首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant genotypes with higher drought tolerance through improved root characteristics are poorly studied in orchardgrass. In the current research, 30 orchardgrass genotypes were polycrossed and the resulting half‐sib families evaluated under both normal and water stress environments. Under water stress conditions, values for most root traits decreased at 0–30 cm soil depth, while at 30–60 cm depths, the root length (RL), root area (RA), root volume, percentage of root dry weight (RDW) and the ratio of root to shoot were increased. We identified drought‐tolerant genotypes with a high combining ability for root characteristics and a high yield potential. High estimates of heritability as well as genetic variation for root traits indicated that phenotypic selection would be successful in order to achieve genetic progress. Indirect selection to improve dry matter yield was most efficient when selecting for RL and RDW under water stress conditions. Significant associations between a drought tolerance index and RL, RA and root volume confirmed the importance of these traits in conferring drought tolerance of orchardgrass.  相似文献   

2.
土壤水分和氮磷营养对冬小麦根苗生长的效应   总被引:23,自引:0,他引:23  
梁银丽  陈培元 《作物学报》1996,22(4):476-482
在模拟田间原状土容重的条件下土培,研究了土壤水分和氮磷营养对小麦根苗生长及水分利用的效应。结果表明:在SRWC为40%-70%范围内,土壤水分亏缺严重,RψW和ET显著降低,根苗生长严重受阻,RL变短,RDW降低,LA和PDW减少;随着土壤水分趋于良好,RψW、ET和LA明显增加,RDW和PDW在STWC为55%-62%之间时最大,而SRWC在55%上下时RL达最长;土壤轻度干旱有利根系下扎,土壤  相似文献   

3.
The biomass allocation pattern of plants to shoots and roots is a key in the cycle of elements such as carbon, water and nutrients with, for instance, the greatest allocations to roots fostering the transfer of atmospheric carbon to soils through photosynthesis. Several studies have investigated the root to shoot ratio (R:S) biomass of existing crops but variation within a crop species constitutes an important information gap for selecting genotypes aiming for increasing soil carbon stocks for climate change mitigation and food security. The objectives of this study were to evaluate agronomic performance and quantify biomass production and allocation between roots and shoots, in response to different soil water levels to select promising genotypes for breeding. Field and greenhouse experiments were carried out using 100 genotypes including wheat and Triticale under drought‐stressed and non‐stressed conditions. The experiments were set‐up using a 10 × 10 alpha lattice design with two replications under water stress and non‐stress conditions. The following phenotypic traits were collected: number of days to heading (DTH), number of productive tillers per plant (NPT), plant height (PH), days to maturity (DTM), spike length (SL), kernels per spike (KPS), thousand kernel weight (TKW), root biomass (RB), shoot biomass (SB), root to shoot ratio (R:S) and grain yield (GY). There was significant (p < 0.05) variation for grain yield and biomass production because of genotypic variation. The highest grain yield of 247.3 g/m2 was recorded in the genotype LM52 and the least was in genotype Sossognon with 30 g/m2. Shoot biomass ranged from 830 g/m2 (genotype Arenza) to 437 g/m2 (LM57), whilst root biomass ranged between 603 g/m2 for Triticale and 140 g/m2 for LM15 across testing sites and water regimes. Triticale also recorded the highest R:S of 1.2, whilst the least was 0.30 for wheat genotype LM18. Overall, drought stress reduced total biomass production by 35% and R:S by 14%. Genotypic variation existed for all measured traits useful for improving drought tolerance, whilst the calculated R:S values can improve accuracy in estimating C sequestration potential of wheat. Wheat genotypes LM26, LM47, BW140, LM70, LM48, BW152, LM75, BW162, LM71 and BW141 were selected for further development based on their high total biomass production, grain yield potential and genetic diversity under drought stress.  相似文献   

4.
干旱对夏玉米根冠生长的影响   总被引:9,自引:2,他引:9  
利用大型活动式防雨旱棚,人工严格控制不同的土壤含水量,全生育期系统研究了夏玉米根冠生长对水分的响应,结果表明:干旱并不影响夏玉米根系、冠层干物质累积、株高增加、茎(基)粗增大等过程的总趋势。但随胁迫的增强,根、冠干物质累积速率、干物质累积总量降低,根条数变少、株高降低、茎(基)粗变细,但它们并不呈线性相关关系;水分供应量的减少延长了夏玉米的生育周期,随胁迫的增强,根系生物量最大值、最大根条数、冠层最大株高出现的时间延后;根冠比(R/S)随土壤水分的改变而改变;不同水分处理的夏玉米,R/S值影响最小的时期是开花—灌浆盛期,最大的时期是在拔节—抽雄,此阶段充分供水处理H的R/S是严重水分胁迫处理L的125.77%。充分供水的处理则有最大的根冠比 ( R/S=0.173)。在干旱条件下,协调夏玉米根冠平衡,最大程度发挥根系和地上部叶片的功能,才有利于提高产量。  相似文献   

5.
Seed priming is a method to improve germination and seedling establishment under stress conditions. The effect of seed priming in chemical solutions such as urea and KNO3, on protein and proline content, germination, and seedling growth responses of four maize (Zea mays L.) hybrids under drought and salt stress conditions was studied in a controlled environment in 2010. Treatments included stress type and intensity at five levels: moderate drought (MD), severe drought (SD), moderate salt (MS), severe salt (SS), and control (C1, without stress), three seed priming types including water (C2, as control), KNO3, and urea (as chemical priming), and four maize hybrids including Maxima, SC704, Zola, and 307. The results showed that the highest germination percentage (Ger %), germination rate (GR), seedling length (SL), radical length (RL), and seedling to radical length ratio (S/R) were achieved in no stress treatments and most proline content in SD treatment. Urea priming led to more Ger%, GR, and SL compared to other primers and treatment under KNO3 priming resulted in higher RL compared to other primers. Chemical priming had no effect on S/R and proline content. Also, in terms of most traits, no difference was found among the four hybrids. Results showed that salt stress could affect GR and RL more than the drought stress. Drought stress affected germination percentage and S/R more than the salt stress. Both stresses decreased all measured parameters, except protein and proline content which were increased remarkably, and more under drought compared to salt stress. Based on proline content, hybrid 304 appeared to be more resistant to stress than other hybrids. Generally, KNO3 and urea alleviated effects of both stresses and led to increased germination and seedling growth as well as the root length. Therefore, priming could be recommended for enhancing maize growth responses under stressful conditions.  相似文献   

6.
In a field trial involving four tepary lines (Phaseolus acutifolius A. Gray), NE#8A and NE#19 produced higher grain yield than NE#5 and NE#7 under both well watered and drought conditions. However, NE#8A is considered more resistant than NE#19 in terms of drought sensitivity index. Greenhouse investigations on intact plants indicated no differences among the four lines in leaf and stem dry mass, and leaf area. Root depth did not strictly differentiate lower‐yielding from higher‐yielding lines. In contrast to lower‐yielding lines, however, plants of higher‐yielding ones allocated greater dry matter (DM) in roots in response to imposed water stress. Distinctly, NE#19 had the greatest root : shoot (R : S) while NE#8A characterized by high net photosynthesis. Both NE#8A and NE#19 showed reduced leaf area : root dry mass ratio, stomata conductance and transpiration rate. Consequently, these two lines showed no significant changes in leaf relative water content while photosynthetic water‐use‐efficiency increased in response to water stress. Calli derived from leaf and root tissues of higher‐yielding lines exhibited low initial osmotic potential (ψs). These calli did not show alterations in ψs, DM% and relative growth rate (RGR) when subjected to water stress. Although leaf‐ and root‐derived calli of lower‐yielding lines exhibited osmotic adjustment, they suffered water stress in terms of elevated DM and reduced RGR. Overall, results suggest that dehydration‐avoidance mechanisms conditioned by increased root mass and stomata resistance accompanied with low initial cellular ψs sustained high grain yield of tepary under limited water supply.  相似文献   

7.
Alfalfa (Medicago sativa L.) production is negatively affected by drought stress. This is particularly true for alfalfa grown on non‐irrigated rangelands. Thus, the development of drought‐tolerant alfalfa cultivars is of great significance. A greenhouse study was conducted to evaluate 11 alfalfa accessions including several that are adapted to rangeland conditions and two commercial accessions, for their performance under drought condition. Water supply was adjusted based on the transpiration rate of individual plants to compensate for 100, 75, 50 or 25 % of transpirational water loss. We found that RS, a naturalized alfalfa collected from the Grand River National Grassland in South Dakota, showed the best resistance to drought condition. It showed the smallest reduction in stem elongation (36 %), relative growth rate (14 %), and shoot dry mass (40 %) production under the severest drought tested in this study relative to the non‐drought treatment. While RS showed less biomass production under well‐watered conditions, it produced similar or more shoot biomass under drought conditions compared to other accessions. Associated with the drought resistance or less sensitivity to drought, RS showed greater capability to maintain root growth, shoot relative water content, and leaf chlorophyll content compared to other accessions. Different from other accessions, RS showed increasing water use efficiency (WUE) as water deficit became severe, reaching the greatest WUE among 11 accessions. Our results suggest that RS is a valuable genetic resource that can be used to elucidate physiological and molecular mechanisms that determine drought resistance in alfalfa and to develop alfalfa with improved WUE.  相似文献   

8.
Abstract Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae) is a biennial–perennial species, which grows throughout the Mediterranean basin and Macaronesia. It is cultivated to provide livestock fodder and shows promise as a source of furanocoumarins. This is the first report on its physiological and growth responses to water deprivation. We assessed these in a pot assay, in the field and in hydroponic culture, using two populations from southern Spain and two from the Canary Islands. Proline accumulation was much lower in the field than for pot‐grown plants, supporting recent indications that it is phytotoxic under combined drought and heat stress. In hydroponic culture, imposition of water stress by poly(ethylene glycol) increased the root/shoot ratio and decreased the root hydraulic conductivity. Overall, the results show B. bituminosa to be a species with high constitutive resistance to soil water deficit. For example, leaf turgor did not diminish, demonstrating its capacity for osmotic adjustment, and the specific leaf area in field conditions was similar to that of other species adapted to seasonal drought. Notwithstanding, the two Canarian populations (which complete their life cycles under very different conditions) maintained better their relative water content and water potential to avoid internal stress. Famara (Lanzarote, Canary Islands) is the most appropriate as a breeding line, which can maintain its shoot biomass under drought.  相似文献   

9.
苗期水分胁迫对玉米根系生长杂种优势的影响   总被引:7,自引:0,他引:7  
以玉米杂交种高油115及其亲本(母本220、父本1145) 为材料, 研究了玉米苗期根系生长的杂种优势及水分胁迫的影响。试验设水分充足、轻度干旱和严重干旱3个处理, 田间持水量分别为75%、55%和35%。结果表明, 在水分充足条件下, 根长(RL)、根表面积(SA)和根干重(RDW)均表现出不同程度的中亲优势和超亲优势, 轻度干旱显著降低了各指标的杂种优势, 而严重干旱则完全抑制了根系生长的杂种优势。根系各性状中, RL的杂种优势最强。在水分充足条件下, 与中等根(根直径0.25~0.45 mm)和粗根(根直径>0.45 mm)相比, 细根(根直径0.05~0.20 mm)的RL、SA及其占总根系比例的杂种优势最高。轻度干旱胁迫虽然降低了根系的杂种优势, 但RL、SA仍表现出显著的超亲优势和中亲优势(粗根的超亲优势除外)。此外, 只有细根RL和SA占总根系的比例在轻度干旱胁迫下具有显著的中亲优势, 说明杂交种可以通过生成较亲本更高比例的细根来抵抗轻度干旱胁迫。  相似文献   

10.
The development of cassava (Manihot esculenta Crantz) with a high yield under water-deficit conditions is one of the goal of the breeding programs. The objective of this study was to evaluate the performance and to select cassava accessions based on drought tolerance indices and productive potential under water stress. Forty-nine accessions were evaluated for five agronomic traits (plant height—PH, root yield—RoY, shoot yield—ShY, harvest index—HI; and dry matter content of roots—DMC) under full irrigation conditions and drought stress (DS). The accessions were selected based on: (i) high yield under drought conditions (HY-DS) and (ii) high drought tolerance (Dr-To) based on six different indices. Overall, water stress dramatically reduced the traits’ means (RoY—72.98%, ShY—54.95%, DMC—26.15%, HI—31.05%, and PH—32.95%). Low coincidence among the top ten accessions was identified based on HY-DS and Dr-To criteria. Therefore, considering only the most important traits (RoY and ShY), five accessions (BGM0815, BGM0598, 9624-09, BGM0818, and BRS Formosa) presented high HY-DS. In contrast, to Dr-To criterion, eight and nine accessions were selected for high yield of the aerial part (ShY and PH) and roots (RoY and DMC), respectively. The mean productivity, geometric mean productivity, and drought tolerance indices were the most promising to identify genotypes with high agronomic attributes, while drought susceptibility index, susceptibility, and yield stability index were suitable to identify the most drought tolerant accessions. This set of selected accessions can be used in breeding programs aimed at high yield and drought tolerance.  相似文献   

11.
Enhanced root growth in plants is fundamental to improve soil water exploration and drought tolerance. Understanding of the variance components and heritability of root biomass allocation is key to design suitable breeding strategies and to enhance the response to selection. This study aimed to determine variance components and heritability of biomass allocation and related traits in 99 genotypes of wheat (Triticum aestivum L.) and one triticale (X. Triticosecale Wittmack) under drought-stressed and non-stressed conditions in the field and greenhouse using a 10?×?10 alpha lattice design. Days to heading (DTH), days to maturity (DTM), number of tillers (NPT), plant height (PH), spike length (SL), shoot and root biomass (SB, RB), root to shoot ratio (RS), thousand kernel weight (TKW) and yield (GY) were recorded. Analyses of variance, variance components, heritability and genetic correlations were computed. Significant (p?<?0.05) genetic and environmental variation were observed for all the traits except for spike length. Drought stress decreased heritability of RS from 47 to 28% and GY from 55 to 17%. The correlations between RS with PH, NPT, SL, SB and GY were weaker under drought-stress (r?≤???0.50; p?<?0.05) compared to non-stressed conditions, suggesting that lower root biomass allocation under drought stress compromises wheat productivity. The negative association between GY and RS (r?=???0.41 and ??0.33; p?<?0.05), low heritability (<?42%) and high environmental variance (>?70%) for RS observed in this population constitute several bottlenecks for improving yield and root mass simultaneously. However, indirect selection for DTH, PH, RB, and TKW, could help optimize RS and simultaneously improve drought tolerance and yield under drought-stressed conditions.  相似文献   

12.
研究通过温室盆栽试验探讨了干旱胁迫对‘三得利’、‘敖汉’和‘中苜1 号’3 个紫花苜蓿品种根系ABA浓度和根系特征的影响。按照田间持水量的100%(对照)、85%(轻度干旱)、70%(中度干旱)和55%(重度干旱)设置4 个梯度的水分胁迫处理,分别对3 个紫花苜蓿品种进行处理,并对根系ABA含量和根系性状进行测量。结果显示:水分胁迫可以显著影响不同生长时期的紫花苜蓿根系ABA的含量。随着处理时间的延长,不同水分胁迫处理的紫花苜蓿根系ABA含量均呈先升高后下降再升高的趋势。在移栽后的第75 天,根系ABA含量达到首个峰值,然后开始下降,到第105 天的时候将至最低,然后开始回升直至处理结束。移栽105 天以后,4 个水分胁迫处理(W1、W2、W3 和W4)紫花苜蓿根系ABA含量分别为44、56.6、64.6、94.4 ng/g FW。同时,不同紫花苜蓿品种根系ABA含量存在差异。移栽105 天以后,‘敖汉’、‘三得利’和‘中苜1 号’根系ABA含量均达到最低,分别为83.2 ng/g FW、61.7 ng/g.FW 和49.9 ng/g FW;之后,根系ABA含量开始回升。与对照相比,重度水分胁迫使根系长度降低了20.92%,使侧根数降低了20.71%,使根鲜重降低了43.79%,使根干重降低了37.96%。重度水分胁迫下植株根冠比是对照的1.9倍,这说明水分胁迫对地上部茎叶的影响要大于地下部的根系。水分胁迫降低了紫花苜蓿根长、侧根数、根鲜重和根干重,增加了紫花苜蓿根冠比,促使根系ABA含量升高。不同紫花苜蓿品种根系ABA含量存在差异。  相似文献   

13.
Cadmium (Cd) is a non-essential element and toxic to plants. To investigate the genetics of Cd tolerance and accumulation in rice, quantitative trait loci (QTL) associated with Cd tolerance and accumulation at the seedling stage were mapped using a doubled haploid (DH) population derived from a cross between a japonica JX17 and an indica ZYQ8. A total of 22 QTLs were found to be associated with shoot height (SH), root length (RL), shoot dry weight (SDW), root dry weight (RDW), total dry weight (TDW) and chlorophyll content (CC), and 10 and 12 QTLs were identified under the control and Cd stress conditions, respectively. For Cd tolerant coefficient (CTC), 6 QTLs were detected on chromosomes 1, 3, 5, 8 and 10. Under Cd stress, 3 QTLs controlling root and shoot Cd concentrations were mapped on chromosome 6 and 7. One QTL for shoot/root rate of Cd concentration was identified on chromosome 3. The results indicated that Cd tolerance and accumulation were quantitatively inherited, and the detected QTLs may be useful for marker-assistant selection (MAS) and identification of the genes controlling Cd tolerance and accumulation in rice.  相似文献   

14.
The growth behaviour of Dekama (drought tolerant) and Kufri Jyoti (drought susceptible) was studied using potted plants maintained at well watered condition and water deficit condition respectively. Periodic harvestings were done starting from 50 days after planting till maturity. Recordings of plant height, leaf area, dry weights of different plant parts, the proportion of thinner and thicker roots, stomatal conductance and water saturation deficit were obtained. The plant height, leaf area and dry weight of shoot decreased to nearly the same extent in both the cultivars under stress. The stomatal conductance decreased by 61.7 % in Dekama and by 64 % in Kufri Jyoti due to water stress. Water saturation deficit increased by about 80 % in both the cultivars. The ratios of root to shoot and that of thinner to thicker root increased due to stress in both cultivars and this increase was 85 % and 71 % in Dekama and 64 % and 19 % in Kufri Jyoti respectively. The distribution of dry matter to leaf, stem, root were more at the expense of tuber under stress conditions in both cultivars. However, the tolerant cultivar Dekama got adjusted to the stress condition, with more dry matter partitioned to tubers in the last two samplings. The study points out the factors responsible for better drought tolerance of Dekama compared to Kufri Jyoti and the possible physiological traits useful for selecting drought tolerant cultivars.  相似文献   

15.
Plants are often subjected to periods of water stress. There are little data examining the effect of water stress on the forage species Plantago lanceolata and Cichorium intybus. In two pot experiments with P. lanceolata and C. intybus, morphological responses under optimum, dry, and very‐dry water treatments with weekly, fortnightly and 3‐weekly defoliation intervals and physiological responses under optimum and very‐dry water treatments were measured. A third experiment compared the rooting depths of P. lanceolata and C. intybus under field conditions. These findings suggest that both P. lanceolata and C. intybus can survive and continue to grow under water stress conditions with the main differences between the two species being attributable to morphological characteristics (root mass, taproot diameter and shoot mass fraction) rather than differences at a physiological level. Overall, the results suggest plantain may be more productive under moderate drought due to its greater shoot mass fraction, whereas chicory may be more productive and persistent under severe drought due to its greater root mass, taproot diameter and root depth under field conditions.  相似文献   

16.
王玮  李德全  杨兴洪  邹琦  周燮  杨军 《作物学报》2000,26(6):737-742
用30%的PEG-6000模拟干旱条件, 对抗旱性强的北农2号和抗旱性弱的921842萌发期的小麦 幼苗根系进行水分胁迫处理, 分别在处理后0、 3、 8、 20、 32、 45h测定了IAA、 ABA 含量及芽、 主胚根的长度、 含水量。 结果发现: 水分胁迫引起两个品种根、 芽中ABA含 量大量增加, 抗旱性强的北农2号ABA反应较抗旱性弱的921842快。  相似文献   

17.
The balance between root and shoot growth is one of the mechanisms used by plants to adapt to a particular environment. This balance is affected by nutrient supply and water availability. The aim of this study was to investigate the effect of nitrogen (N) levels on root and shoot growth and to determine whether there is any correlation between root growth and leaf N in 10 wheat cultivars differing in the presence of the dwarfing genes derived from Norin 10. The study was carried out with two levels of N and water availability in the pots. Before stem elongation, shoot growth was less sensitive to high soil N levels than root growth. Root growth was inhibited by higher soil N concentrations. Leaf N and production of root biomass correlated well in non-stressed plants with low N. Tall types produced higher root biomass and maintained higher leaf N content than dwarf types under different N and water supply levels. The results suggest that shoot and root growth were affected differently by N availability.  相似文献   

18.
Identification of drought‐tolerant and ‐resistant varieties of cassava is of paramount importance for the maximization of productivity potential in drought‐prone areas. Nine improved cassava varieties developed in humid and subhumid agro‐ecologies were evaluated for their growth responses and adaptability in the dry savannas of Nigeria. Field trials were set up in two cropping seasons at three different locations. Parameters evaluated included fresh root yield (FRY), fresh shoot yield (FSY), cumulative leaves formed (CLF), cumulative leaf scars (CLS), root dry‐matter content (DMC), harvest index (HI), and root cyanogenic potential (CNp). Results demonstrated that varietal response differed with water table site, implying different adaptation responses of varieties to the water regime. Variations in all characters studied were significantly (P<0.05) influenced by genotype, suggesting a strong genetic basis for the phenotypic differences amongst varieties. Compared with variation attributable to location, the genotypic components were strong for FRY, FSY, CLF, CLS, HI and DMC. HI and DMC were not significantly affected by location. CNp tended to increase with increasing drought stress. The significance of genotype × environment effects for FRY suggested that genotypes may be selected for specific adaptation for drought‐prone environments. The poor adaptability responses of the majority of the varieties implied that an agro‐ecologically targeted breeding scheme for the dry savanna would be a more appropriate approach for the development of drought‐tolerant varieties.  相似文献   

19.
Stress susceptibility indexes (SSI) of eight maize and eight triticale genotypes for their ability to cope with soil compaction (SC) combined with drought (D) or waterlogging (W) were estimated through the determination of changes in dry matter of the shoot (S), root (R) and whole plant (S+R) grown at three levels of soil compaction (1.1, 1.3 and 1.6 g cm?3) and exposed to D or W stress for 7 or 14 days. The SSI values showed variation between and within maize and triticale genotypes, and it was possible to divide genotypes into groups of sensitive and resistant ones. The correlation coefficients (r) between stress susceptibility indexes of soil compaction (SCSI) and drought (DSI) or waterlogging (WSI) and between DSI and WSI were statistically significant. This indicates that genotypes resistant to soil compaction (SC) were resistant to drought (D) or waterlogging (W) stresses and that genotypes resistant to D were also resistant to W. Seedlings grown under the stresses showed changes in S to R ratio (S/R). Sensitive genotypes had higher S/R ratio than resistant ones. Decrease of S/R ratio depends on the duration of stresses, and it may be considered an adaptation mechanism to stress. After 7 days of recovery for D and W treatments, we observed only a partial return of growth traits to the level of control plants.  相似文献   

20.
In semiarid regions of the Mediterranean basin, water and salinity stresses restrict crop establishment. The effects of salt and water stress on seed germination and early embryo growth (radicle and shoot growth) were investigated in laboratory in two cultivars of sweet sorghum [Sorghum bicolor (L.) Moench] – cv. ‘90‐5‐2′ and cv. ‘Keller’ – to verify how these stresses may limit crop growth during the very early stages of growing season. Six water potentials (ψ) of the imbibition solution (from 0 to ?1.0 MPa) in NaCl or polyethylene glycol (PEG) for salt and water stress tests, respectively, were studied. Daily germination was recorded, and radicle and shoot lengths and dry weights (DWs) were measured 2 days after initial germination. Seed germination was reduced (8–30% lower than control) by water stress at ψ 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号