首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了准确、定量地检测齿轮的表面缺陷,提出了2种采用深度学习算法的卷积神经网络模型(CNN)检测齿轮的表面缺陷。该方法对卷积核和卷积层进行了优化,并使用最大池化代替了大步长卷积,以扩大接收场的大小并以高分辨率捕获齿轮的精细特征,改进了分类器模块。使用和不使用数据扩充的Alex Net和Res Net模型都涉及通过操纵原始数据创建新数据点的过程,此过程无需添加新照片即可增加深度学习(DL)中训练图像的数量,适用于数据集较小的情况;收集生产过程中齿轮的200个图像的自数据集,通过灰度处理、调整图像大小获得清晰的目标齿轮轮廓并识别齿轮特征点。实验结果表明,经过训练的数据增强模型对Res Net和Alex Net分别具有95.83%和97.94%的最佳效果。与目前仅基于机器视觉的齿轮表面缺陷检测技术相比,该方法具有很好的通用性,获得了最高的识别率。  相似文献   

2.
基于改进VGG16的大米加工精度分级方法研究   总被引:3,自引:0,他引:3  
为了准确识别大米精度等级,结合超列技术(Hyper column technology,HCT)、最大相关-最小冗余(Max-relevance and min-redundancy,MRMR)特征选择算法和极限学习机(Extreme learning machine,ELM),提出了基于改进VGG16卷积神经网络的大米分级检测方法。首先,使用机器学习中的OneHot格式进行编码,对数据进行归一化;然后采用VGG16卷积神经网络结合HCT技术作为特征提取器,从而保证从不同的深层结构中提取出局部鉴别特征,共提取5248个大米特征信息;采用MRMR特征选择算法剔除大量冗余的大米图像特征,筛选出最有效的500个特征;最后,利用ELM技术进行大米加工精度分级。将5848个样本图像按6∶3∶1的比例随机分为训练集、测试集与验证集,对模型进行训练与测试,结果表明,基于改进VGG16卷积神经网络的大米加工精度分级模型对1755个测试集大米样本分类的总体准确率达到97.32%,对大米加工精度的分级预测速度在85t/h以上,基本满足大米生产线的分级要求。  相似文献   

3.
近年来,基于数字图像处理和机器学习算法的果实自动识别检测研究已经越来越成熟。针对传统检测方法检测过程中难以满足实时性要求的缺点,采用了基于Faster-RCNN的果实快速检测模型。模型由卷积神经网络(CNN)和区域提议网络(RPN)组成,首先由CNN进行卷积和池化操作提取特征,然后由RPN选取候选区域,通过网络全连接层参数共享,由目标识别分类器和边界框预测回归器得到多个可能包含目标的预测框,最后通过非极大值抑制挑选出精度最高的预测框完成目标检测。分别对桃子、苹果和橙子的三种果实进行检测,采用迁移学习方法,使用已经预训练好的两种深度神经网络模型ZFnet和VGG16,通过数据集的训练对Dropout及候选区域数量进行参数调整完成网络调优。检测并分析果实不同布局形态下模型的检测效果。试验结果表明,当Dropout取值为0.5或0.6,候选区域数量为300时网络模型最佳,ZFnet网络中,苹果平均精确度为92.70%,桃子为90.00%,而橙子为89.72%。VGG16网络中,苹果平均精度为94.17%,桃子为91.46%,橙子为90.22%。且ZFnet和VGG16的图像处理速度分别达到17 fps和7 fps,能够达到果实实时检测的目的。  相似文献   

4.
为提高高光谱遥感图像的分类精度,通过局部保留判别式分析与深度卷积神经网络(DCNN)算法,提出了基于局部保留降维卷积神经网络的高光谱图像分类算法。首先,用局部保留判别式分析对高光谱数据降维,再用二维Gabor滤波器对降维后的高光谱数据进行滤波,生成空间隧道信息;其次,用卷积神经网络对原始高光谱数据进行特征提取,生成光谱隧道信息;再次,融合空间隧道信息与光谱隧道信息,形成空间-光谱特征信息,并将其输入到深度卷积神经网络,提取更加有效的特征;最后,采用双重优选分类器对最终提取的特征进行分类。将本文方法与CNN、PCA-SVM、CD-CNN和CNN-PPF等算法在Indian Pines、University of Pavia高光谱遥感数据库上进行性能比较。在Indian Pines、University of Pavia数据库上,本文算法识别的整体精度比传统CNN方法的整体精度分别高3. 81个百分点与6. 62个百分点。实验结果表明,本文算法无论在分类精度还是Kappa系数都优于另外4种算法。  相似文献   

5.
基于卷积神经网络与迁移学习的稻田苗期杂草识别   总被引:1,自引:0,他引:1  
杂草类别信息获取是实现杂草智能化田间管理的基础,为实现自然光照和大田复杂背景下的稻田苗期杂草自动识别,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)与迁移学习相结合的稻田苗期杂草识别方法,可将预训练CNN图像分类模型的参数迁移到稻田苗期杂草识别任务。工作时,采集6种稻田苗期杂草图像共928幅,包括鳢肠、丁香蓼、空心莲子草、千金子、野慈姑和稗草,随机选择70%的图像样本作为训练集,剩余30%的图像样本作为测试集。基于3种经典CNN图像分类模型AlexNet、VGG16和GoogLeNet进行参数迁移学习,这3种参数迁移模型对6种稻田苗期杂草测试样本的正确识别率分别为96.40%、97.48%和91.01%。试验结果表明:基于预训练CNN图像分类模型与迁移学习相结合的稻田苗期杂草识别方法切实可行,可为其他农业应用中小样本图像的识别提供参考。  相似文献   

6.
基于Attention_DenseCNN的水稻问答系统问句分类   总被引:1,自引:0,他引:1  
为了解决“中国农技推广APP”问答社区中水稻提问数据快速自动分类的问题,提出一种基于Attention_DenseCNN的水稻文本分类方法。根据水稻文本具备的特征,采用Word2vec方法对文本数据进行处理与分析,并结合农业分词词典对文本数据进行向量化处理,采用Word2vec方法能够有效地解决文本的高维性和稀疏性问题。对卷积神经网络(CNN)上下游卷积块之间建立一条稠密的链接,并结合注意力机制(Attention),使文本中的关键词特征得以充分体现,使文本分类模型具有更好的文本特征提取精度,从而提高了分类精确率。试验表明:基于Attention_DenseCNN的水稻问句分类模型可以提高文本特征的利用率、减少特征丢失,能够快速、准确地对水稻问句文本进行自动分类,其分类精确率及F1值分别为95.6%和94.9%,与其他7种神经网络问句分类方法相比,分类效果明显提升。  相似文献   

7.
为了在复杂环境下对视频目标生猪进行精确、快速检测,提出一种基于改进卷积神经网络(CNN)的多目标生猪检测算法。利用生猪图像的二值化规范梯度(BING)训练两级线性SVM,以生成高质量的候选区域,利用改进的CNN模型对候选区域进行分类识别,最后利用非极大值抑制算法剔除冗余窗口,减少训练样本和训练参数的数量。对CNN网络结构和参数进行优化实验,分析网络训练效率和目标检测效果。实验结果表明,与传统CNN模型相比,本文算法训练时间更短,且具有更快的收敛速度和更强的鲁棒性,对生猪图像前景和背景的分类正确率为96%,高于传统CNN模型的72. 29%。对误检率、漏检率和平均检测时间的分析表明,本文算法的检测性能优于Faster RCNN和Yolo算法;本文算法目标跟踪成功率平均值为89. 17%,中心点平均误差为6. 94像素,表明该检测算法在生猪跟踪上的有效性和稳定性。  相似文献   

8.
为解决文本特征提取不准确和因网络层次加深而导致模型分类性能变差等问题,提出基于深度卷积神经网络的水稻知识文本分类方法。针对水稻知识文本的特点,采用Word2Vec方法进行文本向量化处理,并与OneHot、TF-IDF和Hashing方法进行对比分析,得出Word2Vec方法具有较高的分类精度,正确率为86.44%,能够有效解决文本向量表示稀疏和信息不完整等问题。通过调整残差网络(Residual network,Res Net)结构,分析残差模块结构和网络层次对分类网络的影响,构建了9种分类网络结构,测试结果表明,具有4层残差模块结构的网络具有较好的特征提取精度,Top-1准确率为99.79%。采用优选出的4层残差模块结构作为基本结构,使用胶囊网络(Capsule network,Caps Net)替代其池化层,设计了水稻知识文本分类模型。与Fast Text、Bi LSTM、Atten-Bi GRU、RCNN、DPCNN和Text CNN等6种文本分类模型的对比分析表明,本文设计的文本分类模型能够较好地对不同样本量和不同复杂程度的水稻知识文本进行精准分类,模型的精准率、召回率和F1值分别不小于95.17%、95.83%和95.50%,正确率为98.62%。本文模型能够实现准确、高效的水稻知识文本分类,满足实际应用需求。  相似文献   

9.
基于FTVGG16卷积神经网络的鱼类识别方法   总被引:3,自引:0,他引:3  
针对大多数应用场景中,大多数鱼类呈不规则条状,鱼类目标小,受他物遮挡和光线干扰,且一些基于颜色、形状、纹理特征的传统鱼类识别方法在提取图像特征方面存在计算复杂、特征提取具有盲目和不确定性,最终导致识别准确率低、分类效果差等问题,本文在分析已有的VGG16卷积神经网络良好的图像特征提取器的基础上,使用Image Net大规模数据集上预训练的VGG16权重作为新模型的初始化权重,通过增加批规范层(Batch normalization,BN)、池化层、Dropout层、全连接层(Fully connected,FC)、softmax层,采用带有约束的正则权重项作为模型的损失函数,并使用Adam优化算法对模型的参数进行更新,汲取深度学习中迁移学习理论,构建了FTVGG16卷积神经网络(Fine-tuning VGG16 convolutional neural network,FTVGG16)。测试结果表明:FTVGG16模型在很大程度上能够克服训练的过拟合,收敛速度明显加快,训练时间明显减少,针对鱼类目标很小、背景干扰很强的图像,FTVGG16模型平均准确率为97. 66%,对部分鱼的平均识别准确率达到了99. 43%。  相似文献   

10.
基于卷积神经网络的空心村高分影像建筑物检测方法   总被引:1,自引:0,他引:1  
李政  李永树  吴玺  刘刚  鲁恒  唐敏 《农业机械学报》2017,48(9):160-165,110
基于卷积神经网络(CNN)提出了一种适用于空心村高分影像的建筑物自动检测方法,该方法利用多尺度显著性检测来获取包含建筑物信息的显著性区域,然后通过滑动窗口获取显著性区域内目标样本块,再将这些样本块输入训练好的CNN并结合SVM来实现分类。为检验方法有效性,选取高分影像进行实验,结果表明,显著性检测能够有效地获取主要目标,减弱其他无关目标的影响,降低数据冗余;卷积神经网络能够自动学习高层次的特征,基于CNN对高分影像进行建筑物检测,分类准确度可以达到97.6%,表明该方法具有较好的鲁棒性和有效性。  相似文献   

11.
基于改进ResNet的植物叶片病虫害识别   总被引:1,自引:0,他引:1  
轻量化植物叶片病虫害识别算法设计是实现移动端植物叶片病虫害识别的关键。研究提出一种基于改进ResNet模型的轻量化植物叶片病虫害识别算法Simplify ResNet。以人工采集图像和PlantVillage数据集图像为实验数据,根据移动端植物病虫害识别对准确率、速度和模型大小的实际需求,改进ResNet模型。使用5×5卷积替代7×7卷积,采用残差块的瓶颈结构代替捷径结构,采用模型剪枝处理训练后的模型。通过测试集5 786幅图像测试Simplify ResNet模型,证明5×5卷积和残差块的瓶颈结构可有效降低模型参数量,模型剪枝可有效降低训练后的模型大小。Simplify ResNet模型对测试集图像的识别准确率为92.45%,识别时间为48 ms,内存大小为36.14 Mb。与LeNet、AlexNet和MobileNet等模型相比,其准确率分别高18.3%,7.45%和1.2%。为移动端植物病虫害识别解决最重要的算法设计问题,为移动端植物病虫害识别做出有益探索。  相似文献   

12.
基于喂入量的作业速度智能化控制技术是优化联合收获机作业效率和质量的重要手段。本文针对传统喂入量自动控制技术时滞明显,在喂入量调整时无法及时适应实际情况的问题,采用基于图像的深度学习方法开展了成熟期小麦植株密度等级分类识别方法研究,通过预先感知作物密度,实现联合收获机作业参数的自动调整。首先基于车载相机和无人机图像构建了小麦植株图像数据集,并细分为低密度、中密度、高密度和特高密度4类;其次构建了基于MobileViT-XS轻量化网络的密度等级识别模型,利用建立的数据集进行模型的训练和测试;最后将其与VGG16、GoogLeNet和ResNet进行了比较。结果表明,MobileViT-XS模型的总体识别准确率达到91.03%,且单幅图像推理时间仅为29.5ms。与VGG16、ResNet网络相比,总体识别准确率分别高出3.51、2.34个百分点,MobileViT-XS模型可以较好的完成小麦不同密度等级的分类识别任务,为实时预测小麦喂入密度提供了技术支持。  相似文献   

13.
为快速准确计数大豆籽粒,提高大豆考种速度和育种水平,本研究提出了一种基于密度估计和VGG-Two(VGG-T)的大豆籽粒计数方法。首先针对大豆籽粒计数领域可用图像数据集缺乏的问题,提出了基于数字图像处理技术的预标注和人工修正标注相结合的快速目标点标注方法,加快建立带标注的公开可用大豆籽粒图像数据集。其次构建了适用于籽粒图像数据集的VGG-T网络计数模型,该模型基于VGG16,结合密度估计方法,实现从单一视角大豆籽粒图像中准确计数籽粒。最后采用自制的大豆籽粒数据集对VGG-T模型进行测试,分别对有无数据增强的计数准确性、不同网络的计数性能以及不同测试集的计数准确性进行了对比试验。试验结果表明,快速目标点标注方法标注37,563个大豆籽粒只需花费197 min,比普通人工标注节约了1592 min,减少约96%的人工工作量,大幅降低时间成本和人工成本;采用VGG-T模型计数,其评估指标在原图和补丁(patch)情况下的平均绝对误差分别为0.60.2,均方误差为0.6和0.3,准确性高于传统图像形态学操作以及ResNet18、ResNet18-T和VGG16网络。在包含不同密度大豆籽粒的测试集中,误差波动较小,仍具有优良的计数性能,同时与人工计数和数粒仪相比,计数11,350个大豆籽粒分别节省大约2.493?h0.203?h,实现大豆籽粒的快速计数任务。  相似文献   

14.
针对蓝莓果蝇虫害分类识别存在效率低、准确度差等问题,采用深度学习方法对采集的蓝莓高光谱图像进行数据处理与分析,以实现蓝莓果蝇虫害的无损检测。首先蓝莓高光谱图像采用PCA进行降维,优选数据集PC2与PC3并进行拼接得到最佳数据集PC23,对数据集中图像进行旋转90°、旋转180°、模糊、高亮、低亮、镜像和高斯噪声共7种增强操作,使各数据集容量扩增为原始容量的18倍。然后采用VGG16、InceptionV3与ResNet50深度学习模型对蓝莓果蝇虫害图像进行检测,均取得了较高的识别准确率。其中ResNet50模型效率最高,且ResNet50模型的准确率最高,达到92.92%,损失率最低,仅有3.08%,因此ResNet50模型在蓝莓果蝇虫害无损检测方面整体识别效果最佳。为了进一步提高蓝莓果蝇虫害无损检测性能,从ECA注意力模块、Focal Loss损失函数与Mish激活函数3方面对ResNet50模型进行了改进,构建了改进的im-ResNet50模型。得出im-ResNet50模型识别准确率达95.69%,损失率为1.52%。试验结果表明, im-ResNet50模型有效提升了蓝莓果蝇虫害识别能力。采用Grad-CAM分析了im-ResNet50模型可解释性,能够快速、准确地无损检测蓝莓果蝇虫害。  相似文献   

15.
卷积神经网络(CNN)的发展带来了大量的网络参数和庞大的模型体积,极大地限制了其在小规模计算资源设备上的应用。为将CNN应用在各种小型设备上,研究了一种基于知识蒸馏的结构化模型压缩方法。该方法首先利用VGG16训练了一个识别率较高的教师模型,再将该模型中的知识通过蒸馏的方法迁移到MobileNet,从而大幅减少了模型的参数量。将知识蒸馏后的Distilled-MobileNet模型应用在14种作物的38种常见病害分类中。进行了知识蒸馏在VGG16、AlexNet、GoogleNet和ResNet 4种不同网络结构上的表现测试,结果表明,当VGG16作为教师模型时,模型准确率提升了97.54%;使用单个病害识别率、平均准确率、模型内存、平均识别时间4个指标对训练好的Distilled-MobileNet模型进行真实环境下准确性评估,经测试,模型的平均准确率达到了97.62%,平均识别时间缩短至0.218 s,仅占VGG16模型的13.20%,模型大小压缩仅为19.83 MB,相比于VGG16缩小了93.60%,使其具备了较高的准确性和实时性要求。本方法模型在压缩内存体积和缩短识别时间上较传统神经网络有了明显提高,为内存和计算资源受限设备上的病害识别提供了新的思路。  相似文献   

16.
针对传统苹果叶部病害分类方法精准性差、效率低等问题,提出了一种基于改进ResNet18的苹果叶部病害多分类算法。通过在原始ResNet18网络的基础上增加通道与空间注意力机制分支,强化网络对叶部病害区域的特征提取能力,提高病害的识别精度和实时性。为更好地引导网络学习到零散分布的病害斑点的特征,引入特征图随机裁剪分支,不仅实现有限样本空间的扩充,还进一步优化网络结构,提高训练速度。试验以苹果5类常见的叶部病害(黑星病、黑腐病、雪松锈病、灰斑病、白粉病)为主要研究对象,并与主流分类算法模型进行对比。试验结果表明,所提ResNet18-CBAM-RC1模型病害分类准确率可达98.25%,高于ResNet18(93.19%)和VGG16(96.13%),能够有效提取叶片病害特征,增强对多类病害的识别,提高识别准确率。此外,模型内存占用量仅为37.44 MB,单幅图像推理时间为9.11 ms,可满足嵌入式设备上果园病害识别的实时性要求。  相似文献   

17.
针对新疆棉田杂草的伴生特点带来的特征过拟合、精确率低等问题,以新疆棉花幼苗与杂草为研究对象,分析杂草识别率低的影响因素,建立了基于Faster R-CNN的网络识别模型.采集不同角度、不同自然环境和不同密集程度混合生长的棉花幼苗与杂草图像5 370张.为确保样本质量以及多样性,利用颜色迁移和数据增强来提高图像的颜色特征与扩大样本量,以PASCAL VOC格式数据集进行网络模型训练.通过综合对比VGG16,VGG19,ResNet50和ResNet101这4种网络的识别时间与精度,选择VGG16网络训练Faster R-CNN模型.在此基础上设计了纵横比为1∶1的最佳锚尺度,在该模型下对新疆棉花幼苗与杂草进行识别,实现91.49%的平均识别精度,平均识别时间262 ms.为农业智能精确除草装备的研发提供了参考.  相似文献   

18.
基于深度学习的大豆生长期叶片缺素症状检测方法   总被引:5,自引:0,他引:5  
为了检测作物叶片缺素,提出了一种基于神经网络的大豆叶片缺素视觉检测方法。在对大豆缺素叶片进行特征分析后,采用深度学习技术,利用Mask R-CNN模型对固定摄像头采集的叶片图像进行分割,以去除背景特征,并利用VGG16模型进行缺素分类。首先通过摄像头采集水培大豆叶片图像,对大豆叶片图像进行人工标记,建立大豆叶片图像分割任务的训练集和测试集,通过预训练确定模型的初始参数,并使用较低的学习率训练Mask RCNN模型,训练后的模型在测试集上对背景遮挡的大豆单叶片和多叶片分割的马修斯相关系数分别达到了0.847和0.788。通过预训练确定模型的初始参数,使用训练全连接层的方法训练VGG16模型,训练的模型在测试集上的分类准确率为89.42%。通过将特征明显的叶片归类为两类缺氮特征和4类缺磷特征,分析讨论了模型的不足之处。本文算法检测一幅100万像素的图像平均运行时间为0.8 s,且对复杂背景下大豆叶片缺素分类有较好的检测效果,可为农业自动化生产中植株缺素情况估计提供技术支持。  相似文献   

19.
油茶果脱壳后果壳与茶籽混合在一起,采用传统的机械分选仍会出现掺杂果壳的情况,清选率有待提高。比较ResNet不同层数模型,发现在当前壳籽实验样本下ResNet18与其他模型相比每次迭代的平均训练时间最少,并且验证集平均准确率最高,同时均优于其他CNN分类模型。为进一步提升分选效率,在ResNet18网络中引入注意力机制,结果表明,SE-ResNet18模型与改进前的模型相比,训练过程中每次迭代的平均时间由1.31 s下降到1.13 s,缩短018 s,验证集平均准确率为98.88%,提升1.4个百分点。经过测试后得出,测试集整体准确率为98.43%,与原模型相比提升1.3个百分点,说明使用ResNet18模型结合注意力机制的方法在油茶果果壳与茶籽的分选上是可行的,为油茶果在分选方法提供一种新的理论基础与思考方向。  相似文献   

20.
快速准确识别奶牛粪便形态,对于奶牛肠胃健康监测与精细管理具有重要意义。针对目前奶牛粪便识别人工依赖强、识别难度大等问题,提出了一种基于VGG-ST(VGG-Swin Transformer)模型的奶牛稀便、软便、硬便及正常粪便图像识别与分类方法。首先,以泌乳期荷斯坦奶牛粪便为研究对象,采集上述4种不同形态的粪便图像共879幅,利用翻转、旋转等图像增强操作扩充至5580幅作为本研究数据集;然后,分别选取Swin Transformer、AlexNet、ResNet-34、ShuffleNet和MobileNet 5种典型深度学习图像分类模型进行奶牛粪便形态分类研究,通过对比分析,确定Swin Transformer为最优基础分类模型;最后,融合VGG模型与Swin Transformer模型,构建了VGG-ST模型,其中,VGG模型获取奶牛粪便局部特征,同时Swin Transformer模型提取全局自注意力特征,特征融合后实〖JP3〗现奶牛粪便图像分类。实验结果表明,Swin Transformer模型在测试集中分类准确率达859%,与ShuffleNet、ResNet-34、MobileNet、AlexNet模型相比分别提高1.8、4.0、12.8、23.4个百分点;VGG-ST模型分类准确率达89.5%,与原Swin Transformer模型相比提高3.6个百分点。该研究可为奶牛粪便形态自动筛查机器人研发提供方法参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号