime shift in the Northeast Atlantic. Despite the low reproductive biomass recorded during the last decades, hake recruitment success has been higher since the change in 1989/90. The higher productivity may have sustained the population despite the intense fishing pressure; copepod abundance, warmer water temperatures and moderate eastward transport were found to be beneficial. In conclusion, in 1988/89 the Northeast Atlantic environment shifted to a favourable regime for northern hake production. This study supports the hypothesis that the hydro‐climatic regime shift that affected the North Sea in the late 1980s may have influenced a wider region, such as the Northeast Atlantic.  相似文献   

17.
Variability in the availability of suitable prey (mainly nauplii stages of Calanus spp.) in the early life stages of cod is likely a significant contributor to the fluctuations in the year‐class strength in the Arcto Norwegian cod stock. We have investigated the origin of the Lofoten shelf population of Calanus using a particle tracking model approach based on velocity fields simulated from 2002 to 2012. By performing backwards simulations of trajectories from particles released on the Lofoten shelf in early spring, we assessed the relative contribution of potential Calanus sources, such as the Lofoten Basin, the local overwintering on the continental shelf and the adjacent fjords. This analysis revealed significant interannual differences in advection patterns mainly driven by changes in wind conditions and variable strength of the Norwegian Coastal Current. Most of the particles advected into our study area originated on the shelf, and contrary to expectations, only a few originated from the Lofoten Basin where Calanus abundances tend to be high. These results suggest that contribution from the Lofoten Basin to the early spring shelf Calanus population may be overestimated and that contribution from more local sources, especially from adjacent fjords, may play a more important role than what has been previously anticipated. Our results highlight the necessity to improve quantification of shelf‐fjord exchange processes, as these may contribute more to the regulation of spring zooplankton stocks on the northern Norwegian shelf, and, as a result, may affect the survival of cod larvae in this area.  相似文献   

18.
Acoustic survey data were used to estimate the abundance and distribution of age-0 walleye pollock and zooplankton near the Pribilof Islands, Bering Sea, nursery area at two time periods in two consecutive years: the beginning of August, and mid-September, of 1996 and 1997. The 1996 pollock year class ultimately produced a large adult cohort in the eastern Bering Sea, while the 1997 year class produced a below-average adult cohort. Acoustic densities of age-0 pollock were significantly lower in August – and declined more strongly from August to September – in 1997 than in 1996, indicating that the trend to adult cohort strength was already set by August. Diet composition analyses revealed that age-0 pollock ate a much higher proportion of euphausiids in 1997 than in 1996, despite lower acoustic abundance of euphausiids in 1997. We infer that in 1996, age-0 pollock experienced greater feeding success by August, with high concentrations of copepods available for smaller fish to consume, and high concentrations of euphausiids available for larger individuals. In 1997, age-0 pollock had lower body condition in August and may have been limited by the availability of small (<2 mm) copepods. Bioenergetic modeling of prey consumption did not indicate a likelihood that age-0 pollock would begin to deplete euphausiids until late August in 1996, and not at all between August and mid-September in 1997.  相似文献   

19.
Juvenile marine growth (SW1) of salmon and a new temperature change (TC) index were evaluated as ecosystem indicators and predictors for the post age‐0 year class strength (YCS) of groundfish in the Gulf of Alaska (GOA) and eastern Bering Sea (EBS). Our hypothesis was that SW1, as measured on the scales of adult Pacific salmon (Oncorhynchus spp.), is a proxy for ocean productivity on the continental shelf, a rearing area for young salmon and groundfish. Less negative TC index values are the result of a cool late summer followed by a warm spring, conditions favorable for groundfish YCS. In the GOA, SW1 was a positive predictor of age‐1 pollock (Theragra chalcogramma), but not age‐2 sablefish (Anoplopoma fimbria) YCS, indicating that the growth of the Karluk River sockeye salmon that enter Shelikof Strait is a proxy for ocean conditions experienced by age‐0 pollock. Contrary to our hypotheses, the TC index was a negative predictor of GOA pollock YCS; and the SW1 a negative predictor of EBS pollock and cod YCS since the 1980s. Recent fisheries oceanography survey results provide insight into possible mechanisms to support the inverse SW1 and YCS relationship. For the EBS, the TC index was a significant positive predictor for pollock and cod YCS, supporting the hypothesis that a cool late summer followed by a warm spring maximizes the over‐wintering survival of pollock and cod (Gadus macrocephalus), especially since the 1980s. The TC and SW1 index showed value for the assessment of pollock and cod, but not sablefish.  相似文献   

20.
Global environmental changes threaten the sustainable use of resources and raise uncertainties regarding marine populations' responses in a changing Ocean. The pelagic copepods of the genus Calanus play a central role in shelf ecosystems transferring phytoplankton carbon to harvested populations, from boreal to temperate regions. Here we examined a 15‐yr time series of Calanus sinicus abundance in regards to climate forcing in the East China Sea. We identified a compound effect of the Pacific Decadal Oscillation (PDO) and the East Asian Winter Monsoon (EAWM) on environmental conditions in the East China Sea. Such climate influences not only a southward transport of Csinicus from its population centres into the Taiwan area, but favours advantageous thermal conditions for the species as well. On the interannual scale, our results show that the population size of Csinicus echoes climate‐driven temperature changes. Hence, the possibility of using the PDO and EAWM variability for assessing and predicting interannual abundance changes of Csinicus in the East China Sea is considered. The observed close relationship between climate and Csinicus may promote bottom‐up controls in the pelagic food web, further influencing the southern edge of the species' geographic distribution. Owing to the prominent role this species plays in food web dynamics these results might help integrative fisheries management policies in the heavily exploited East China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号