首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
基于土壤湿润体特征值的无压灌溉灌水定额模型研究   总被引:2,自引:0,他引:2  
根据无压灌溉土壤湿润体形状为球冠的特点及湿润体内含水率分布规律,推导出了湿润体特征值模型.该模型表明湿润体特征值仅是灌溉水量的函数,因此可以用该模型计算无压灌溉灌水定额.通过微灌灌水定额计算方程和湿润体特征值模型的比较和联立求解,分别推导出了当湿润体半径(即根据作物根系分布规律来确定湿润体半径大小)为已知条件和湿润比为已知条件时的灌水定额计算方程,并用实例进行了验证.通过求湿润体内平均含水率的方法,解决了大田试验中用张力计监测土壤水分动态变化,从而实现适时精确灌水时张力计具体埋设位置的问题.结果表明,与微灌灌水定额计算方法相比,基于土壤湿润体特征值的灌水定额模型简单,操作性强,误差小,且同时扩大了微灌灌水定额计算方法在无压灌溉技术中的推广和应用范围.  相似文献   

2.
无压地下灌溉条件下土壤水分入渗特性研究   总被引:2,自引:0,他引:2  
通过室内土箱试验,研究了不同供水压力(-3、0、3cm)和灌水器孔径(4、6、8mm)对无压灌溉下累积入渗量、湿润峰动态变化以及土壤含水率分布的影响。结果表明,不同供水压力和灌水器孔径下累积入渗量、土壤湿润体水平向和垂直向最大湿润距离均随入渗时间的增加以幂函数形式增大,湿润体内土壤含水率沿湿润球体半径方向以二次抛物线形式逐渐减小。随着供水压力的增大,相同时段内的土壤入渗量增大,湿润锋的迁移速度也随之变快;在供水压力相同的条件下,大孔径灌水器在相同时段内的土壤入渗量、水平向和垂直向最大湿润距离均比小孔径灌水器情况下的数值要大。在中大灌水器孔径条件下,土壤含水率随供水压力增大而增大,而小孔径情况下差异显著。  相似文献   

3.
负压灌溉对湿润体特征参数的影响   总被引:3,自引:0,他引:3  
基于室内试验,分析了不同负压(-2、-1.5、-1.0、-0.5、0m)灌溉对湿润体特征参数的影响。结果表明,负压灌溉湿润体为椭球体,湿润体的宽深比随入渗时间和供水水头的增加而增加;湿润体的水平和垂直运移速度随时间的增加和供水水头的减小而减小;单个灌水器所控制的湿润土体体积Vc和湿润体的体积V具有良好的线性关系;在灌溉过程中湿润体的平均含水率无显著变化。  相似文献   

4.
压力水头对微润灌溉土壤水分运移试验研究   总被引:1,自引:0,他引:1  
为了探明微润灌溉湿润体特性,采用黏性土壤和3个水头(1.5,2.0,2.5 m)进行试验,分析微润管的入渗速率、累计入渗量、湿润体体积及湿润体含水率分布特征,同时探讨了含沙量为1.0 g/L的水质在3种水头压力下的堵塞问题.研究表明:土壤累积入渗量与压力水头呈正相关,与时间呈负相关;粒径为0.061~0.100 mm的浑水试验中,试验初期3个不同水头下的流量相差较小,24 h后流量相差逐渐增大,压力水头增大对微润带的堵塞情况有改善作用;微润灌溉湿润体形状近似圆柱状,湿润锋行进半径与压力水头呈正相关,建立了压力水头与湿润体体积的预测模型;不同压力水头下各方向的湿润锋扩散指数都约为0.42;湿润体体内含水率呈同心圆分布,随半径增大而减小,靠近微润管壁2 mm处含水率最大,土壤水分移动主要动力为压力水头和土壤势能之差.研究结果可为微润灌溉提供科学的理论依据和理论基础.  相似文献   

5.
【目的】研究滴灌条件下土壤湿润体水分分布。【方法】开展单点源入渗试验,探究了不同初始土壤含水率和滴头流量对滴灌土壤湿润体特征及湿润体内含水率分布的影响。【结果】灌溉结束24 h后,湿润体内的含水率达到相对稳定的状态,湿润体体积基本保持稳定;随灌水及再分布时间增加,湿润体宽深比逐渐降低,再分布过程中,宽深比随初始含水率减小而增大,随滴灌流量减小而减小;各处理湿润体体积与入渗时间呈良好的线性函数关系,灌水结束24 h后,各处理实际湿润体积均已超出计划湿润体积;计划湿润体内含水率60%θFC~80%θFC区间占比随初始含水率增大而减小,随滴头流量的增大而增大,其余各区间占比变化规律与之相反,相同滴头流量下,50%θFC初始含水率处理超出计划湿润体的体积最少。【结论】再分布后的湿润体体积主要受灌水量的影响,可以选择较小的初始含水率及较大的滴头流量以提高湿润体内水分有效性。  相似文献   

6.
通过室内试验和大田试验,研究了无压灌溉方式下埋管深度对水分运移和作物生长的影响机理。结果表明,在不同埋深时湿润体形状均为球冠,但球冠高度不同;湿润体内含水率均在埋管深度附近达到最大值,并以灌水器所在平面为对称面对称分布;埋管深度对番茄根系的生长分布、早期生物量的积累和后期干物质在果实和茎叶中的分配比例都有影响;埋深10cm时,番茄的水分利用效率、产量和品质最大,是温室番茄的最佳埋深。  相似文献   

7.
无压灌溉埋管深度的机理性研究及大田试验   总被引:1,自引:0,他引:1  
通过室内试验和大田试验,研究了无压灌溉方式下埋管深度对水分运移和作物生长的影响机理。结果表明,在不同埋深时湿润体形状均为球冠,但球冠高度不同;湿润体内含水率均在埋管深度附近达到最大值,并以灌水器所在平面为对称面对称分布;埋管深度对番茄根系的生长分布、早期生物量的积累和后期干物质在果实和茎叶中的分配比例都有影响;埋深10 cm时,番茄的水分利用效率、产量和品质最大,是温室番茄的最佳埋深。  相似文献   

8.
微孔陶瓷渗灌与地下滴灌土壤水分运移特性对比   总被引:4,自引:0,他引:4       下载免费PDF全文
以微孔陶瓷灌水器为研究对象,在0 m工作水头下进行土壤水分运移特性试验,并以10 m额定工作水头下工作的地下滴灌灌水器作为对照。通过对比分析2种灌溉方式下累计入渗量、流量、湿润体特征和土壤含水率变化,结果表明:相同灌溉时间下微孔陶瓷渗灌的累计入渗量、湿润锋运移距离、湿润体截面面积均明显小于地下滴灌。微孔陶瓷渗灌的流量随时间逐渐减小,直至接近于零;试验后期,微孔陶瓷渗灌湿润体内整体土壤含水率变化较小;由于微孔陶瓷渗灌为无压连续灌溉,因此在其工作过程中可为作物提供一个恒定的水分环境。而地下滴灌的流量则会维持稳定,使得土壤含水率一直增大,停止灌溉后由于土壤水分再分布而减小。地下滴灌为被动恒压灌溉,因此其灌溉条件下作物生长的水分环境处于干湿交替的循环变化状态。  相似文献   

9.
基于HYDRUS模型筛选滴灌模式下适宜灌水上下限的研究   总被引:1,自引:0,他引:1  
通过开展不同土壤初始含水率和不同滴头流量的沙壤土室内滴灌试验,率定了土壤水动力学参数,验证了HYDRUS模型的适用性;利用HYDRUS模型模拟不同灌水上下限点源滴灌土壤水分运移过程,分析了不同灌水上下限对实际湿润体与计划湿润体间差异的影响规律。结果表明,以田间持水量为灌水上限时,实际土壤湿润体体积均大于计划湿润体体积,较小的灌水下限有利于将灌溉水控制在计划湿润体内;以50%θFC、60%θFC及70%θFC为灌水下限时控制实际湿润体体积对应的灌水上限分别为81%θFC、85%θFC及86.5%θFC。经模拟验证,适宜灌水上下限滴灌结束时,没有灌溉水分运移到计划湿润体外。  相似文献   

10.
为探明微润灌土壤湿润体特性的变化规律,以扰动均质土壤为研究对象,采用室内模拟试验的方法,分析了不同初始含水率(2.1%,5.6%,8.0%,10.1%)条件下微润灌土壤湿润锋运移距离和水分分布的变化规律.结果表明:土壤初始含水率对微润灌溉线源扩散有较大的影响,湿润锋推进速率、地表湿润时间随着初始含水率的增大而增大,并与灌水时间呈幂函数关系;湿润体形状受初始含水率影响非常小,其横断面为近似圆形;一定灌水时间内,累计入渗量、平均入渗率与初始含水率呈正相关性,且到达稳定入渗率的时间与初始含水率呈负相关性,湿润锋推进速率与初始含水率呈正相关关系,扩散系数与初始含水率成指数递增关系,不同初始含水率的不同方向土壤水分扩散指数介于0.50~0.60之间;湿润体内水分呈同心圆分布,含水率梯度随着初始含水率的增大而减小;微润灌均匀系数随初始含水率的增大而增大.研究结果可为微润灌溉技术推广应用提供理论依据.  相似文献   

11.
不同滴灌条件下土壤水分分布与运移规律   总被引:5,自引:0,他引:5  
通过对相同规格的滴灌带在不同土壤含水量、不同滴灌方式和不同灌水量条件下灌水,研究水分在土壤中的下渗分布规律。结果表明,单管滴灌条件下,水分在不同含水量土壤中湿润体均呈坛状;双管滴灌条件下,水分在不同含水量土壤中湿润体依灌水量大小而异,灌水量较小时呈并放双碗状,随灌水量增大,湿润体逐渐呈坛状。不同滴灌方式下灌水,满足植物根系需要的灌水量不同,单双管滴灌灌水量分别为300 m3/hm2和450 m3/hm2时即可满足植物根系对水分的需求。单双滴在相同灌水量条件下,土壤表层湿润半径大小变化因土壤含水量不同而不同,土壤垂直湿润深度随灌水量增大而增加;在相同灌水量条件下,滴灌方式和初始土壤含水量对土壤水分湿润圈大小有很大影响。  相似文献   

12.
泥沙级配对浑水灌溉下土壤水分增长过程的影响分析   总被引:2,自引:0,他引:2  
通过在测坑中开展灌溉条件下2种含沙量4种泥沙级配组合下的浑水灌溉入渗试验,发现泥沙级配对土壤水分增长过程的影响显著:泥沙级配越细,相同灌溉入渗历时的累积入渗量和土壤含水量的增加量越小,与清水灌溉试验结果的差异性越大。同一含沙量浑水灌溉,泥沙级配越细,不同深度土壤含水量始变历时和增长拐点历时更长;同一泥沙级配浑水灌溉,含沙量越大,不同深度土壤含水量始变历时和增长拐点历时更长。相同入渗历时,浑水灌溉下的累积入渗量和土壤含水量变化量均较清水灌溉的小,土壤水分增长较清水缓慢;由于浑水中泥沙的阻渗和减渗作用,同一含沙量条件下,泥沙级配越细,灌水后相同入渗历时的土壤含水量变化量和累积入渗量越小;同一泥沙级配浑水,含沙量越大,灌水后相同入渗历时的土壤含水量变化量和累积入渗量越小。  相似文献   

13.
干旱内陆河灌区灌溉入渗系数的测定与计算   总被引:1,自引:1,他引:0  
在深入分析灌溉水入渗和再分布过程的基础上,依据包气带水量平衡原理,提出了一种根据土壤剖面含水率和同步地下水埋深资料计算灌溉入渗系数的方法。应用事例表明,方法简单可行,易于推广应用。  相似文献   

14.
不同灌水量对南疆棉花墒情及长势的影响研究   总被引:2,自引:0,他引:2  
通过棉花膜下滴灌大田试验,研究了不同灌水量情况下作物长势与产量影响及土壤墒情变化与分布规律的影响。试验共设了3 300、3 000、2 700、2 400m3/hm2等不同灌溉定额的处理,在各处理试验小区内装土壤墒情传感,并其传感器探头埋在地下10、20、40cm处实时监测不同层面土壤含水量和温度变化,以及同时在相应处取土样采用烘干法测土壤含水率和田间持水量。结果表明:3 300、3 000m3/hm2灌溉定额下,作物长势、土壤含水率和温度变化规律比较好,并与产量的相关性显著最佳状态,灌溉定额对土壤水分与温度灌水前后和灌水周期内变化的影响有明显显著。  相似文献   

15.
咸淡轮灌和生物炭对滨海盐渍土水盐运移特征的影响   总被引:1,自引:0,他引:1  
为利用滨海地区微咸水改良盐渍土,进行了不同咸淡水轮灌(淡淡、淡咸、咸淡、咸咸)和施用生物炭(0、15、30 t/hm^2)的室内入渗试验,探讨了咸淡轮灌和生物炭施用下滨海盐渍土水盐运移过程。结果表明:滨海盐渍土水分运动主要受初始入渗水质的影响,先咸后淡的轮灌方式更有利于土壤水分入渗,入渗速率增加了8.2%~46.9%,并小幅提高了土壤含水率;生物炭可促进咸淡轮灌下的水分运移,增加了相同时间内的湿润锋距离、累计入渗量、入渗速率及入渗后的土壤含水率,添加量为15 t/hm^2时入渗增益最佳,入渗速率提高了3.5%~22.0%;淡咸和咸淡处理的土壤含盐量均低于咸咸处理,脱盐率和脱盐区深度系数更高,咸淡处理可增加脱盐率,而淡咸处理可提高脱盐区深度系数;生物炭有利于咸淡轮灌下的土壤盐分淋洗,脱盐率和脱盐区深度系数分别提高了9.1%~15.0%和1.1%~7.5%,并增加了Ca^2+和Mg^2+含量,促进Na+淋洗,进而降低了微咸水利用风险,但在30 t/hm^2时盐分淋洗效果有所减弱。研究表明,添加15 t/hm^2生物炭配合微咸水-淡水轮灌能够改善滨海盐渍土的入渗特性、持水能力和盐分分布,可为该区盐渍土和微咸水开发利用提供参考。  相似文献   

16.
滴灌条件下土壤水盐运移特性的研究   总被引:2,自引:0,他引:2  
在国内外研究成果的基础上 ,综述了滴灌点源入渗影响因素、入渗模型特性、水分分布特征、湿润体浸润形状、湿润锋运移、盐分运移的规律 ,为滴灌点源水盐运移的研究提供依据  相似文献   

17.
为了探明灌水频率对小滴头滴灌土壤湿润区的影响,在实验室对沙土和中壤土进行了膜下间歇滴灌试验,滴头流量分别为0.3、0.5、0.7L/h;灌水频率分别为1、2、3、4次灌完。在灌水量相同的情况下观测了土壤的湿润区运移过程和含水率分布。结果表明,小滴头流量下改变滴水频率对土壤湿润体的大小影响很小;随着灌水频率的增加,土壤湿...  相似文献   

18.
滴灌条件下砂壤土水分运动规律研究   总被引:7,自引:1,他引:7  
采用多通道土壤水分自动测定系统,对风干砂壤土在滴灌条件下的水分入渗和水分再分布过程进行了模拟测定试验。根据测定结果,分析了在滴灌条件下湿润峰的运移速率、特征点的土壤含水率变化过程、湿润体内土壤水分的分布以及停止灌水后湿润体内水分的再分布等土壤水分运动特征。揭示了在点源供水条件下,湿润体内土壤含水率的分布从中心向外逐渐减小,含水率剖面具有三角形形状特征。供水停止后土壤水分再分布过程中,土壤湿润峰面不断向外部推移,湿润层土壤含水量开始有所增加,后期湿润体内的土壤含水量普遍降低,高含水区逐渐下移,最后达到相对稳定。  相似文献   

19.
供水压力对微孔陶瓷渗灌土壤水分运移的影响   总被引:1,自引:0,他引:1  
为探明供水压力对微孔陶瓷灌水器灌水条件下土壤水分运移规律的影响,通过室内土箱模拟试验,研究了3个压力水平下的微孔陶瓷灌水器灌水时的土壤水分入渗特征。研究结果表明,微孔陶瓷灌过程中,供水压力是决定土壤水分初始入渗速率和累计入渗量的关键因素,且供水压力越大,土壤水分初期入渗速率越大,最终累计入渗量也越大;微孔陶瓷渗灌形成的湿润体轮廓为上下不对称的椭球体,湿润锋在各方向上的运移距离与时间呈幂函数关系,其中入渗向上距离水平距离向下距离,供水压力越大,水平最大入渗半径距离灌水器底部距离越远;供水压力对土壤含水分分布影响较大,供水压力越大,灌水器周围含水率越高,高含水率区域越大。在各供水压力水平下,微孔陶瓷渗灌形成的湿润体大小和含水率均能满足作物根系吸水需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号