首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Characterization of char from the pyrolysis of tobacco   总被引:9,自引:0,他引:9  
Pyrolysis of tobacco was studied in oxidative and nonoxidative (inert) environments at atmospheric pressure and temperatures ranging from 150 to 750 degrees C. The objective was to study the effect of pyrolysis conditions on the characteristics of the solid residue, i.e., char. The char was characterized using cross-polarization (13)C nuclear magnetic resonance (CPMAS NMR), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) surface area, and the elemental composition. The char yield from pyrolysis (i.e., nonoxidative) decreased sharply with an increase in temperature to ca. 22% (dry, ash-free basis) at high temperatures. In oxidative pyrolysis, i.e., in 5% oxygen, the char was completely oxidized above 600 degrees C. The gaseous product from pyrolysis at high temperatures contained a significant concentration of hydrogen. The surface area of the char was low, with a maximum of 8 m(2)/g at 400 degrees C. SEM analysis indicated that pyrolysis of the tobacco led to a gradual accumulation of inorganic crystals on the exposed surfaces, and some constituents also melted, resulting in the formation of vesicles by evolving gas. NMR analysis showed significant changes in pectin and sugar constituents of the tobacco and breaking of glycosidic bonds of cellulose at 300-500 degrees C before the char became predominantly aromatic at high temperatures. FTIR results showed a continuous decrease in the intensity of the OH stretch with temperature and the aromatic character to be at maximum at 550-650 degrees C. The H/C ratio of the char decreased continuously with temperature, while the O/C ratio became constant above 300 degrees C due to the presence of oxides and carbonates in the char. The results are consistent with the analysis of the evolved gases.  相似文献   

2.
Thermal transfer to nicotine in the gas phase from neat nicotine, from various nicotine carboxylic acid salts, and from endogenous nicotine in Burley, Bright, and Oriental tobacco samples has been examined by thermogravimetric/differential thermal analysis/mass spectroscopy and evolved gas analysis. Under the conditions used in these studies, the peak transfer temperatures of these substances to nicotine in the gas phase are nicotine and nicotine acetate, both ca. 110-125 degrees C; nicotine malates, ca. 110-210 degrees C for nicotine to malic acid ratios of 1:0.56 and 1:1 and ca. 160-210 degrees C for a nicotine to malic acid ratio of 1:2; (S)-nicotine bis[(2R,3R)-hydrogen tartrate] dihydrate, ca. 195-210 degrees C; and tobacco samples, a range of ca. 160-220 degrees C. These results suggest that nicotine is mostly protonated in tobacco leaf. In all cases, the temperature of the transfer of nicotine to the gas phase was found to be many hundreds of degrees below the temperatures observed around the coal of a burning cigarette (smolder, ca. 500-775 degrees C; dynamic smoking, 600 to over 950 degrees C). Within the narrow zone of a puffing cigarette that encompasses an intermediate temperature range (125-250 degrees C), kinetic data suggest that these temperatures are not sufficient to volatilize significant amounts of nonprotonated nicotine, assuming any exists at all, during the short puff duration (2 s). It is concluded that nonprotonated nicotine and protonated nicotine (salts of nicotine with natural tobacco carboxylic acids) will transfer nicotine to smoke with comparable yields and efficiencies during the smoking process.  相似文献   

3.
The effect of high-temperature treatment on the stability of alpha-tocopherol (1) in triolein was assessed under a reduced-pressure atmosphere (4-40 mbar) simulating the deodorization step of the refining of vegetable oils. A marked degradation of 1 was observed, which increased with increasing temperature (180-260 degrees C) and heating time (20-80 min). The degradation of 1 in triolein at 240 degrees C was inhibited by the addition of the synthetic antioxidant TBHQ or when heating was performed under nitrogen atmosphere, indicating oxidative degradation. The oxidation products were isolated and identified as alpha-tocopherolquinone (2), 4a,5-epoxy-alpha-tocopherolquinone (3), and 7,8-epoxy-alpha-tocopherolquinone (4).  相似文献   

4.
Low-temperature blanching of vegetables activates the enzyme pectin methylesterase (PME), which demethylates cell wall pectins and improves tissue firmness. This temperature activation of PME has been investigated by measuring the formation of methanol in intact tissue of green beans and tomatoes. Rates of methanol formation at temperatures of 35-65 degrees C were obtained by measuring the release of methanol from thin slices of tomato pericarp or green bean pod material. Activation energies of 112 and 97 kJ mol(-1) were calculated for PME activity in green beans and tomatoes, respectively. These activation energies indicate that the rate of pectin demethylation at 65 degrees C will be nearly 100 times that at 25 degrees C. PME activity was also determined titrimetrically using a solubilized form of the enzyme and purified pectin at temperatures from 30 to 60 degrees C. Under these conditions, much lower activation energies of 37 and 35 kJ mol(-1) were obtained for green beans and tomatoes, respectively. Methanol accumulation during heating of whole intact green beans was also determined and yielded an activation energy similar to that obtained with sliced beans. Whole green beans held at room temperature did not accumulate any methanol, but sliced or homogenized beans did. If whole beans were first heated to 45 degrees C and then cooled, methanol accumulation was observed at room temperature. These results indicate that two factors contribute to the observed high rate of pectin de-esterification during low-temperature blanching: (1) An irreversible change, causing PME to become active, occurs by heating to > or = 45 degrees C. (2) The high activation energy for pectin de-esterification means that the rate of de-esterification increases substantially with increasing temperature.  相似文献   

5.
A novel system for low-temperature alcoholic fermentation of glucose is described. This system consists of kefir yeast immobilized on delignified cellulosic materials. Batch fermentations were carried out at various pH values, and the effect of temperature on kinetic parameters, in the range of 5-30 degrees C, was examined. At pH 4.7 the shortest fermentation time was obtained. The formation of volatiles indicates that the concentration of amyl alcohols (total content of 2-methylbutanol-1 and 3-methylbutanol-1) is reduced as the temperature becomes lower. Propanol-1 and isobutyl alcohol formation drops significantly below 15 degrees C. The percentage of ethyl acetate increases as the temperature is diminished. At 5 degrees C the content of total volatiles in the product was only 38% of the volatiles formed during fermentation at 30 degrees C.  相似文献   

6.
The kinetics of the pectin methylesterase (PME)-catalyzed de-esterification of pectin was studied at 25 degrees C in the presence of sucrose, fructose, maltodextrin (DE = 16.5-19.5), and carboxymethylcellulose at different concentrations and in the presence of maltodextrin and sucrose at different concentrations in a temperature range between +25 and -4 degrees C in subcooled and frozen states. The objective was to determine whether the reaction is diffusion-controlled, to gain insight about the factors determining the diffusion of the reactants, and to determine the effect of the carbohydrates, low temperature, and freezing on the structural conformation of the enzyme. The results indicate that the PME-catalyzed de-esterification of pectin is diffusion-controlled. Nevertheless, the diffusion is not controlled by the macroviscosity of the reaction medium, but rather by the microviscosity experienced by the diffusants. Low temperature in the temperature range studied does not affect the structural conformation of the enzyme, while freezing seems to have some effect.  相似文献   

7.
Tobacco-specific nitrosamine (TSNA) formation in tobacco is influenced by alkaloid levels and the availability of nitrosating agents. Tobacco types differ in their potential for TSNA accumulation due to genetic, agronomic, and curing factors. Highest TSNA concentrations are typically measured in burley tobaccos. One of the main genetic differences between burley and all other tobacco types is that this tobacco type is homozygous for recessive mutant alleles at the Yellow Burley 1 (Yb(1)) and Yellow Burley 2 (Yb(2)) loci. In addition, burley tobacco is typically fertilized at higher nitrogen (N) rates than most other tobacco types. This study utilized nearly isogenic lines (NILs) differing for the presence of dominant or recessive alleles at the Yb(1) and Yb(2) loci to investigate the potential influence of genes at these loci on TSNA accumulation. Three pairs of NILs were evaluated at three different nitrogen fertilization rates for alkaloid levels, nitrogen physiology measures, and TSNA accumulation after air-curing. As previously observed by others, positive correlations were observed between N application rates and TSNA accumulation. Recessive alleles at Yb(1) and Yb(2) were associated with increased alkaloid levels, reduced nitrogen use efficiency, reduced nitrogen utilization efficiency, and increased leaf nitrate nitrogen (NO(3)-N). Acting together, these factors contributed to significantly greater TSNA levels in genotypes possessing the recessive alleles at these two loci relative to those carrying the dominant alleles. The chlorophyll-deficient phenotype conferred by the recessive yb(1) and yb(2) alleles probably contributes in a substantial way to increase available NO(3)-N during curing and, consequently, increased potential for TSNA formation.  相似文献   

8.
Red wine making using yeast cells immobilized in two types of raisin berries, at various temperatures (6-30 degrees C), was studied. A modification of the batch bioreactor was used to separate the grape skins used for color extraction from the biocatalyst and the fermenting grape must. The evaluation of the immobilized biocatalysts was made on terms of productivity and organoleptic quality, including color intensity and formation of volatiles. The immobilized cells were found capable of low-temperature wine making, producing red wines containing more than 11% v/v alcohol in 8 days at 6 degrees C. The quality of wines was examined by gas chromatography (GC) and GC-MS analysis and sensory evaluation. Higher alcohol concentrations were decreased, and ethyl acetate concentrations increased by the drop of temperature. Many esters, alcohols, carbonyls, and miscellaneous compounds were identified in wines produced by immobilized cells, revealing no significant qualitative differences as compared to wines produced by free cells. The sensory evaluation showed that the best red wine was produced at 6 degrees C.  相似文献   

9.
增铵营养对低温胁迫下棉花幼苗氮代谢的影响   总被引:8,自引:3,他引:5  
【目的】探明增铵营养提高棉花幼苗抗低温胁迫能力的机制。【方法】以棉花新陆早13号为供试品种,在人工气候室内模拟不同温度处理(15℃和25℃),研究了不同铵硝态氮配比(NH4+-N/NO3--N分别为0/100、25/75、50/50、75/25、100/0)对低温(15℃)胁迫下棉花苗期生长、氮素吸收量及氮代谢相关酶活性的影响。【结果】常温条件(25℃)下,较单一铵、硝营养,铵硝混合营养显著提高棉苗各器官的生物量,地上部和根系干物质量在NH4+-N/NO3--N比为50/50处理时最大,单一铵营养处理时最小;对棉苗生物量的影响效果表现出铵硝混合营养处理优于单一铵、硝营养处理。低温胁迫(15℃)后棉苗各器官生物量减小,且差异显著。常温和低温条件下,随着营养液中NH4+-N比例增加,棉苗全氮含量逐渐递增,氮素吸收量先升后降;棉苗根系、茎秆及叶柄内硝态氮含量呈明显降低趋势;棉花幼苗叶片NR活性明显减小,相反,GS和GOGAT活性则极显著提高。常温处理下棉苗各器官的氮素累积量显著高于低温胁迫处理,低温抑制了棉苗对硝态氮的吸收,降低NR、GS和GOGAT活性。【结论】低温胁迫下,增铵营养可显著提高氮素养分含量,促进棉苗生长,同时通过提高GS、GOGAT等氮代谢相关酶活性,维持氮代谢平衡,增强棉花幼苗对低温的抗性。  相似文献   

10.
为明确不同自然环境过程(氧化还原、降雨、光照)对生物炭的老化作用及其对重金属吸附能力的影响,该研究以不同温度(200、500 °C)和气氛(O2、N2)热解的小麦秸秆生物炭为研究对象,采用化学氧化、干湿交替、紫外光照氧化3种人工老化方法模拟生物炭在自然环境中的老化过程,并分析老化作用对生物炭理化性质及镉(Cd)吸附能力的影响。结果表明:与初始生物炭相比,老化作用使生物炭表面破碎,孔隙结构增多,提高了生物炭比表面积。干湿交替老化使低温生物炭的比表面积增大0.85倍,而经过化学氧化后的低温生物炭、高温生物炭比表面积分别增大8.81、0.37倍。老化过程使生物炭的官能团种类减少,且含氧官能团数量发生不同程度的变化,其中化学氧化使羧基、内酯基等含氧官能团增多,而干湿交替及紫外光照老化主要引起含氧官能团数量的减少。此外,热重分析结果表明化学氧化使低温生物炭热稳定性降低,而所有老化后的高温生物炭热稳定性均增强。化学氧化、紫外光照、干湿交替3种老化处理均可提高两种生物炭的吸附能力,Cd2+吸附量分别提高498.95%~799.36%、436.10%~768.43%、35.53%~128.10%。因此,生物炭实际应用时需综合考虑其环境过程、特性变化以及目标污染物种类,以促进生物炭环境应用的长远发展。  相似文献   

11.
Physicochemical changes and in vitro digestibility of chicken breast myosin oxidized with a nonenzymic free-radical-generating system (FeCl(3)/H(2)O(2)/ascorbate) were studied by SDS-PAGE, differential scanning calorimetry, and o-phthaldialdehyde assay. Oxidation caused fragmentation and polymerization of myosin. Myosin polymers were cross-linked mainly through disulfide bonds. Hydroxyl radicals destabilized myosin, lowering its denaturation temperature by up to 4 degrees C. Oxidized myosin also produced a new thermal transition in the 60-80 degrees C temperature range, which could be attributed to the formation of disulfide-stabilized polymers. The proteolytic susceptibility of myosin to pepsin, trypsin, and chymotrypsin was increased by oxidation. Under nonreducing conditions, however, oxidized myosin showed decreased digestibility. The results may help explain variations in the functionality and nutritional quality of muscle foods in meat processing in which oxidation is involved.  相似文献   

12.
In this study the main chemical parameters, ascorbic acid and polyphenol content, and antioxidant activity of two varieties of prunes, dried by high-temperature (85 + 70 degrees C) and low-temperature (60 degrees C) procedures, were monitored during storage. Ascorbic acid content was higher in the prunes dried at 60 degrees C but significantly decreased in both varieties during storage. The different classes of polyphenols analyzed (cinnamates, anthocyanins, flavonols) showed different stabilities during storage. Neochlorogenic acid decreased only in the President variety, whereas chlorogenic acid increased in both varieties; anthocyanins, present only in the President prunes, disappeared in the first months of storage, and the flavonol content fell significantly in both cultivars during the year of the study. Drying temperature significantly affected the polyphenol content, with different effects according to the class of polyphenols. Antioxidant activity showed a significant increase at the end of the storage period and in the President variety was higher in the sample dried at the higher temperature.  相似文献   

13.
The thermomechanical properties of breadcrumb were investigated using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The main transition (T(1), near 0 degrees C) shifted to lower temperature with added glycerol due to freezing point depression. The low-temperature transition (T(3), approximately -50 degrees C), found only in high-glycerol (8.8%) bread, suggested that of excess or phase-separated glycerol. The high-temperature transition (T(2), 60-85 degrees C) appeared only in aged breadcrumbs; its temperature range was correlated well with the amylopectin melting transition (DSC) but its tan delta amplitude did not correlate well with the amylopectin melting enthalpy (r(2) = 0.72). On the other hand, the change of E' ' (viscous behavior) suggested that T(2) might be related to the change in the amorphous region. Domain-to-domain (amorphous) and crumb-to-crust moisture migrations are two critical phenomenological changes associated with aging and could lead to significant local dehydration of some amorphous regions contributing to mechanical firming during storage.  相似文献   

14.
A new method for the determination of the main neutral sugars in pectin has been developed. The sample preparation involves a mild chemical attack followed by an enzymatic hydrolysis. The completeness and nondestructive character of the method are demonstrated by comparison of the results obtained with different acids such as H2SO4, HCl, and trifluoroacetic acid (TFA) at different concentrations (2, 1, or 0.2 M) at two temperatures (80 or 100 degrees C). The chemical hydrolysis of pectin neutral sugar chains with strong acid (1 or 2 M) and high temperature (100 degrees C) shows that the liberation of the pectin sugars is not realized at the same rate for each sugar. Different optimum conditions are thus obtained. However, the chemical pectin hydrolysis with 0.2 M TFA at 80 degrees C is characterized by the liberation of pectin neutral sugar side chains without any degradation within 72 h of hydrolysis. Under these conditions, the liberation of some pectin sugars, essentially galactose, glucose, and rhamnose, was not complete. An enzymatic hydrolysis is necessary to obtain a complete release of all the sugars. The combination of the two treatments, a chemical hydrolysis realized with diluted acid (0.2 M) for 72 h at low temperature (80 degrees C) on one hand and an enzymatic hydrolysis on the other hand, allow a total liberation of pectin sugars. The quantitative analysis of the carbohydrates is realized with accuracy, high selectivity, and sensitivity with high-performance anion-exchange chromatography with pulsed-amperometric detection. The sugars can be analyzed without any derivatization with a limit of quantification of 0.1 mM.  相似文献   

15.
The potent odorant beta-damascenone was formed directly from 9'-cis-neoxanthin in a model system by peroxyacetic acid oxidation and two-phase thermal degradation without the involvement of enzymatic activity. Beta-damascenone formation was heavily dependent on pH (optimum at 5.0) and temperature, occurring over the two sequential phases. The first was incubation with peroxyacetic acid at 60 degrees C for 90 min, and the second was at above 90 degrees C for 20 min. Only traces of beta-damascenone were formed on application of only one of the two phases. Formate and citrate solutions produced a much better environment for beta-damascenone formation than acetate and phosphate. About 7 microg/L beta-damascenone was formed from 5.8 mg/L 9'-cis-neoxanthin under optimal experimental condition. The detailed pathway by which beta-damascenone is formed remains to be elucidated.  相似文献   

16.
High-pressure/high-temperature properties of vitamins in food are important with respect to the new pressure-assisted thermal sterilization method utilizing pressure-induced adiabatic temperature changes. Riboflavin, thiamin, and thiamin monophosphate (TMP) stabilities were assayed in the temperature range from 25 to 100 degrees C under normal pressure (0.1 MPa) and high pressure (600 MPa) in acetate-buffered (pH 5.5) model solutions, some with added fructose, hemoglobin, or ascorbic acid. Thiamin and riboflavin stabilities were also assayed in minced fresh pork fillet and in rehydrated pork reference material with and without pressure treatment at 600 MPa in the temperature range from 20 to 100 degrees C. In pork, the vitamins proved to be sufficiently stabile for high-pressure/high-temperature processing. Under similar conditions, vitamin decay in model solutions was up to 30 times faster, especially that of TMP. Thus, it appears that it may not be possible to draw conclusions for the pressure behavior of real food matrices from the results of investigations in food models. A further consequence is that caution is necessary when supplementing foods with synthetic B vitamins preceding high-pressure/high-temperature processing.  相似文献   

17.
The comparative formation of phenylalanine and phenylpyruvic acid in the reaction of 4,5-epoxy-2-decenal with phenylalanine was studied to determine whether epoyalkenals may also degrade amino acids without producing their decarboxylation. Both compounds were produced in the reaction to an extent that depended on the reaction pH, the amount of lipid oxidation product, and the reaction time and temperature. The optimum pH was 3 for producing both carbonyl derivatives, and the amount of both compounds increased linearly with the amount of epoxyalkenal present in the reaction mixture. In addition, phenylpyruvic acid was produced to a higher extent than phenylacetaldehyde at 37 degrees C. However, at 60 degrees C the degradation of phenylpyruvic acid was observed and phenylacetaldehyde was usually found to a higher extent than the alpha-keto acid in the overnight-incubated reaction mixtures. The degradation of phenylpyruvic acid produced benzaldehyde and phenylacetaldehyde. All these results suggest that epoxyalkenals can not only degrade amino acids by a Strecker-type mechanism but convert them into their corresponding alpha-keto acids. This new reaction may be an alternative chemical route for the formation in foods of alpha-keto acids, which can later participate in the generation of important amino acid-derived flavor compounds.  相似文献   

18.
The optimal conditions for the de-esterification reaction of tomato pectinesterase (PE) and citrus PE was 0.1-0.2 M NaCl and at pH 7.5-8.5, 65 degrees C, almost identical to those for the transacylation reaction as observed by turbidity (absorbance at 400 nm) change. Among the PEs tested, pea pod PE presented the most remarkable catalysis on the transacylation reaction, and 1.5% pectin solution was determined to be suitable for this reaction. Low methoxy pectin with a DE (degree of esterification) of 31% displayed a slow turbidity increase, revealing that the extent of DE was influential on the transacylation. Besides citrus pectin, apple pectin was also proved to progress transacylation reaction by PEs from tomato and citrus sources as apparently observed by turbidity method.  相似文献   

19.
Rapeseed and pine bark are rich sources of phenolic compounds that have in previous studies been shown to exhibit antioxidant and anti-inflammatory properties. In this study, the antioxidant effect of rapeseed and pine bark phenolics in inhibiting the oxidation of lipids and proteins in meat was tested as a possible functional food application. The cooked pork meat with added plant material was oxidized for 9 days at 5 degrees C under light. The suitable level of plant material addition was first screened by following lipid oxidation only. For further investigations plant materials were added at a level preventing lipid oxidation by >80%. The oxidation was followed by measuring the formation of hexanal by headspace gas chromatography and the formation of protein carbonyls by converting them to 2,4-dinitrophenylhydrazones and measured by spectrophotometer. It was shown that rapeseed and pine bark were excellent antioxidants toward protein oxidation (inhibitions between 42 and 64%). These results indicate that rapeseed and pine bark could be potential sources of antioxidants in meat products.  相似文献   

20.
The scope of this study is the effect of ohmic heating thermal treatment on liquid fruit juice made of oranges. Effects of ohmic heating on the quality of orange juice were examined and compared to those of heat pasteurization at 90 degrees C for 50 s. Orange juice was treated at temperatures of 90, 120, and 150 degrees C for 1.13, 0.85, and 0.68 s in an ohmic heating system. Microbial counts showed complete inactivation of bacteria, yeast, and mold during ohmic and conventional treatments. The ohmic heating treatment reduced pectin esterase activity by 98%. The reduction in vitamin C was 15%. Ohmic-heated orange juice maintained higher amounts of the five representative flavor compounds than did heat-pasteurized juice. Sensory evaluation tests showed no difference between fresh and ohmic-heated orange juice. Thus, high-temperature ohmic-heating treatment can be effectively used to pasteurize fresh orange juice with minimal sensory deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号