首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Forage intake with potassium/(calcium + magnesium) [K/(Mg + Ca)] values in excess of 2.2 are associated with grass tetany and Mg deficiencies in ruminants. This study was conducted to determine the degree to which forage K and Mg concentrations and K/(Ca + Mg) ratios could be predicted from soil bicarbonate (HCO3) extractable phosphate‐phosphorus (PO4‐P), and saturation extract Ca, Mg, K, sodium (Na), and nitrate‐nitrogen (NO3‐N) concentrations. Crested wheatgrass (Agropyron spp) strains and cultivars representing four ploidy levels were grown in the greenhouse on eight calcareous soils with different saturation extract Ca, Mg, K and K/Mg ratios. The plants were harvested three times. Soil solution K/(Ca + Mg) and K/Mg ratios were the only measured soil parameters that showed a consistent correlation with plant K/(Ca + Mg) ratios. Bicarbonate extractable soil P was positively related to plant P and K uptake in the first harvest, but was not related in the second and third harvests nor was soil P related to plant Ca or Mg content. There was a tendency for the higher ploidy level entries to have higher plant K/(Ca + Mg) ratios. It was concluded that soil K/(Ca + Mg) ratios can be used to predict relative forage K/(Ca + Mg) ratios for grasses grown under similar conditions.  相似文献   

2.
Studies were carried out in the years 2005–2007 with greenhouse tomato (Lycopersicon esculentum Mill.) cv. ‘Emotion F1’ grown in rockwool with the recirculating and non-recirculating nutrient solution systems. No significant differences were found in yields of fruits in both systems. In the recirculating system there was more intensive accumulation of sodium (Na), calcium (Ca), chloride (Cl), and zinc (Zn) in the root environment. Leaves of tomato grown in the recirculating nutrient solution system showed a higher content of Ca, magnesium (Mg), and Zn. There were no differences in the contents of nitrates and nitrites in fruits. In the recirculating system, the following savings were recorded: 42.5% of water and (in%): 42.1 nitrogen (N)- ammonium (NH4), 56.0 N- nitrate (NO3), 31.4 phosphorus (P), 52.1 potassium (K), 63.5 Ca, 47.9 magnesium (Mg), 49.4 sulfur (S)- sulfate (SO4), 51.9 Cl, 50.9 iron (Fe), 47.9 Zn, 24.6 manganese (Mn), 53.3 copper (Cu) and 47.2 boron (B). A high effectiveness in decreasing of bacteria number in drain water by UV irradiation was found.  相似文献   

3.
Following 13‐year treatments of soil pH and nitrogen (N) source in a peach orchard of North Carolina, the concentration of calcium (Ca), magnesium (Mg), N, phosphorus (P), and potassium (K) in leaves, shoots, trunks and roots, as well as soil pH, soil exchangeable Ca, Mg, and K content, were determined. Through liming, higher soil pH treatment enhanced soil Ca and tissue Ca level. Among six N sources examined, the highest values of soil pH and soil Ca, Mg, and K were detected following poultry manure application. Compared to ammonium sulfate [(NH4)2SO4], calcium nitrate [Ca(NO3)2] increased soil pH and soil Ca and K content, but reduced soil Mg. For most of macronutrients examined in peach tissues, the highest levels were found in manure treatment. Mineral N sources containing Ca(NO3)2 resulted in high tissue Ca and low tissue N. In the above‐ground tissues, Mg concentration was relatively low following application of mineral N materials containing Ca, K, or sodium (Na). Acid‐ forming N, especially (NH4)2SO4, reduced tissue Ca and P. The magnitude of impact of liming and N source on macronutrients was tissue‐type dependent, with leaves and other new growth the most sensitive ones while trunks seldom responded to the treatments.  相似文献   

4.
The process of biomass, nitrogen (N), and potassium (K) accumulation over time as affected by N forms is poorly understood. The objective of this study was to identify the effects of N form on growth as well as on N and K nutrition of flue‐cured tobacco plants (Nicotiana tobaccum L.). The plants were grown in a greenhouse with pots of soil for 117 days after 200 days of preculture. Three treatments (calcium nitrate [Ca(NO3)2], ammonium nitrate (NH4NO3), and ammonium nitrate plus straw (NH4NO3 + straw)) were used. The results showed that there were no significant differences in shoot dry mass of tobacco among the three treatments during the entire growth stage except at 30 and 117 days after transplanting. At these two growth stages, shoot biomass with the Ca(NO3)2 treatment was significantly less than that with NH4NO3 with or without straw. The NH4NO3 + straw plants had more mature leaves and greater leaf dry weight than the other two treatments. At an early stage (before 66 days), N concentration of Ca(NO3)2‐fed plants was less than with the other two treatments. The leaf K concentration and shoot K content of NH4NO3 and NH4NO3 + straw plants were more than with the Ca(NO3)2 treatment before maturity. Also, K concentration in mature leaves with these two treatments was greater than with Ca(NO3)2 treatment. All these results indicated that NH4NO3 application had benefits to the maturity and K accumulation in leaves of tobacco.  相似文献   

5.
Experiments were conducted to avaluate the K, Na, Ca, and P uptake by seedlings of two date palm (phoenix dactylifera L.) cultivars, Khedhri and Sekkeri as well as the effect of gibberellin (GA3) treatment, Khedhri cultivar showed a typical hyperbolic curve of absorption of K,N, end low concentration of Ca (up to 5mM) but at higher Ca concentration, there seems to be another phase of absorption. Sekkeri cultivar exhibited similar but lower absorption rate of K and Ca while Na seems to be extruded at lower substrate concentration. The rate of P uptake by Sekkeri was irregular. Applied GA3 slightly stimulate Na uptake by Sekkeri cultivar but at 10–4M GA3 enhancement of both Ca and P accummulation in both cultivars was observed.  相似文献   

6.
During a six‐year period (1980, 1985–1989), 20 different calcium (Ca) materials were sprayed at an early (3X; June to July), late (3X; July to August), and an early plus late (5X; June to August) timing on 25‐year‐old ‘Anjou’ pear (Pyrus communis L.) trees. Calcium chloride (CaCl2) sprays increased fruit Ca in the cortex by an average of 10.5% greater than in unsprayed controls and cork spot was reduced by an average of six‐fold. Yield from trees sprayed with Ca materials averaged greater than 13% more crop load than the unsprayed control trees. Leaf and fruit injury from CaCl2 sprays in 1980 were near borderline acceptability, but injury was reduced slightly by halving the spray concentration rate to 681 g CaCl2 per 379 liters of water in 1985 to 1989. Due to temperatures above 26°C, leaf and fruit injury from Ca sprays, particularly calcium nitrate [Ca(NO3)2], were more severe for the late or early plus late sprays than for the early sprays. Fruit size was slightly larger on trees sprayed only three times (early or late sprays) versus trees sprayed five times during the season (early plus late sprays). Best control of cork spot occurred with early plus late sprays. Best control of alfalfa greening and black end occurred with late or early plus late sprays. The importance of fruit Ca for controlling cork spot is illustrated when triiodobenzoic acid (TIBA) was sprayed on trees which resulted in reduced fruit Ca and increased incidence of fruit disorders, alfalfa greening, black end, and cork spot. Sprays containing nitrates or sulfates were frequently associated with a higher incidence of fruit disorders. Although fruit quality was not significantly influenced by Ca treatments or spray time, it was related to Ca in fruit peel or cortex due to annual variations in Ca concentrations.  相似文献   

7.
Two Ca‐efficient and 3 Ca‐inefficient tomato lines selected on the basis of dry matter production, Ca concentrations in tissues, and severity of Ca deficiency symptoms were grown in nutrient solutions containing 6 levels of total Ca ranging from 15 to 365 mg in 70 mg increments. All lines responded to increased Ca supply by increasing in dry weight and by accumulating Ca. The critical Ca concentrations in the shoots were 0.25% and 0.40% on a dry weight basis for the efficient and inefficient lines, respectively. Concentrations of Ca, K, Mg, P, and NO3 were lower in shoots and except for Mg were lower in roots of efficient plants than in the inefficient plants. For all lines as more Ca was available in the media and as Ca increased in the shoots and roots, the concentrations of the nutrients other than Ca declined. The declines in concentrations of K and Mg were not due to dilution by higher dry matter production in the efficient lines relative to the inefficient ones, although the total accumulation of Ca, P, and NO3 did not vary with Ca supplied. Antagonism among cations may account for differences in efficiency among lines of tomato.  相似文献   

8.
Cation distribution in adsorbed and solution phases and their mobility in the soil profile are largely influenced by the cation exchange capacity and selectivity coefficient of the soil. Vermiculites (Vt) and montmorillonites (Mt) in acid soils and sediments are frequently interlayered by hydroxyaluminum (HyA). Such interlayering causes significant changes in various properties of Vt and Mt. We evaluated the contribution of HyA-induced frayed edge sites (FES) in Vt and Mt to the overall selectivity of K/Ca and NHJCa. A more preferential adsorption and exchange of K to Ca was observed in the case of Vt in contrast to Mt. The overall K/Ca selectivity of Vt increased markedly by HyA-interlayering, whereas that of Mt was slightly affected. An increased overall K/Ca selectivity, especially of Vt was also observed due to the larger amount of HyA adsorption at higher initial basicity of the HyA ionic solution. Selective adsorption of K and NH4 predominantly occurred on the FES. Interlayering substantially enhanced such FES contribution. The overall K/Ca and NH4/Ca selectivity coefficients did not indicate any striking competitiveness of NH4 with K, unlike that for the natural micaceous clay minerals. However, the parameter of FES contribution suggested that NH4 could be slightly more competitive with K for the FES. The relative abundance of FES on different clay specimens determining K/Ca and NH4/Ca selectivity and a slightly higher preference of NH4 to K on FES played a major role at low K or NH4-saturation.  相似文献   

9.
Element mass balance estimates for South Carolina Coastal Plain watersheds indicate that fertilizers and liming materials are the major sources for inputs of Ca, Mg, K, Cl, and HCO3 whereas precipitation is the major input for Na and SO4. Stream flow is the chief mode of output for all of these elements. A balance between input and output is evident only for Cl. Retentions of 50% or more are shown by Ca, Mg, K, HCO3 and SO4 whereas Na shows an apparent net loss. The retention of Ca, Mg and HCO3 suggests that less than 25% of the dolomitic liming materials applied to the landscape actually dissolve and that the carbonate chemistry of Lower Coastal Plain streams is therefore probably largely controlled by seepage of groundwaters from underlying calcareous aquifers. The retention of K and the loss of Na may be due to cation exchange reactions on soil clays whereas the apparent retention of SO4 is probably due to reduction to H2S in floodplain environments and soil adsorption.  相似文献   

10.
Abstract

Greenhouse experiments were conducted for two years (1993–1994) with eggplants to study the impact of potassium (K) as K2SO4 (0.5 mM, 1 mM, 2 mM, and 3 mM) on molybdenum (Mo) distribution and on aspects of nitrate (NO3 ?) metabolism, and fruit quality. The nitrates and Mo in leaf blades, petioles, and fruits as well as foliar in vivo nitrate reductase (NR; E.C. 1.6.6.1) activity were analyzed. In view of these results, the K application at levels exceeding 0.5 mM K, altered the NO3 ? and Mo status and distribution in the aboveground organs of eggplant. The 3 mM K distributed the NO3 ? proportionally between leaf blades, petioles, and fruits. The 0.5 mM K and the 1 mM K increased the NO3 ? and Mo concentration in fruits, respectively. These results indicated the 3 mM K the most appropriate treatment for the greenhouse eggplant production under Mediterranean climate conditions, with reduced NO3 ? density in fruits for human consumption.  相似文献   

11.
电析土壤微粒悬浮液的维恩(Wien)效应及其影响因子   总被引:5,自引:0,他引:5  
The electrical conductivity of suspensions and their supernatants from the electrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated with nitrate solutions were determined at different field strengths using a short high-voltage pulse apparatus to demonstrate the Wien effect in soil suspensions and to investigate factors affecting it. It was found that Wien effect was much stronger in suspensions with a clay content of 30 g kg-1 from the soils equilibrated with a 1 × 10-4 KNO3 solution than in their supernatants.The threshold field strength (TFS), at which the relative conductivity is equal to 1.05, i.e., the Wien effect begins to be obvious, of the yellow-brown soil suspensions (clay content of 30 g kg-1) equilibrated with different nitrate solutions of a concentration of 1 × 10-4/z mol L-1 , where z is the valence, varied with the type of nitrates, being lowest for NaNO3 (47 kV cm-1) and highest for Ca(NO3)2 (98 kV cm-1). At high field strengths (larger than 130 kV cm-1), the relative conductivities of yellow-brown soil suspensions containing different nitrates diminished in the order: NaNO3 > KNO3 > Mg(NO3)2 > Zn(NO3)2 > Ca(NO3)2. The rates and intensities of the Wien effect in the suspensions of the three soils equilibrated with 5 × 10-5 molL-1 Ca(NO3)2 solution were in the order of the yellow-brown soil > the latosol > the black soil. The results for the yellow-brown soil suspensions (clay concentration of 30 g kg-1) equilibrated with KNO3 solutions of various concentrations clearly demonstrated that the more dilute the solution, the lower the TFS, and the larger the relative conductivity of the suspensions at high field strengths. The results for yellow-brown soil suspensions with different clay concentrations indicated that as the clay concentration increased, the low field electrical conductivity, EC0, also increased, but the TFS decreased, and the Wien effect increased.  相似文献   

12.
The plant minimal exchangeable K (EPl,min) defines the lower accessible limit of the most available pool of soil K to plants. It is also an index of long‐term K reserve in soils. However, its estimation by the classical method of exhaustion cropping is laborious. This study aimed at comparing EPl,min values obtained by the exhaustion cropping method with EPl,min values estimated by an alternative approach based on the cationic exchange capacity (CEC) of the infinitely high selective sites for K (i.e., always saturated with K) in the K‐Ca exchange (EK‐Ca,min). A set of 45 soil samples, corresponding to the various fertilization K treatments of 15 long‐term K fertilization trials, was used in this study. The selected soil samples presented a wide range of texture, CEC, and exchangeable K. The plant minimal exchangeable K was found more or less independent of the K treatment, whereas EK‐Ca,min increased when the soil exchangeable K content increased. The plant minimal exchangeable K was systematically lower than EK‐Ca,min, showing that EK‐Ca,min is at least partially available to the plant. Hence, EK‐Ca,min is not a surrogate of EPl,min. Conversely, the plant minimal exchangeable K was strongly, positively correlated to soil CEC (measured at soil pH; r2 = 0.90***). This soil property can consequently be used as a proxy of EPl,min.  相似文献   

13.
用营养液培养方法研究了铁和两种形态氮素(NO3--N和NH4+-N)对玉米植株吸收氮、磷、钾等大量元素和钙、镁等中量元素及其在体内分布的影响。结果表明:与NO3--N相比,供应NH4+-N促进了玉米对氮的吸收,在缺铁条件下,降低了对磷、钾、钙及镁的吸收。铁和NH4+-N都显著提高了玉米植株各器官中氮的含量。与NH4+-N处理相比,NO3--N处理的新叶中磷含量显著增加,但铁的供应对植物体内磷的含量无显著影响。使用NO3--N显著提高了玉米新叶和老叶中钾的含量,根和茎中钾的含量无明显影响。铁的供应降低了新叶和老叶中钾的含量。供铁时,NH4+-N处理的玉米新叶中钙和镁的含量显著低于NO3--N处理,而在缺铁时则无显著差异。  相似文献   

14.
Austrian winter pea (Pisum sativum subspecies arvense (L.) Poir) is grown as a cool season annual to produce high protein seed and forage as well as for soil fertility improvement. This legume is grown on a wide range of soil types with many different cropping systems. The objective of these studies was to determine the influence of K levels, with and without P and Ca fertilization, for increased growth, yield, nodulation and nitrogenase activity. Results were from 3 years’ field and greenhouse experiments with a Psammentic Paleustalf (Eufaula series) utilizing Rhizobium leguminosarum (Frank), ATCC 10314 as inoculum. Soil fertility effects on composition and histology of field‐grown nodules are presented.

Available soil P was a limiting plant nutrient in field studies with significant response to K resulting with PK combinations for top growth, tillers, pods, seed yield, nodule mass, and nitrogenase activity levels (C2H2, red.). Multiple regression for nitrogenase (umol C2H4 h‐1) = 1.09 tiller number + 3.37 nodule weight + 2.29 pod number, R2 = 0.837, C.V. = 29.9%. Results from the greenhouse experiments indicated significant responses with increased K application levels when combined with P and Ca fertilization for top growth, nodule weight, number of nodules and nitro‐genase activity. Highly significant correlations resulted with nitrogenase x nodule weight (r=0.538) and nitrogenase x top growth (r=0.359) with multiple regression of treatment effects for nitrogenase (μmol C2H4 h‐1) = 2.73 P + 1.04 K + 4.92 Ca, R2 = 0.797 and C.V. = 48.8%. Soil addition of plant nutrients resulted in significantly increased concentrations of those elements within nodules. Magnesium content was not consistently influenced by P, Ca, and K amendments. Sodium decreased with increased K fertilization. Multiple regression of elemental composition (mg g‐1 nodule) for nitrogenase (pmol C2H4 h‐1) = 0.21 P + 0.86 K + 2.35 Ca ‐ 2.01 Na, R2 = 0.772, C.V. = 55.6%. The proportion of plant nutrients in nodules contained within the nodule cytosol was highest for K (56.2%) and lowest for Ca (21.4%) with intermediate levels of Mg (50.2%), P (45.4%), and Na (37.2%).

Practical application from these data include the requirement of adequate available soil K for increased yield and nitrogen fixation with favorable P and Ca soil levels in Austrian winter pea production.  相似文献   


15.
Potassium-calcium exchange equilibria in, and the kinetics of K release from, soil from the Nil and PK treatments of the Saxmundham Experiment, Rotation 1, and the Ga, Ca + K and K saturated panicle size fractions of the soils were investigated. The free energy and enthalpy ot exchange showed K preference in all the solids. Selectivity for K decreased with increasing particle size and pre-treatment with K salts. A comparison of the ‘differential enthalpy of exchange: per cent K saturation’ relationship for the whole soil with those of the particle size fractions suggests that soil dispersion during particle size separation also decreased K selectivity significantly. When related to the mineralogical composition of the soil, the differential enthalpy data suggest that maximum K. selectivity is associated with a vermiculite/smectite component of inter-stratified minerals in the soil. Isotopic exchange using 4sCa on the decalcified solids showed a measurable rate of exchange for the Ca forms of the <0.2 and 0.2–2 /μm fractions. This is attributed to traces of blocking materials (CaCO3 or hydroxy-aluminium polymers), which are removed or rendered porous during treatment with dilute KCl solution, so that isotopic exchange with Ca is then much more rapid. The kinetics of K extraction with a Ca saturated resin, interpreted on the basis of a three-compartment model, suggest that sorbed K and K released by ‘fast’ and slow processes, representing sites of low and high K selectivity, were associated with minera-logically distinct phases in the various particle size fractions.  相似文献   

16.
Abstract

Five tomato (Lycopersicon esculentum Mill) cultivars were grown in sand nutrient culture experiment in a greenhouse to investigate the effects of salinity on growth and yield. Nutrient solutions were made saline with 50 mM NaCl (EC = 5.5 mS/cm or supplemented with 2 mM KNO3 (EC = 6.8), 20 mM Ca(NO3)2 (EC = 7.5), and combination of potassium (K) and calcium (Ca) (EC = 8.0). Seedlings were irrigated with saline treatments commencing two weeks after transplanting. Determination of sodium (Na) and K in tomato leaves and fruits were by flame photometry. Accumulation of Na in tomato fruits was higher than in leaves under control or saline conditions for all tomato cultivars. The amount of K in the tomato leaves was higher in control than in saline‐grown plants. Addition of K and Ca to the nutrient solution resulted in a 3 to 7 fold increase in K accumulation in all cultivars tested. Stem and leaf growth were significantly reduced with salinity but growth was enhanced following irrigation when K was added to the nutrient solution. Flowering and fruit set were adversely affected by NaCl stress. Reduction of flower number was 44% relative to the control plants. Fresh fruit yield decreased by 78% when plants received 50 mM NaCl. Growth and development of tomatoes under saline conditions was enhanced in this study following the application of K to the saline nutrient solution. Amelioration in growth was also achieved when Ca was used but to a lesser extent. Our results suggest that ion accumulation and regulation of K and Ca contribute to salt tolerance and growth enhancement.  相似文献   

17.
The leaching of Ca, Mg, and K from canopies is a major pathway of these cations into forest soils. Our aim was to quantify rates of canopy leaching and to identify driving factors at the regional scale using annual fluxes of bulk precipitation and throughfall from 37 coniferous and deciduous forests of North and Central Europe. Total deposition of Ca, Mg, K, and H+ was estimated with Na as an index cation. The median canopy leaching increased in the order: Mg (0.11 kmolc ha–1 a–1) < Ca (0.31 kmolc ha–1 a–1) < K (0.39 kmolc ha–1 a–1). Canopy leaching of Ca and K was positively correlated with the calculated total H+ deposition and H+ buffered in the canopy, whereas canopy leaching of Mg was not. With contrasting effects, fluxes of SO4‐S and NH4‐N in throughfall explained to 64 % (P<0.001) of the Ca canopy leaching. Fluxes of NH4‐N and Ca were negatively correlated, suggesting that buffering of H+ by NH3 deposition reduced canopy leaching of Ca. Amount of bulk precipitation and SO4‐S in throughfall were identified as much weaker driving factors for canopy leaching of K (r2=0.28, P<0.01). Our results show that Ca is the dominant cation in buffering the H+ input in the canopy. At the regional and annual scale, canopy leaching of Mg appears to be unaffected by H+ deposition and H+ buffering in the canopy.  相似文献   

18.
Forty-two-day-old wheat (Triticum aestivum L. var. Asakazekomugi) plants were treated with complete, K-free (—K), Ca-limited (—Ca), and Mg-free (—Mg) nutrient solutions for 10 days using 2 mM NH4NO3 as the nitrogen source, which was replaced with 4 mM 15 NH4C1 or Na15NO3 for the subsequent 2 days to investigate the absorption, translocation, and assimilation of inorganic nitrogen in relation to the mineral supply. In another experiment plants were grown on NO3 ?, NH4 +, NH4N03, and K-free and Ca-limited NH4N03 nutrient solutions for 10 days, and then in the latter three treatments the nitrogen source was replaced with NO3 ? and half of the —K plants received K for 6 days to examine the changes in the nitrate reductase activity (NRA).

Wheat plants absorbed NH4 ?N and NO3-N at a similar rate. Influence of K on the absorption of N03-N was stronger than that on the absorption of NH4-N in wheat plants. The supply of K to the —K plants increased the absorption of NO3-N, while the absorption of NH4-N still remained at a lower rate in spite of the addition of K. A limited supply of Ca and lack of Mg in nutrient media slightly affected the absorption of NH4-N. The influence of K was stronger on the translocation of nitrogen from roots to shoots, while Ca and Mg had little effect. When K was supplied again to the —K plants the translocation of NO3,-N was more accelerated than that of NH4-N. Incorporation of NH4-N into protein was higher than that of NO3-N in all the tissues; root, stem, and leaf. Assimilation of NH4-N and NO3-N decreased by the —K and —Mg treatments.

Leaf NRA of wheat plants decreased in the —K and —Ca plants. Higher leaf NRA was found when K was given again to the —K plants than when the plants were continuously grown in K-free media. Replacement of NO3 ? with NH4 + as the nitrogen source caused a decline of leaf NRA, while the supply of both NH4 ?N and NO3-N slightly affected the leaf NRA.  相似文献   

19.
Sunflower plants (Helianthus annuus) were grown in a continuous flow nutrient system, in which nitrogen was supplied, under controlled pH conditions, in either the NO3-or NH4-form. Nutrient uptake and distribution, as well as dry matter production of the plants, was followed over the growth period. The results obtained may be summarized as follows: 1. At all stages in development, growth was somewhat greater in the plants of the NO3-treatment, but the difference between the two treatments was not large. The similarity in the behaviour of plants in the two nitrogen treatments is discussed in relation to the maintenance of a high pH in the nutrient medium. 2. The mean rates of uptake of Ca, Mg, K, and Na, expressed per unit root length, were all higher in the NO3-fed plants. For P, the mean rate of uptake was higher in the NH4-fed plants. 3. The levels of K, Ca, Mg, and Na, per unit dry weight, were higher in the NO3-fed plants, but for P the converse was true. 4. The higher uptake of Ca and Mg by NO3-fed plants was reflected in the higher concentrations of these elements in the leaves. In the case of K, accumulation occurred in the roots. 5. From the results of selected harvests, it was found that total nitrogen uptake was higher in the NO3-fed plants.  相似文献   

20.
Loading of chemical elements in precipitation at the Solling For the period 1969–1976 (NH4, NO3: 1971–1976) monthly values of concentrations and flows of the ions NH4, H, Na, K, Ca, Mg, Fe, Mn, Al, Cl, NO3, SO4, P and organic bound N in precipitation are passed on. From the correlations between elements the following main ion sources are concluded: sea water (Na, Cl), combustion processes (SO4, NO3, NH4), lime dust after dissolution by H2SO4 and HNO3 (Ca, Mg), soil dust after dissolution by H2SO4 and HNO3 (Al, Fe), leaching from plants (K, NO3, SO4, Mg, Ca), biogenic contaminations (P, organic N, K, NH4, NO3). Seasonal variations in the concentrations are most evident for Na and Cl, less for NH4, SO4 and NO3. During the measuring period the flux of NH4 is significantly increased; for H and SO4, less for NH4, Mg, Ca and Fe, the increasing trend was interrupted in winter 1973/74 (oil crisis). Consequences for sampling are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号